• Development of Hyaluronic Acid Hydrogels for Neural Stem Cell Engineering

      Suh, Won H.; Marcinkiewicz, Cezary; Lelkes, Peter I.; Lazarovici, Philip (Temple University. Libraries, 2015)
      In this work, a hydrogel made from hyaluronic acid is synthesized and utilized to study neural stem cell behavior within a custom tailored three dimensional microenvironment. The physical properties of the hydrogel have been optimized to create an environment conducive for neural stem cell differentiation by mimicking the native brain extracellular matrix (ECM) environment. The physical properties characterized include degree of methacrylation, swelling ratios, enzymatic degradation rates, and viscoelastic moduli. One dimensional proton nuclear magnetic resonance (1HNMR) confirms modification of the hyaluronic acid polymers, and is used to quantify the degree of methacrylation. Rheological measurements are made to quantify the viscoelastic moduli. Further post-processing by lyophilization leads to generation of large voids to facilitate re-swelling and cell infiltration. ReNcell VM (RVM), and adult human neural stem cell line derived from the ventral mesencephalon, are cultured and differentiated inside the hydrogel for up to 2 weeks. Differentiation is characterized by immunocytochemistry (ICC) and real time quantitative polymerase chain reaction (qRT-PCR).