Loading...
Generalized Empirical Bayes: Theory, Methodology, and Applications
Fletcher, Douglas
Fletcher, Douglas
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2019
Advisor
Committee member
Group
Department
Statistics
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/2847
Abstract
The two key issues of modern Bayesian statistics are: (i) establishing a principled approach for \textit{distilling} a statistical prior distribution that is \textit{consistent} with the given data from an initial believable scientific prior; and (ii) development of a \textit{consolidated} Bayes-frequentist data analysis workflow that is more effective than either of the two separately. In this thesis, we propose generalized empirical Bayes as a new framework for exploring these fundamental questions along with a wide range of applications spanning fields as diverse as clinical trials, metrology, insurance, medicine, and ecology. Our research marks a significant step towards bridging the ``gap'' between Bayesian and frequentist schools of thought that has plagued statisticians for over 250 years. Chapters 1 and 2---based on \cite{mukhopadhyay2018generalized}---introduces the core theory and methods of our proposed generalized empirical Bayes (gEB) framework that solves a long-standing puzzle of modern Bayes, originally posed by Herbert Robbins (1980). One of the main contributions of this research is to introduce and study a new class of nonparametric priors ${\rm DS}(G, m)$ that allows exploratory Bayesian modeling. However, at a practical level, major practical advantages of our proposal are: (i) computational ease (it does not require Markov chain Monte Carlo (MCMC), variational methods, or any other sophisticated computational techniques); (ii) simplicity and interpretability of the underlying theoretical framework which is general enough to include almost all commonly encountered models; and (iii) easy integration with mainframe Bayesian analysis that makes it readily applicable to a wide range of problems. Connections with other Bayesian cultures are also presented in the chapter. Chapter 3 deals with the topic of measurement uncertainty from a new angle by introducing the foundation of nonparametric meta-analysis. We have applied the proposed methodology to real data examples from astronomy, physics, and medical disciplines. Chapter 4 discusses some further extensions and application of our theory to distributed big data modeling and the missing species problem. The dissertation concludes by highlighting two important areas of future work: a full Bayesian implementation workflow and potential applications in cybersecurity.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu