Loading...
Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics
Barbeira, AN ; Dickinson, SP ; Bonazzola, R ; Zheng, J ; Wheeler, HE ; Torres, JM ; Torstenson, ES ; Shah, KP ; Garcia, T ; Edwards, TL ... show 10 more
Barbeira, AN
Dickinson, SP
Bonazzola, R
Zheng, J
Wheeler, HE
Torres, JM
Torstenson, ES
Shah, KP
Garcia, T
Edwards, TL
Citations
Altmetric:
Genre
Journal Article
Date
2018-12-01
Advisor
Committee member
Group
Department
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
10.1038/s41467-018-03621-1
Abstract
© 2018 The Author(s). Scalable, integrative methods to understand mechanisms that link genetic variants with phenotypes are needed. Here we derive a mathematical expression to compute PrediXcan (a gene mapping approach) results using summary data (S-PrediXcan) and show its accuracy and general robustness to misspecified reference sets. We apply this framework to 44 GTEx tissues and 100+ phenotypes from GWAS and meta-analysis studies, creating a growing public catalog of associations that seeks to capture the effects of gene expression variation on human phenotypes. Replication in an independent cohort is shown. Most of the associations are tissue specific, suggesting context specificity of the trait etiology. Colocalized significant associations in unexpected tissues underscore the need for an agnostic scanning of multiple contexts to improve our ability to detect causal regulatory mechanisms. Monogenic disease genes are enriched among significant associations for related traits, suggesting that smaller alterations of these genes may cause a spectrum of milder phenotypes.
Description
Citation
Citation to related work
Springer Science and Business Media LLC
Has part
Nature Communications
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu