Loading...
MEASUREMENTS OF TRANSVERSE SPIN DEPENDENT DI-PION AZIMUTHAL CORRELATION ASYMMETRY AND UNPOLARIZED DI-PION CROSS-SECTION IN PROTON-PROTON COLLISIONS AT A CENTER-OF-MASS ENERGY OF 200 GeV AT STAR
Pokhrel, Babu Ram
Pokhrel, Babu Ram
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2023-08
Advisor
Committee member
Group
Department
Physics
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/9501
Abstract
The transversity distribution function, $h_1^{q}(x)$, where $x$ is the longitudinal momentum fraction of the proton carried by quark $q$, encodes the proton's transverse spin structure at leading twist. Difficulties arise when extracting $h_1^q(x)$ due to its chiral-odd nature. However, it can be coupled with a spin-dependent interference fragmentation function (FF), $H_1^{\sphericalangle, h_1h_2}$, in a dihadron ($h_1h_2$) production channel in polarized proton-proton ($p^\uparrow p$) collisions. The coupling of $h_1^{q}(x)$ and $H_1^{\sphericalangle, h_1h_2}$ produces an experimentally measurable azimuthal correlation asymmetry, $A_{UT}$, between the spin of the fragmenting quark and the final state dihadron. A model-independent extraction of transversity from these measurements relies on the knowledge of dihadron FFs, namely the unpolarized dihadron FFs, $D_1^{h_1h_2/q(g)}$ for quarks, \emph{q} (gluons, \emph{g}). Extraction of these FFs requires measurements of the unpolarized dihadron cross-section in $pp$ collisions, which are urgently needed. In $pp$ collisions, the unpolarized cross-section measurement provides access to the $D_1^{h_1h_2}$ for both quarks and gluons. This thesis outlines the measurements of the \dipion azimuthal correlation asymmetry in the forward ($\eta > 0$) and backward ($\eta < 0$) pseudorapidity regions with respect to the polarized beam using the RHIC Run 2015 polarized $pp$ data and the measurement of the unpolarized \dipion cross-section in the invariant mass bins in the mid-pseudorapidity ($|\eta|<1$) region using the RHIC Run 2012 $pp$ data at $\sqrt{s}=200$ GeV. These data sets were collected at the STAR experiment. The STAR Time Projection Chamber (TPC), Barrel Electromagnetic Calorimeter (BEMC), and Time-of-Flight Detector (TOF) were used in conjunction to measure outgoing particle energy, tracking, and identification.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu