• Addressing Antibiotic Resistance: The Discovery of Novel Ketolide Antibiotics Through Structure Based Design and In Situ Click Chemistry

      Andrade, Rodrigo B.; Schafmeister, Christian; Wuest, William M.; Cannon, Kevin C. (Temple University. Libraries, 2016)
      Antibiotic resistance has become and will continue to be a major medical issue of the 21st century. If not addressed, the potential for a post-antibiotic era could become a reality, one that the world has not been familiar with since the early 1900’s. Multidrug-resistant hospital-acquired bacterial infections already account for close to 2 million cases and 23,000 deaths in the United States, along with 20 billion dollars of additional medical spending each year. The CDC released a report in 2013 regarding the seriousness of antibiotic resistance and providing a snapshot of costs and mortality rates of the most serious antibiotic resistant bacteria, which includes 17 drug resistant bacteria, such as carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococcus and Staphylococcus aureus, and multidrug-resistant Acinetobacter and Pseudomonas aeruginosa. The development of antibiotic resistance is part of bacteria’s normal evolutionary process and thus impossible to completely stop. To ensure a future where resistant bacteria do not run rampant throughout society, there is a great need for new antibiotics and accordingly, methods to facilitate their discovery Macrolides are a class of antibiotics that target the bacterial ribosome. Since their discovery in the 1950’s medicinal chemistry has created semi-synthetic analogues of natural product macrolides to address poor pharmacokinetics and resistance. Modern X-Ray crystallography has allowed the chemist access to high resolution images of the bacterial ribosome bound to antibiotics including macrolides which has ushered in an era of structure-based design of novel antibiotics. These crystal structures suggest that the C-4 methyl group of third generation ketolide antibiotic telithromycin can sterically clash with a mutated rRNA residue causing loss of binding and providing a structural basis for resistance. The Andrade lab hypothesized that the replacement of this methyl group with hydrogen would alleviate the steric clash and allow the antibiotic to retain activity. To this end, the Andrade lab set out on a synthetic program to synthesize four desmethyl analogues of telithromycin by total synthesis that would directly test the steric clash hypothesis and also provide structure-activity relationships about these methyl groups which have not been assessed in the past. Following will contain highlights of the total synthesis of (-)-4,8,10-didesmethyl telithromycin, (-)-4,10-didesmethyl telithromycin, and (-)-4,8-desmethyl telithromycin and my journey toward the total synthesis of (-)-4-desmethyl telithromycin Traditional combinatorial chemistry uses chemical synthesis to make all possible molecules from various fragments. These molecules then need to be purified, characterized, and tested against the biological target of interest. While high-throughput assay technologies (i.e., automation) has streamlined this process to some extent, the process remains expensive when considering the costs of labor, reagents, and solvent to synthesize, purify, and characterize all library members. Unlike traditional combinatorial chemistry, in situ click chemistry directly employs the macromolecular target to template and synthesize its own inhibitor. In situ click chemistry makes use of the Huisgen cycloaddition of alkyne and azides to form 1,2,3-triazoles, which normally reacts slowly at room temperature in the absence of a catalyst. If azide and alkyne pairs can come together in a target binding pocket the activation energy of the reaction can be lowered and products detected by LC-MS. Compounds found in this way generally show tighter binding than the individual fragments. Described in the second part of this dissertation is the development of the first in situ click methodology targeting the bacterial ribosome. Using the triazole containing third generation ketolide solithromycin as a template we were able to successfully show that in situ click chemistry was able to predict the tightest binding compounds.