Loading...
Optical Control and Spectroscopic Studies of Collisional Population Transfer in Molecular Electronic States
Pan, Xinhua
Pan, Xinhua
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2017
Advisor
Committee member
Group
Department
Physics
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/2072
Abstract
The quantum interference effects, such as the Autler-Townes (AT) effect and electromagnetically induced transparency (EIT) applied to molecular systems are the focus of this Dissertation in the context of high resolution molecular spectroscopy. We demonstrate that the AT effect can be used to manipulate the spin character of a spin-orbit coupled pair of molecular energy levels serving as a \textit{gateway} between the singlet and triplet electronic states. We demonstrate that the singlet-triplet mixing characters of the \textit{gateway} levels can be controlled by manipulating the coupling laser \textit{E} field amplitude. We observe experimentally the collisional population transfer between electronic states $G^1\Pi_g (v=12, J=21, f)$ and $1^3\Sigma _g^-(v=1, N=21, f)$ of $^7$Li$_2$. We obtain the Stern-Vollmer plot according to the vapor pressure dependence of collisional transfer rate. The triplet fluorescence from the mixed \textit{gateway} levels to the triplet $b^3\Pi_u(v'=1,J'=
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu