Loading...
Thumbnail Image
Item

Bone targeting nanoparticle as a new platform of antibiotic agent delivery for the treatment of osteomyelitis

Guo, Pengbo
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2019
Group
Department
Pharmaceutical Sciences
Permanent link to this record
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/596
Abstract
Osteomyelitis is a bone infection disease that is caused by microbes. One of the reason that a successful antimicrobial therapy has not been achieved in bone related infection is due to the physiological and structural limitations and multi-drug resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). Alendronate, a type of bisphosphonate, is a commonly used drug to treat osteoporosis that can strongly chelate with the calcium ions in bone mineral (hydroxyapatite), could be utilized as an active targeting moiety in a drug delivery system to bone tissues. Since nanomedicine can provide a robust drug delivery platform, with the properties of encapsulating molecules of different hydrophilicity, tunable drug release profile, and potential of differential targeting cells and tissues, we proposed a lipid-polymer nanoparticle system, Bone-Targeting Nanoparticle (BTN), with surface modified with covalently bonded alendronate. In this study, BTN encapsulates linezolid, which has dose-related adverse effect that prevent long duration usage. According to our current results, BTN demonstrates three distinguished traits that potentially improves the therapeutic effect of linezolid towards MRSA induced osteomyelitis: a) a hydrophobic polymeric core that can encapsulate a high amount of linezolid; b) alendronate as a targeting moiety that can guide BTN to bone tissue and accumulate near the site of infection; and c) a PEGylated lipid interface that can enhance the drug release profile and provide increased serum stability relative to standard delivery methods.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
Embedded videos