Loading...
Geothermal Exploration North of Mount St. Helens
Spake, Phillip
Spake, Phillip
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2019
Advisor
Committee member
Group
Department
Geology
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/2424
Abstract
Active seismicity and volcanism north of Washington state’s Mount St. Helens provide key ingredients for hydrothermal circulation at depth. This broad zone of seismicity defines the St. Helens Seismic Zone, which extends well north of the volcanic edifice below where several faults and associated fractures in outcrop record repeated slip, dilation, and alteration indicative of localized fluid flow. Candidate reservoir rocks for a geothermal system include marine metasediments overlain by extrusive volcanics. The colocation of elements comprising a geothermal system at this location is tested here by analysis of the structures potentially hosting a reservoir, their relationship to the modern stress state, and temperature logs to a depth of 250 m. Outcrop mapping and borehole image log analysis down to 244 m document highly fractured volcaniclastic deposits and basalt flows. Intervening ash layers truncate the vertical extent of most structures. However, large strike slip faults with well-developed fault cores and associated high fracture density cross ash layers; vein filling and alternation of the adjacent host rock in these faults suggest they act as vertically extensive flow paths. These faults and associated fractures record repeated slip, dilation, and healing by various dolomite, quartz, and hematite, as well as clay alteration, indicative of long-lived, localized fluid flow. In addition, where these rocks are altered by igneous intrusion, they host high fracture density that facilitated heat transfer evidenced by associated hydrothermal alteration. Breakouts in image logs indicate the azimuth of SHmax in the shear zone is broadly consistent with both the GPS plate convergence velocity field as well as seismically active strike slip faults and strike-slip faults mapped in outcrop and borehole image logs. However, the local orientation of SHmax varies by position relative to the edifice and in some cases with depth along the borehole making a simple regional average SHmax azimuth misleading. Boreholes within the seismic zone display a wider variety of fracture attitudes than those outside the shear zone, potentially promoting permeability. Temperature profiles in these wells all indicate isothermal conditions at average groundwater temperatures, consistent with rapidly flowing water localized within fractures. Together, these results indicate that the area north of Mount Saint Helens generates and maintains porosity and permeability suggesting that conditions necessary for a geothermal system are present, although as yet no modern heat source or hydrothermal circulation was detected at shallow depth.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu