Loading...
Thumbnail Image
Item

Market Timing strategy through Reinforcement Learning

HE, Xuezhong
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2021
Group
Department
Business Administration/Finance
Permanent link to this record
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/6440
Abstract
This dissertation implements an optimal trading strategy based on the machine learning method and extreme value theory (EVT) to obtain an excess return on investments in the capital market. The trading strategy outperforms the benchmark S&P 500 index with higher returns and lower volatility through effective market timing. In addition, this dissertation starts by modeling the market tail risk using the EVT and reinforcement learning methods, distinguishing from the traditional value at risk method. In this dissertation, I used EVT to extract the characteristics of the tail risk, which are inputs for reinforcement learning. This process is proved to be effective in market timing, and the trading strategy could avoid market crash and achieve a long-term excess return. In sum, this study has several contributions. First, this study takes a new method to analyze stock price (in this dissertation, I use the S&P 500 index as a stock). I combined the EVT and reinforcement learning to study the price tail risk and predict stock crash efficiently, which is a new method for tail risk research. Thus, I can predict the stock crash or provide the probability of risk, and then, the trading strategy can be built. The second contribution is that this dissertation provides a dynamic market timing trading strategy, which can significantly outperform the market index with a lower volatility and a higher Sharpe ratio. Moreover, the dynamic trading process can provide investors an intuitive sense on the stock market and help in decision-making. Third, the success of the strategy shows that the combination of EVT and reinforcement learning can predict the stock crash very well, which is a great improvement on the extreme event study and deserves further study.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
Embedded videos