Loading...
Automated Interpretation of Abnormal Adult Electroencephalograms
Lopez de Diego, Silvia Isabel
Lopez de Diego, Silvia Isabel
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2017
Advisor
Committee member
Group
Department
Electrical and Computer Engineering
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/1749
Abstract
Interpretation of electroencephalograms (EEGs) is a process that is still dependent on the subjective analysis of the examiner. The interrater agreement, even for relevant clinical events such as seizures, can be low. For instance, the differences between interictal, ictal, and post-ictal EEGs can be quite subtle. Before making such low-level interpretations of the signals, neurologists often classify EEG signals as either normal or abnormal. Even though the characteristics of a normal EEG are well defined, there are some factors, such as benign variants, that complicate this decision. However, neurologists can make this classification accurately by only examining the initial portion of the signal. Therefore, in this thesis, we explore the hypothesis that high performance machine classification of an EEG signal as abnormal can approach human performance using only the first few minutes of an EEG recording. The goal of this thesis is to establish a baseline for automated classification of abnormal adult EEGs using state of the art machine learning algorithms and a big data resource – The TUH EEG Corpus. A demographically balanced subset of the corpus was used to evaluate performance of the systems. The data was partitioned into a training set (1,387 normal and 1,398 abnormal files), and an evaluation set (150 normal and 130 abnormal files). A system based on hidden Markov Models (HMMs) achieved an error rate of 26.1%. The addition of a Stacked Denoising Autoencoder (SdA) post-processing step (HMM-SdA) further decreased the error rate to 24.6%. The overall best result (21.2% error rate) was achieved by a deep learning system that combined a Convolutional Neural Network and a Multilayer Perceptron (CNN-MLP). Even though the performance of our algorithm still lags human performance, which approaches a 1% error rate for this task, we have established an experimental paradigm that can be used to explore this application and have demonstrated a promising baseline using state of the art deep learning technology.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu