Loading...
Designing Efficient Routing Protocols in Delay Tolerant Networks
Wang, Yunsheng
Wang, Yunsheng
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2013
Advisor
Committee member
Group
Department
Computer and Information Science
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/3764
Abstract
This thesis presents the design and evaluation of routing protocols for efficient content delivery and dissemination in delay tolerant networks. With the advancement in technology, the communication devices with wireless interfaces become more and more universal. Delay tolerant networks (DTNs) are characterized by intermittent connectivity and limited network capacity. There exist several different application scenarios: connectivity of developing countries, vehicular DTN road communications, and social contact networks. In this thesis, we explore the characteristics in DTNs, such as mobility pattern, contact history information, and social feature information, to design efficient routing schemes. The research reported in this thesis investigates the technical challenges and their solutions of applying different DTN routing protocols. We design multicast schemes to forward the information to a group of destinations in DTN environment. We extend the delegation forwarding scheme in DTN multicasting. An non-replication multicast tree is also studied in this report. We also apply ticket-based and social-tie-based approaches in content distribution systems. We leverage the users' social feature information to study the hypercube-based routing schemes in social contact networks. We also study the resource management problem in DTNs. We design a joint replication-migration-based scheme to solve the storage congestion. These techniques are evaluated comprehensively in realistic simulation studies, by comparing the performance with state-of-the-art approaches in both synthetic and real traces.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
