Loading...
Structure-Mechanical Property Relations of Skin-Core Regions of Poly(p-phenylene terephthalamide) Single Fiber
Chabi, S ; Dikin, DA ; Yin, J ; Percec, S ; Ren, F
Chabi, S
Dikin, DA
Yin, J
Percec, S
Ren, F
Citations
Altmetric:
Genre
Journal Article
Date
2019-12-01
Advisor
Committee member
Group
Department
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
10.1038/s41598-018-37366-0
Abstract
© 2019, The Author(s). This study aims to elucidate the relationship between the mechanical properties and microstructures of poly(p-phenylene terephthalamide) (PPTA) single fibers at the micro/nano scale. The skin-core structure of Kevlar® 29 fiber was revealed through a focused electron beam experiment inside a scanning electron microscope (SEM) chamber. Cross sectional SEM images of the broken fiber showed that the thickness of the skin ranged from 300 to 800 nm and that the core region consisted of highly packed layers of fibrils. The skin and the core regions showed different mechanical behaviour and structural changes during nanoindentation and micro-tensile tests, indicating that the core region possessed higher stiffness, whereas the skin region could undergo more plastic deformation. Furthermore, micro-tensile testing results showed that the ultimate tensile strength, the elongation at failure, and the tensile toughness of single fibers could be significantly enhanced by cyclic loading. Such findings are important to understand the contribution of different microstructures of Kevlar® fibers to their mechanical performance, which in turn can be utilized to design high-performance fibers that are not limited by the trade-off between toughness and stiffness.
Description
Citation
Citation to related work
Springer Science and Business Media LLC
Has part
Scientific Reports
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu