Loading...
Thumbnail Image
Item

Dysfunction of the retromer complex system contributes to amyloid and tau pathology in a stem cell model of Down syndrome

Curtis, Mary Elizabeth
Smith, Tiffany
Blass, Benjamin E.
Citations
Altmetric:
Genre
Journal article
Date
2022-07-26
Advisor
Committee member
Department
Neural Sciences
Permanent link to this record
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.1002/trc2.12334
Abstract
Introduction: Retromer complex proteins are decreased in Down syndrome (DS) brains and correlate inversely with brain amyloidosis. However, whether retromer dysfunction contributes to the amyloid beta (Aβ) and tau neuropathology of DS remains unknown. Methods: Human trisomic induced Pluripotent Stem Cells (iPSCs) and isogenic controls were differentiated into forebrain neurons, and changes in retromer proteins, tau phosphorylated epitopes, and Aβ levels were assessed in euploid and trisomic neurons using western blot and enzyme-linked immunosorbent assay (ELISA). Genetic overexpression and pharmacological retromer stabilization were used to determine the functional role of the retromer complex system in modulating amyloid and tau pathology. Results: Trisomic neurons developed age-dependent retromer core protein deficiency associated with accumulation of Aβ peptides and phosphorylated tau isoforms. Enhancing retromer function through overexpression or pharmacological retromer stabilization reduced amyloid and tau pathology in trisomic neurons. However, the effect was greater using a pharmacological approach, suggesting that targeting the complex stability may be more effective in addressing this neuropathology in DS. Discussion: Our results demonstrate that the retromer complex is directly involved in the development of the neuropathologic phenotype in DS, and that pharmacological stabilization of the complex should be considered as a novel therapeutic tool in people with DS.
Description
Citation
Curtis ME, Smith T, Blass BE, Praticò D. Dysfunction of the retromer complex system contributes to amyloid and tau pathology in a stem cell model of Down syndrome. Alzheimer's Dement. 2022; 8:e12334. https://doi.org/10.1002/trc2.12334
Citation to related work
Wiley Open Access
Has part
Alzheimer’s & Dementia: Translational Research & Clinical Interventions, Vol. 8, Iss. 1
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
Embedded videos