Dai, Hai-Lung; Stanley, Robert J.; Levis, Robert J.; Rao, Yi; Ren, Shenqiang (Temple University. Libraries, 2016)
      In this dissertation, the laser spectroscopic methods, second harmonic generation (SHG) and ultrafast transient absorption, have been employed to study the reactions and dynamics in two different types of materials, namely, silver nanoparticles and micro-sized ultrathin crystalline oligoacenes. These two materials, although both are in small dimensions, represent two distinct types of systems with divergent characteristics: 1) systems in which interactions at the surface/interface are dominant, and 2) systems in which bulk interactions are dominant. Silver nanoparticles are an important member of the class of noble metal nanoparticles, and possess unique optical and chemical properties due to their ultrafine size and high surface-to-volume ratio. Strong SHG signal has been observed from silver nanoparticles dispersed in aqueous colloidal solution, in which the SHG signal is enhanced due to a resonance with the localized surface plasmon of silver nanoparticles. Further experiments proved that the SHG signal predominantly originates from the particle surface, in full agreement with the intrinsically interface-sensitive properties of SHG. With the surface origin of the signal now well established, SHG can be used to probe the adsorption and reactions of thiol molecules at the nanoparticle surface in situ and in real time. It is experimentally demonstrated that the free energy change, activation energy, as well as adsorption density of the reactions of a variety of neutral and anionic thiols at the particle surface can be measured by means of SHG. The reaction mechanisms at the molecular level have been deduced, and the neutral vs anionic thiols are found to exhibit qualitatively different reaction mechanisms that reflect the effect of their molecular interactions with the particle surface. Oligoacenes, such as pentacene and hexacene, constitute a family of organic semiconductors that exhibit remarkable optoelectronic properties. In contrast to the nanoparticles in which surface interactions are dominant, as the sizes of materials become larger, the bulk characteristics become more deterministic. Therefore, polarized linear absorption and transient absorption spectroscopies have been applied to study the excitonic properties of crystalline pentacene and the mechanism of singlet fission in crystalline hexacene, respectively. The polarized absorption spectra of crystalline pentacene have been obtained by measuring transmitted light normal to the ab herringbone plane of micro-sized ultrathin single crystals. The significant deviations between the spectral line shapes polarized along the b-axis and orthogonal to the b-axis provide detailed information on the anisotropic mixing nature of the Frenkel/charge-transfer excitons responsible for the pronounced Davydov splitting between the lowest-energy singlet states. Additionally, both singlet and triplet Davydov splittings were also observed from the linear and transient absorption experiments in micrometer-sized ultrathin hexacene single crystals. A two-step process of anisotropic singlet fission was uncovered from the kinetic data, in which singlet fission at different rates were deduced along the a- and b-axes. Both the spectral and kinetic features indicate that singlet fission in crystalline hexacene is an anisotropic and charge-transfer mediated many-molecule process.