Show simple item record

dc.contributor.advisorStrongin, Daniel R.
dc.creatorDebnath, Sudeep
dc.date.accessioned2020-10-21T14:27:18Z
dc.date.available2020-10-21T14:27:18Z
dc.date.issued2009
dc.identifier.other864884733
dc.identifier.urihttp://hdl.handle.net/20.500.12613/1064
dc.description.abstractNanomaterials possess physical and chemical properties that may benefit medicine, catalysis, and environmental remediation. Apart from understanding the structure of nanomaterials, significant amount of research has focused on understanding the structural properties of nanoparticles that lead to their unique reactivity. Ferric hydroxides are important mineral components and the subject of much scientific research in environmental and soil sciences because of their ubiquity in soil, ground water and aquatic sediments Iron oxide nanoparticles found in the environment exhibit size-dependent behavior. Iron oxides also play an important role in environmental chemistry. Ferrihydrite is an important iron oxide mineral as they exist in most of the sediment environment, necessary precursors for more stable iron oxides like hematite. Iron oxides are also important in many living organisms and stored as protein-encapsulated iron(III) oxyhydroxide nanoparticles. Because of the ubiquitous nature of ferrihydrite in soil and sediments, understanding correlation between the surface reactivity and the structure, phase of ferrihydrite ie. homogeneous or heterogeneous phase dependent reaction is important from environmental point of view. Iron oxides also play an important role in atmospheric chemistry and size dependent surface catalytic properties towards atmospheric gases. Green house gases are frequently generated during the burning of fossil fuels in factories and power plants, or derived from natural processes such as volcanic eruptions. Both natural and engineered metal oxides have been utilized as catalysts or sorbents for removal or minimization of green house emissions. In an attempt to understand the structure and reactivity relationship, we have presented ferrihydrite dissolution under reducing conditions and in situ kinetic studies were performed on isolated individual single particles of ferrihydrite using AFM. Bulk batch studies are also presented, where particles exist as agglomerates. Interface dissolution reaction has been characterized with FTIR and results were confirmed with theoretical calculations. Normalized dissolution rate of individual ferrihydrite particle sheds light on the phase behavior of this material. This study indicates that the ferrihydrite is uniform in composition and supports the Michel et al model. The size-dependent reactivity of ferrihydrite toward the environmentally important gas sulfur dioxide SO2 was also studied as atmospheric emission of SO2(g) affects the environment because it promotes the production of acid rain. In this investigation, nano-ferrihydrite particles were synthesized with a narrow size distribution. The surface chemistry and reactivity (SO2(g) sorption) was studied with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy in combination with molecular orbital/density functional theory (MO/DFT) frequency calculations. Results showed that SO2(g) sorption may be a sensitive function of the structural properties and size of the nanoparticles. Like Iron oxides, Manganese oxides also play a distinctive role in superficial soil or near surface environments. Birnessite is one of the most commonly occurring manganese oxides in the soils and sediments. Birnessite are known to provide a suitable surface for heterogeneous oxidation of As(III) to As(V), and thus contribute to the environmental fate of arsenic species in soil and sediments. In the present study we have made an effort to understand this fundamental geochemistry occurring at birnessite surface at the molecular scale using advanced surface sensitive tools like AFM and spectroscopic techniques like FTIR and XPS. Nano size manganese oxide was also prepared via biological routes. Nano-size manganese oxide was prepared using ferritin protein as the biological precursor. Solution phase arsenic oxidation studies were performed with Ferritin Manganese oxide. Ion chromatography is performed to investigate oxidation of As(III) and reduction of manganese, along with XPS analysis to monitor the oxidation states of arsenic and manganese species. Results were also verified with FTIR spectroscopy for interface speciation.
dc.format.extent308 pages
dc.language.isoeng
dc.publisherTemple University. Libraries
dc.relation.ispartofTheses and Dissertations
dc.rightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectChemistry, Physical
dc.subjectGeochemistry
dc.subjectEnvironmental Sciences
dc.titleSurface/Geochemistry of Iron and Manganese Oxide Nano-Materials in the Environment
dc.typeText
dc.type.genreThesis/Dissertation
dc.contributor.committeememberSpano, Francis C.
dc.contributor.committeememberNicholson, Allen W.
dc.contributor.committeememberKargbo, David M.
dc.description.departmentChemistry
dc.relation.doihttp://dx.doi.org/10.34944/dspace/1046
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.description.degreePh.D.
refterms.dateFOA2020-10-21T14:27:18Z


Files in this item

Thumbnail
Name:
Debnath_temple_0225E_10064.pdf
Size:
6.034Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record