Loading...
Thumbnail Image
Item

Long-term Stationary Phase Behavior of Streptococcus pyogenes Biofilms

Steinberg, Gregory
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2012
Group
Department
Microbiology and Immunology
Permanent link to this record
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/2440
Abstract
Long-term Stationary Phase Behavior of Streptococcus pyogenes Biofilms Department of Microbiology and Immunology Streptococcus pyogenes is the etiological agent of many human diseases ranging from mild superficial skin infections and pharyngitis to life-threatening necrotizing fasciitis. There can be several complications as a result of S. pyogenes infection including post-streptococcal glomerulonephritis and rheumatic fever, which leads to rheumatic heart disease. Despite the significant virulence associated with the pathogen, the bacteria can also persist asymptomatically in human host carriers. S. pyogenes is characterized by significant strain-to-strain variation with many single nucleotide polymorphisms and differences in genetic content of up to 33% of the genome. Active infection is associated with the rapid growth of the pathogen, whereas survival or carriage is associated with slow growth. Our laboratory has demonstrated that during survival in long-term stationary phase cultures and in eukaryotic cells, S. pyogenes diversifies into a mixed population. Isolates from this population show diversification in their proteome, in metabolism, and in virulence factor transcription patterns. These are stable, heritable changes with unique mutations in global gene regulators in some isolates, suggesting that an accumulation of genetic mutations leads to diversification. There are two proposed modes of survival in the human host; by taking residence intracellularly in host cells and as biofilms. Previous studies showed that isolates surviving within eukaryotic cells acquire heritable changes in metabolism and virulence factor expression. Biofilms are highly organized structures formed by many bacteria, which provide resiliency to harsh environmental conditions. It has been demonstrated that S. pyogenes form biofilms in vivo and in vitro, and up to 90% of clinical isolates can form biofilms. Considering the resiliency of biofilms, and the organized roles played by individual cells in biofilms, we hypothesized that biofilms may provide S. pyogenes with a niche for persistence and diversification. Despite the capacity for survival of planktonic cells, we have found that viable cells could not be isolated from static biofilms after 10 days. No metabolic variants were found among biofilm isolates prior to loss of biofilm viability. Biofilm structure was examined using confocal microscopy to image cells after LiveDead® staining. These experiments revealed that the biofilms lost viability rapidly, and also appeared to disperse. Dispersion of 2-day old biofilms could be induced with culture supernatants collected from 7-day old planktonic cells. Overall, the results of these studies suggest that secreted factors from late stationary phase cultures induce biofilm dispersion and biofilms do not serve as a niche for long-term survival and diversification of S. pyogenes. Therefore, S. pyogenes biofilms may be more critical for initial colonization of the oropharynx. These studies may provide a valuable insight to the role of biofilms in S. pyogenes infections.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
Embedded videos