• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Dissecting the mechanism of STIM coupling to Orai

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Deng_temple_0225E_10942.pdf
    Size:
    6.023Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2011
    Author
    Deng, Xiaoxiang
    Advisor
    Gill, Donald L.
    Committee member
    Soboloff, Jonathan
    Giangiacomo, Kathleen
    Chong, Parkson Lee-Gau
    Joseph, Suresh K.
    Department
    Biochemistry
    Subject
    Biochemistry
    Cellular Biology
    2-apb
    Crac
    Orai
    Stim
    Store-operated Calcium Entry
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1075
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1057
    Abstract
    Store-operated Ca2+ entry (SOCE) triggered by the depletion of endoplasmic reticulum (ER) luminal Ca2+ stores is a major Ca2+ entry pathway in non-excitable cells and is essential in physiological Ca2+ signaling and homeostasis. STIM proteins are sensors of ER luminal Ca2+, which translocate to ER-plasma membrane (PM) junctional regions to activate the family of Orai channels mediating Ca2+ entry. This study is focused on dissecting the mechanism of STIM interacting with Orai. A powerful modifier of SOCE, 2-aminoethoxydiphenyl borate (2-APB) is utilized. First, the action of 2-APB on the mammalian Orai homologues are characterized using the DT40 STIM knockout cells. 50 ìM 2-APB directly activates Orai3 but not Orai1 or Orai2. Second, while it stimulates the STIM2-mediated constitutive Ca2+ entry through Orai, 2-APB also induces the cytosolic STIM C-terminus fragments to translocate to the PM and activate Orai1. These data reveal 50 ìM 2-APB enhances STIM-Orai coupling. Further, this enhanced binding of STIM and Orai leads to a conformational change within the STIM-Orai complex, which is possibly the underlying mechanism for the 50 ìM 2-APB inhibitory effect on SOCE. Finally, six residues (344-349) at the N-terminus of the STIM-Orai activation region (SOAR) prove to be critical for this inhibitory action. These same six amino acid region also constitutes an ancillary Orai binding site within SOAR, in addition to the main polybasic region. The deletion of this ancillary site abolishes the ability of SOAR to bind to and activate Orai1, but can be compensated for by the STIM-Orai binding enhancing effect of 50 ìM 2-APB. The majority of STIM1 is located on the ER membrane, while a small proportion of STIM1 is on the PM. Using an extracellularly applied STIM1 antibody, the PM STIM1 can be aggregated to exert an influence on the ER STIM1. Although the PM STIM1 is not obligatory for STIM1-mediated Orai activation, it nevertheless may have a functional presence in the PM. Lastly, a regulatory link between voltage-gated Ca2+ channels (Cav channels) and the STIM proteins is established. After activation by store depletion, STIM strongly suppresses the Cav1.2 channels. There is a biochemical interaction between STIM1 and the Cav1.2 pore subunit á1C. This inhibitory effect is independent of Orai1 activation. Hence, STIM1 interacts with and reciprocally controls two major Ca2+ channels.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.