Loading...
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2022
Advisor
Committee member
Group
Department
Physics
Subject
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/7761
Abstract
In materials with heavy elements, both strong spin-orbit coupling and Coulomb interactions are possible to exist. Both can significantly change the properties of materials. The coexistence of them can induce more interesting phenomena in solids. In this dissertation, three different cases involved with spin-orbit coupling and Coulomb interaction are separately studied. In the first case, impurity states in topological Kondo insulators are studied. Both in-gap and deep-bound impurity states are explicitly examined. The in-gap impurity states have properties similar to those of the topological surface states. It can explain some anomalous properties observed in SmB6, a possible topological Kondo insulator. In the second one, it is proposed that spin-orbit coupling can be strongly enhanced by Coulomb interaction in 5f metals. Modest values of the Coulomb interaction can induce up to a four-fold enhancement. In the third case, a model is presented to characterize spin-orbit enhancement in a strongly correlated two-dimensional system. By our calculation, it is shown that a possible nonlinear Rashba effect can emerge in such a system. It can explain the presence of giant Rashba constants in some two-dimensional devices.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu