• Pattern Identification or 3D Visualization? How Best to Learn Topographic Map Comprehension

      Shipley, Thomas F.; Newcombe, Nora; Chein, Jason M.; Davatzes, Alexandra K.; Giovannetti, Tania; Marshall, Peter J. (Temple University. Libraries, 2014)
      Science, Technology, Engineering, and Mathematics (STEM) experts employ many representations that novices find hard to use because they require a critical STEM skill, interpreting two-dimensional (2D) diagrams that represent three-dimensional (3D) information. The current research focuses on learning to interpret topographic maps. Understanding topographic maps requires knowledge of how to interpret the conventions of contour lines, and skill in visualizing that information in 3D (e.g. shape of the terrain). Novices find both tasks difficult. The present study compared two interventions designed to facilitate understanding for topographic maps to minimal text-only instruction. The 3D Visualization group received instruction using 3D gestures and models to help visualize three topographic forms. The Pattern Identification group received instruction using pointing and tracing gestures to help identify the contour patterns associated with the three topographic forms. The Text-based Instruction group received only written instruction explaining topographic maps. All participants then completed a measure of topographic map use. The Pattern Identification group performed better on the map use measure than participants in the Text-based Instruction group, but no significant difference was found between the 3D Visualization group and the other two groups. These results suggest that learning to identify meaningful contour patterns is an effective strategy for learning how to comprehend topographic maps. Future research should address if learning strategies for how to interpret the information represented on a diagram (e.g. identify patterns in the contour lines), before trying to visualize the information in 3D (e.g. visualize the 3D structure of the terrain), also facilitates students' comprehension of other similar types of diagrams.