Loading...
Digital imprinting of RNA recognition and processing on a self-assembled nucleic acid matrix
Redhu, SK ; Castronovo, M ; Nicholson, AW
Redhu, SK
Castronovo, M
Nicholson, AW
Citations
Altmetric:
Genre
Journal Article
Date
2013-09-20
Advisor
Committee member
Group
Department
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
10.1038/srep02550
Abstract
The accelerating progress of research in nanomedicine and nanobiotechnology has included initiatives to develop highly-sensitive, high-throughput methods to detect biomarkers at the single-cell level. Current sensing approaches, however, typically involve integrative instrumentation that necessarily must balance sensitivity with rapidity in optimizing biomarker detection quality. We show here that laterally-confined, self-assembled monolayers of a short, double-stranded(ds)[RNA-DNA] chimera enable permanent digital detection of dsRNA-specific inputs. The action of ribonuclease III and the binding of an inactive, dsRNA-binding mutant can be permanently recorded by the input-responsive action of a restriction endonuclease that cleaves an ancillary reporter site within the dsDNA segment. The resulting irreversible height change of the arrayed ds[RNA-DNA], as measured by atomic force microscopy, provides a distinct digital output for each dsRNA-specific input. These findings provide the basis for developing imprinting-based bio-nanosensors, and reveal the versatility of AFM as a tool for characterizing the behaviour of highly-crowded biomolecules at the nanoscale.
Description
Citation
Citation to related work
Springer Science and Business Media LLC
Has part
Scientific Reports
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu