Show simple item record

dc.contributor.advisorDun, Nae J.
dc.creatorDeliu, Elena
dc.date.accessioned2020-10-21T14:27:19Z
dc.date.available2020-10-21T14:27:19Z
dc.date.issued2012
dc.identifier.other864885701
dc.identifier.urihttp://hdl.handle.net/20.500.12613/1070
dc.description.abstractThe G protein-coupled estrogen receptor GPER/GPER1, also known as GPR30, was originally cloned as an orphan receptor and later shown to be specifically activated by 17-ß-estradiol. This has led to its classification as an estrogen receptor and expanded the perspective on the mechanisms underlying the rapid estrogenic effects reported over the years. GPER is strongly expressed in the central nervous system and peripheral tissues and appears to be involved in a wide variety of physiological and pathological processes. Estrogens are known to alter the processing of nociceptive sensory information and analgesic responses in the central nervous system. Both analgesic and pro-nociceptive effects of estrogens have been reported. Some pro-algesic estrogenic responses have a short latency, suggesting a non-genomic mechanism of action. Immunohistochemical studies in rodents prove the existence of GPER in pain-relevant areas of the nervous system such as dorsal root ganglia, superficial dorsal horn of the spinal cord, periaqueductal gray (PAG), amygdala, trigeminal sensory nucleus and thalamus. In the periphery, activation of GPER results in pro-nociceptive effects. However, GPER involvement in pain processing at central levels is largely unexplored. Thus, the work presented in this thesis was aimed at investigating whether GPER modulates nociception at spinal and supraspinal sites. The behavioral response to GPER activation in the spinal cord and PAG was evaluated in an acute grooming test (scratching, biting and licking behavior) and in the hot plate test, respectively. Intrathecal challenge of mice with the GPER agonist G-1 (0.1-1 nmol) induced a dose-dependent increase in pain-related behaviors, that was abolished by pre-treatment with the GPER antagonist G15 (1-10 nmol), confirming GPER specificity of the response. Likewise, intra-PAG microinjection of G-1 (10-100 pmol) to rats reduced the nociceptive threshold in the hot plate test, an effect that was G15 sensitive. To obtain further insight on the mechanisms involved in the behavioral effects observed in whole animals, we tested the effect of GPER ligands on neuronal membrane potential, intracellular calcium concentration ([Ca2+]i) and reactive oxygen species (ROS) accumulation. The membrane depolarization and the increases in [Ca2+]i and ROS levels are markers of neuronal activation, underlying pain sensitization in the spinal cord and pain facilitation in the PAG. Electrophysiological recordings from superficial dorsal horn and lateral PAG neurons indicate neuronal depolarization upon G-1 application, an effect that was fully prevented by G15 pre-treatment. Both cultured spinal neurons and cultured PAG neurons responded to G-1 administration by elevating [Ca2+]i and mitochondrial and cytosolic ROS levels. In the presence of G15, G-1 did not elicit the calcium and ROS responses. Collectively, these results demonstrate that GPER modulates both the ascending and descending pain pathways to increase nociception via cytosolic calcium elevation and ROS accumulation in spinal and PAG neurons, respectively. These findings broaden the current knowledge on GPER involvement in physiology and pathophysiology, providing the first evidence of its pro-nociceptive effects at central levels and characterizing some of the mechanisms involved. Moreover, we show for the first time ROS accumulation downstream of GPER activation, extending the current understanding of GPER signaling.
dc.format.extent135 pages
dc.language.isoeng
dc.publisherTemple University. Libraries
dc.relation.ispartofTheses and Dissertations
dc.rightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectPharmacology
dc.subjectBiochemistry
dc.subjectCalcium Imaging
dc.subjectEstrogen
dc.subjectGpr30
dc.subjectPain
dc.subjectReactive Oxygen Species
dc.titleGPER/GPR30 Estrogen Receptor: A Target for Pain Modulation
dc.typeText
dc.type.genreThesis/Dissertation
dc.contributor.committeememberAbood, Mary Ellen, 1958-
dc.contributor.committeememberAshby, Barrie
dc.contributor.committeememberBrailoiu, Eugen
dc.contributor.committeememberUnterwald, Ellen M.
dc.contributor.committeememberSapru, Hreday N.
dc.description.departmentPharmacology
dc.relation.doihttp://dx.doi.org/10.34944/dspace/1052
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.description.degreePh.D.
refterms.dateFOA2020-10-21T14:27:19Z


Files in this item

Thumbnail
Name:
Deliu_temple_0225E_11093.pdf
Size:
10.43Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record