• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mixotrophy in Freshwater Foodwebs

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    DeVaul_temple_0225E_12435.pdf
    Size:
    1.332Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2016
    Author
    DeVaul, Sarah Bess
    Advisor
    Sanders, Robert W.
    Committee member
    Cordes, Erik E.
    Freestone, Amy
    Holen, Dale
    Department
    Biology
    Subject
    Aquatic Sciences
    Biology
    Ecology
    Bacterivory
    Freshwater
    Microbial Loop
    Mixotrophy
    Phytoplankton
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1084
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1066
    Abstract
    Environmental heterogeneity in both space and time has significant repercussions for community structure and ecosystem processes. Dimictic lakes provide examples of vertically structured ecosystems that oscillate between stable and mixed thermal layers on a seasonal basis. Vertical patterns in abiotic conditions vary during both states, but with differing degrees of variation. For example, during summer thermal stratification there is high spatial heterogeneity in temperature, nutrients, dissolved oxygen and photosynthetically active radiation. The breakdown of stratification and subsequent mixing of the water column in fall greatly reduces the stability of the water column to a vertical gradient in light. Nutrients and biomass that were otherwise constrained to the depths are also suspended, leading to a boom in productivity. Freshwater lakes are teeming with microbial diversity that responds to the dynamic environment in a seemingly predictable manner. Although such patterns have been well studied for nanoplanktonic phototrophic and heterotrophic populations, less work has been done to integrate the influence of mixotrophic nutrition to the protistan assemblage. Phagotrophy by phytoplankton increases the complexity of nutrient and energy flow due to their dual functioning as producers and consumers. The role of mixotrophs in freshwater planktonic communities also varies depending on the relative balance between taxon-specific utilization of carbon and energy sources that ranges widely between phototrophy and heterotrophy. Therefore, the role of mixotrophy in the microbial food web is difficult to predict because functional types of mixotrophs along a gradient of nutritional strategies contribute differently to nutrient cycling and carbon sequestration. The overall objective of this work was to advance existing knowledge of the abundance and activity of phagotrophy phytoplankton in lacustrine systems. The incorporation of mixotrophy into the microbial food web requires the complement of physiological studies in culture (as described in chapter 2) and quantification of activity (including abundance and bacterivory) in relation to strict phototrophs and heterotrophs in situ (as described in chapter 3 and 4). Information on the physiological ecology of mixotrophic protists is crucial to understanding their role in planktonic food webs and influence on the dynamic microbial community structure in lake ecosystems. An understanding of the ecological functioning of lakes has ultimate consequences for management of water resources, particularly in the face of global climate change.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.