Loading...
Electromagnetic Effect on the Rheology of Liquid Suspension
Tawhid-Al-Islam, Kazi M
Tawhid-Al-Islam, Kazi M
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2018
Advisor
Committee member
Group
Department
Physics
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/585
Abstract
Innovative methods to control the viscosity and turbulence in the flow of liquid suspension can be engineered by way of incorporating the concepts of electric and magnetic field into the rheology of complex fluids. Rheology of liquid Chocolate is a very crucial factor in determining the cost of manufacturing process as well as formulating varieties of end consumer products, for example, containing less fat. We have invented a method to lower the viscosity of liquid chocolate flow with the application of electric field. In the lab, we have found that viscosity of chocolate samples is reduced by 40~50% with our method. Thus, fat content in those samples can be reduced by 10% or more. Therefore, we expect to see much healthier and tastier chocolate product in the market once this technology gets implemented in commercial manufacturing. High viscosity and turbulence in blood flow greatly increase the risk of cardiac diseases. Hence, discovering new method to address turbulence suppression and viscosity reduction is critically important. In our study, we have found that in the in-vitro experiment, if blood is subjected to flow through a channel placed inside a strong magnetic field, its viscosity reduces by 10~20%. Based on these findings, a Megneto-Rheology (MR) therapeutic device has been developed to examine the effect on the blood pressure in human subjects. Preliminary clinical trials show that application of this MR therapy reduces blood pressure by 10% or more. In this thesis, above mentioned inventions for the flow of Blood and liquid Chocolate will be thoroughly discussed.
Description
Accompanied by two .mpeg4 files.
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu