Loading...
GASP-1, a New Tumor Biomarker, Contributes to Tumorigenesis in Breast Cancer.
Zheng, Xiaoyi
Zheng, Xiaoyi
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2013
Advisor
Committee member
Group
Department
Biology
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/3924
Abstract
Breast cancer is the second leading cause of death in United States. Using 2D-HPLE, a novel separation technology, G-protein coupled receptor-associated sorting protein 1(GASP-1) was identified in sera of patients with early stage cancer, while it could not be detected in sera from healthy individuals. This was the first indication that GASP-1 was positively correlated with breast cancer. However, the function of GASP-1 in breast cancer was unknown. In this study, I verified the 2D-HPLE results by quantifying the expression level of GASP-1 in sera and tissue specimens of cancer patients using specific antibodies against GASP-1. A GASP-1 specific ELISA was developed and used to quantify GASP-1 levels in cancer patient sera. Immunohistochemistry was performed to verify and localize GASP-1 expression in tumor. I also characterized the tumorigenic potential of GASP-1 andidentified the signaling pathways mediated by GASP-1 in breast cancer cells in vitro.GASP-1 expression levelsin MDA-MB-231 cells were modified by transfecting cells with anti-GASP-1 shRNA and over-expression plasmids. Stable cell lines were prepared and their tumorigenic potential was evaluated using cell proliferation, migration, and colony formation assays. These cells were analyzed for markers used to identify epithelial to mesenchymal transition (EMT) using RT-PCR and western blot. They were also analyzed for NFkappaB activity, src phosphorylation, and GPR30 expression. The results showed that GASP-1 was over-expressed in sera and tissue specimens of breast cancer patients and other cancer types including brain, lung, liver and pancreatic cancer and that it correlated with early stage disease. GASP-1 positively regulated migration, and is required for cell proliferation and colony formation. GASP-1 is also necessary for the expression of EMT marker slug, increases NFkappaB activity and GPR30 expression level, while decreases the inhibitory phospho-src Tyr 530. I conclude that GASP-1 is a nearly marker for multiple cancer types. GASP-1 promotes tumorigenesis in breast cancer, possibly through multiple cancer related signaling pathways. These findings may contribute to our understanding of the mechanism of breast cancer tumorigenesis and identify new biomarkers that can be used for diagnosis and therapy of cancer.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu