Loading...
Citations
Altmetric:
Genre
Journal article
Date
2017-07-16
Advisor
Committee member
Group
Department
Mechanical Engineering
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
https://doi.org/10.3390/en10071006
Abstract
Transverse thermoelectric elements have the potential to decouple the electric current and the heat flow, which could lead to new designs of thermoelectric devices. While many theoretical and experimental studies of transverse thermoelectricity have focused on layered structures, this work examines composite materials with aligned fibrous inclusions. A simplified mathematical model was derived based on the Kirchhoff Circuit Laws (KCL), which were used to calculate the equivalent transport properties of the composite structures. These equivalent properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity, compared well with finite element analysis (FEA) results. Peltier cooling performance was also examined using FEA, which exhibited good agreement to KCL model predictions. In addition, a survey was conducted on selected combinations of thermoelectric materials and metals to rank their transverse thermoelectricity with respect to the dimensionless figure of merit.
Description
Citation
Qian, B.; Ren, F. Transverse Thermoelectricity in Fibrous Composite Materials. Energies 2017, 10, 1006.
Citation to related work
MDPI
Has part
Energies, Vol. 10, Issue 7
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu