Loading...
Controlling Light-Matter Interactions and Spatio-Temporal Properties of Ultrashort Laser Pulses
Coughlan, Matthew Anthony
Coughlan, Matthew Anthony
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2012
Advisor
Committee member
Group
Department
Chemistry
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/995
Abstract
The SPECIFIC method a fast and accurate method for generating shaped femtosecond laser pulses. The femtosecond pulses are user specified from pulse parameters in the temporal domain. The measured spectral and recovered temporal phase and amplitudes from SEA TADPOLE are compared with the theoretical pulse profile from the user specified input. The SPECIFIC method has been shown to be a technique that can generate a diverse array of spectral/temporal phase and amplitude as well as polarization pulse shapes for numerous scientific applications. The spatio -temporal -spectral properties of focusing femtosecond laser pulses are studied for several pulse shapes that are important for non-linear spectroscopic studies. We have shown with scanning SEA TADPOLE that the spatio-spectral phase of focusing double pulse profile changes across the laterally across the beam profile. The spectral features of the sinusoidal spectral phase shaped pulse has been shown to tilt at with a changing angle away from the focus of the lens. Using spatio-spectral coupling, we have shown that multiple spatio-temporal foci can be generated along and perpendicular to the focusing direction of a femtosecond laser pulse. The spatial position of the spatio-temporal foci is controlled optically. Using sinusoidal spectral phase modulated pulse trains fragment ion production from Benzonitrile parent molecule can be controlled. A spectral transmission window perturbed the temporal pulse amplitudes resulting in fragment ion production dependant on spectral window position. The spectral window ion production was shown to also be dependant on temporal phase sequence.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu