Loading...
The effect of quercetin on genetic expression of the commensal gut microbes Bifidobacterium catenulatum, Enterococcus caccae and Ruminococcus gauvreauii
Firrman, Jenni A. ; Liu, LinShu ; Zhang, Liqing ; Argoty, Gustavo Arango ; Wang, Minqian ; Tomasula, Peggy ; Kobori, Masuko ; Pontious, Sherri ;
Firrman, Jenni A.
Liu, LinShu
Zhang, Liqing
Argoty, Gustavo Arango
Wang, Minqian
Tomasula, Peggy
Kobori, Masuko
Pontious, Sherri
Citations
Altmetric:
Genre
Journal article
Date
2016-12-05
Advisor
Committee member
Group
Department
Microbiology and Immunology
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
https://doi.org/10.1016/j.anaerobe.2016.10.004
Abstract
Quercetin is one of the most abundant polyphenols found in fruits and vegetables. The ability of the gut microbiota to metabolize quercetin has been previously documented; however, the effect that quercetin may have on commensal gut microbes remains unclear. In the present study, the effects of quercetin on the commensal gut microbes Ruminococcus gauvreauii, Bifidobacterium catenulatum and Enterococcus caccae were determined through evaluation of growth patterns and cell morphology, and analysis of genetic expression profiles between quercetin treated and non-treated groups using Single Molecule RNA sequencing via Helicos technology. Results of this study revealed that phenotypically, quercetin did not prevent growth of Ruminococcus gauvreauii, mildly suppressed growth of Bifidobacterium catenulatum, and moderately inhibited growth of Enterococcus caccae. Genetic analysis revealed that in response to quercetin, Ruminococcus gauvreauii down regulated genes responsible for protein folding, purine synthesis and metabolism. Bifidobacterium catenulatum increased expression of the ABC transport pathway and decreased metabolic pathways and cell wall synthesis. Enterococcus caccae upregulated genes responsible for energy production and metabolism, and downregulated pathways of stress response, translation and sugar transport. For the first time, the effect of quercetin on the growth and genetic expression of three different commensal gut bacteria was documented. The data provides insight into the interactions between genetic regulation and growth. This is also a unique demonstration of how RNA single molecule sequencing can be used to study the gut microbiota.
Description
Citation
Citation to related work
Elsevier
Has part
Anaerobe, Vol. 42
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu