Loading...
Efficient, Flexible, and Resilient Control for Optimal Operation of Hybrid-Electric Shipboard Microgrids
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2023
Advisor
Committee member
Group
Department
Electrical and Computer Engineering
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/8419
Abstract
Electric transportation has been a well-studied research topic with electric ships gaining momentum. Ships can have a wide range in size from small cargo ships to military vessels. The benefits of electrification include meeting environmental sustainability goals and operational benefits in terms of flexibility and renewed operation. The power systems onboard a ship can be considered a microgrid, which is called a shipboard microgrid. This system poses unique challenges compared to land-based microgrids due to the resiliency requirements of being at sea. A control system for a hybrid- electric ship is proposed with both an energy storage system (ESS) and traditional diesel generators and gas turbines. This system balances economics with resilient control by calculating a baseline load distribution using the cost of operating each unit for the expected load profile. Additionally, the control system ensures that the generation capacity is available if the load does not follow the expected profile. To maintain flexibility, the system will redispatch the units as needed based on the actual load applied, while reducing the control efforts and maintaining the generation contingency. Therefore, the proposed shipboard microgrid control offers a control method that considers the cost of operation while maintaining the required standards of shipboard microgrid control.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu