Loading...
Thumbnail Image
Item

Measurements of the Neutron Longitudinal Spin Asymmetry A1 and Flavor Decomposition in the Valence Quark Region

Flay, David
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/2845
Abstract
The current data for the nucleon-virtual photon longitudinal spin asymmetry A1 on the proton and neutron have shown that the ratio of the polarized-to-unpolarized down-quark parton distribution functions, Δ d/d, tends towards -1/2 at large x, in disagreement with the perturbative QCD prediction that Δ d/d approaches 1 but more in line with constituent quark models. As a part of experiment E06-014 in Hall A of Jefferson Lab, double-spin asymmetries were measured in the scattering of a longitudinally polarized electron beam of energies 4.74 and 5.89 GeV from a longitudinally and transversely polarized 3He target in the deep inelastic scattering and resonance region, allowing for the extraction of the neutron asymmetry A1n and the ratios Δ d/d and Δ u/u. We will discuss our analysis of the data and present results for A1 and g1/F1 on both 3He and the neutron, and the resulting quark ratios for the up and down quarks in the kinematic range of 0.2 2 2 for our deep inelastic scattering data. Invoking duality, we also extract A1n and g1n/F1n in the resonance region, characterized by 0.6 2 2. Our measurements are compared to the world data and various theoretical models and more recent predictions using the Dyson-Schwinger Equation approach. We also present analysis of the unpolarized cross section data, which contributes to the g1 spin structure function and eventually the a2 matrix element, an x2-weighted moment of g1. The extracted a2 data are compared to a Lattice QCD calculation.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
Embedded videos