Loading...
Thumbnail Image
Item

Environmentally-Controlled Near Infrared Spectroscopic Imaging of Bone Water

Ailavajhala, R
Oswald, J
Rajapakse, CS
Pleshko, N
Citations
Altmetric:
Genre
Journal Article
Date
2019-12-01
Advisor
Committee member
Group
Department
Permanent link to this record
Research Projects
Organizational Units
Journal Issue
DOI
10.1038/s41598-019-45897-3
Abstract
© 2019, The Author(s). We have designed an environmentally-controlled chamber for near infrared spectroscopic imaging (NIRSI) to monitor changes in cortical bone water content, an emerging biomarker related to bone quality assessment. The chamber is required to ensure repeatable spectroscopic measurements of tissues without the influence of atmospheric moisture. A calibration curve to predict gravimetric water content from human cadaveric cortical bone was created using NIRSI data obtained at six different lyophilization time points. Partial least squares (PLS) models successfully predicted bone water content that ranged from 0–10% (R = 0.96, p < 0.05, root mean square error of prediction (RMSEP) = 7.39%), as well as in the physiologic range of 4–10% of wet tissue weight (R = 0.87, p < 0.05, RMSEP = 14.5%). Similar results were obtained with univariate and bivariate regression models for prediction of water in the 0–10% range. Further, we identified two new NIR bone absorbances, at 6560 cm−1 and 6688 cm−1, associated with water and collagen respectively. Such data will be useful in pre-clinical studies that investigate changes in bone quality with disease, aging and with therapeutic use.
Description
Citation
Citation to related work
Springer Science and Business Media LLC
Has part
Scientific Reports
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
Embedded videos