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ABSTRACT

Since the discovery in the 1960’s that the proton is not a fundamental particle

but instead composed of even smaller particles known as quarks and gluons, there

has been a concerted effort to understand the proton’s internal structure. There still

remain many mysteries about the proton and the theory that describes the interac-

tions within: Quantum Chromodynamics (QCD). The distributions of quarks and

gluons are encoded in objects known as parton correlation functions. Physicists use

high-energy scattering experiments to access these functions by means of QCD fac-

torization. This process of extracting information is known as a global QCD analysis.

Further insight can be gained through first-principles calculations in lattice QCD as

well as models for the strong interaction.

In this thesis, we will use global QCD analyses to provide information on the one-

dimensional (1D) structure of the proton using the latest experimental data available.

Among the mysteries that remain within the proton, we provide insight on the non-

perturbative nature of the proton’s sea quarks, for both cases where the proton is

unpolarized and longitudinally polarized. We also bring new information on the

“proton spin puzzle,” which concerns the delegation of the proton’s spin into its

constituent quarks and gluons. We shed light on the proton’s transversely polarized

structure, where current results from global QCD analyses and lattice QCD fail to

paint a consistent picture. Our analyses also reveal a new feature of nuclear effects

within light, highly asymmetric nuclei such as helium and tritium. Finally, we perform

derivations in a spectator diquark model to glean information on the proton’s 3D

structure, and calculate moments that can be used in future lattice QCD studies.
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CHAPTER 1

INTRODUCTION

1.1 Perturbative QCD and Factorization

Over the past five to six decades, there has been tremendous interest in the structure

of the proton, discovered in 1911 by E. Rutherford [1], and the neutron, discovered

in 1932 by J. Chadwick [2, 3], collectively known as “nucleons.” Starting from the

1960’s, it was proposed that the nucleons are composed of even smaller particles

called quarks, antiquarks, and gluons [4–6], collectively called “partons.” According

to our present understanding, the partons belong to the fundamental building blocks

of all matter.

The theory describing such sub-atomic particles and their interactions is known

as Quantum Field Theory (QFT), which posits that the interactions are due to fields

composed of particles known as “gauge bosons.” In the case of Quantum Electro-

dynamics (QED), which governs the electromagnetic interaction and is the simplest

such QFT, the boson is the photon, corresponding to the electromagnetic field. Any

particle that carries electric charge can interact through the electromagnetic force,

such as quarks, antiquarks and charged leptons (electrons, muons, tauons and their

corresponding anti-particles). The gauge bosons of the weak interaction, on the other

hand, are the W± and Z bosons. All particles that carry a weak charge are subject to

the weak interaction. This includes the quarks, charged leptons and the electrically

neutral leptons, that is, the neutrinos, along with all the respective anti-particles. The

electromagnetic and weak interactions are part of the (unified) electroweak theory. In

the case of Quantum Chromodynamics (QCD), which governs the strong interaction,

the gauge boson is the gluon, and any particle with color charge can interact through
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the strong interaction. Quarks, as well as gluons themselves, carry color charge and

thus the strong force is the force through which partons interact and is that which

binds nucleons (or more generally, hadrons) together.

All of the aforementioned particles (quarks, leptons, photons, W±/Z bosons, glu-

ons), in addition to the Higgs boson [7–10], comprise what is known as the “Standard

Model” of particle physics [11], which deals with all known fundamental particles

and describes their electroweak and strong interactions in terms of a gauge theory.

The Standard Model has proven extremely capable at describing most observed phe-

nomena in particle physics, although there have been proposals for “physics beyond

the Standard Model” [12]. The work of this thesis is mostly related to the strong

interaction, and will thus remain within the bounds of the Standard Model.

The dynamics of the strong interaction is governed by the Lagrangian for QCD,

LQCD =

Nq∑
q=1

ψ̄q

(
i /D −mq

)
ψq −

1

4
F µν
a F a

µν , (1.1)

where ψq is the quark field for quark flavor q. Additionally, Dµ = ∂µ − igAµ
aTa

is the covariant derivative where Ta are the 3 × 3 Gell-Mann matrices, and F µν
a =

∂µAν
a−∂νAµ

a+gfabcA
µ
bA

ν
c , where Aµ

a is the gluon field and fabc is the structure constant

of the SU(3) color group. The strength of the strong interaction is determined by g,

and we define the QCD coupling constant αs ≡ g2/4π, which is given approximately

by

αs(µR) ≈ 12π

(11CA − 4NfTR) ln
(
µ2
R/Λ

2
QCD

) . (1.2)

Here CA = 3 and TR = 1
2

are SU(3) color factors [11], Nf is the number of active

quark flavors, µR is the renormalization energy scale, and ΛQCD is a QCD constant

of integration corresponding to the scale where the perturbatively-defined coupling

would diverge. Eq. (1.2), which is the leading-order (LO) term in an expansion of

1/ ln
(
µ2
R/Λ

2
QCD

)
, implies that the larger the scale µR the smaller αs. In the limit µR →

∞, corresponding to vanishing distances between partons, the coupling constant goes

to zero, which is called asymptotic freedom [13–15]. At the (experimentally accessible)

scale of the mass of the Z boson (µR ≈ 91 GeV), one has αs(µR) ≈ 0.118 [11]. The

large coupling constant at low values of µR of around 1 GeV has some relation to

the so-called confinement property of QCD, which expresses the fact that individual
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partons carrying a color charge cannot be isolated for distance scales of more than

about 1 fm = 10−15 m. We emphasize that, in the first place, this color confinement is

an empirical feature of the strong interaction which so far lacks a generally accepted

theoretical explanation.

The QED counterpart of αs is the fine structure constant αem = e2/(4π), where e is

the elementary charge. The QED coupling also depends on the renormalization scale

µR. In contrast to the QCD case though, αem increases as µR increases. But, since

αem ≈ 1/137 at lower energies, and since its increase with increasing µR is (also)

logarithmic and therefore mild, QED perturbation theory with the fine structure

constant as the expansion parameter typically works very well for presently accessible

energies.

On the other hand, the above discussion implies that a perturbative expansion in

QCD is only valid at large energy scales. In fact, several high-energy scattering pro-

cesses can be computed completely using perturbative QCD. One example is the total

cross section for electron-positron annihilation. This is no longer true for processes

with hadrons in the initial state and/or identified hadrons in the final state, regard-

less of how high the center-of-mass (COM) energy of the process is. In such cases

one can often use what are known as QCD factorization theorems which allow access

to the parton structure of hadrons. In order to intuitively understand the essence of

factorization for a high-energy process, one can always consider the hadron in a frame

where it travels at nearly the speed of light [16,17]. Further, since high-energy scales

correspond to short time scales, only the minimal number (typically one) of partons

inside a hadron directly participate in the hard scattering. Put differently, the parton

involved in a hard scattering is essentially a free particle since the interaction between

this parton and the other partons inside the same hadron occurs on a much longer

time scale. One can then factorize the cross section into a “hard part” and a “soft

part” [18]. The hard part describes the interaction between the probe and the parton,

which is calculable in perturbative QCD and dependent on the experimental process.

The soft part describes the internal structure of the hadron that is being probed, and

is governed by the non-perturbative dynamics of QCD [19]. An important ingredient

in this context is “universality” which states that the soft part does not depend on

the experimental process, and thus it is the object that provides general informa-

tion about hadron substructure. QCD factorization, together with universality, also

provides a framework with predictive power in the sense that the non-perturbative
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contribution can be extracted from experimental data for one hard process and then

used to make predictions for cross sections of other processes.

So it becomes the goal to determine the soft part, which is given by objects known

as parton correlation functions. The simplest of these functions are the Parton Dis-

tribution Functions (PDFs), which describe the one-dimensional (1D) longitudinal

momentum distribution of partons. They are dependent upon x, the parton mo-

mentum fraction, which is given by the ratio of the parton’s longitudinal momentum

to that of the hadron’s longitudinal momentum. In addition, they, and all of the

following distributions, depend upon the renormalization scale µR, which is largely

determined by the hard scale of the experimental process (it is often chosen to be

equal to the hard scale to reduce errors in the perturbative expansion in αs, and it

can be varied to estimate the size of the higher order terms). Generalizing to 3D, one

has Transverse Momentum-Dependent Parton Distributions (TMDs) [20–23], which

depend additionally on the transverse momentum of the parton, and Generalized

Parton Distributions (GPDs) [24–28], which depend additionally on the longitudinal

and transverse momentum transfer to the nucleon. The most general 5D functions

depending on all of the aforementioned variables are known as Generalized Transverse

Momentum-Dependent Parton Distributions (GTMDs) [29]. This thesis involves work

on PDFs and GPDs. Furthermore, in semi-inclusive experimental processes, where

one or more outgoing hadrons are detected, Fragmentation Functions (FFs) appear as

the soft part. These describe the fragmentation of a parton into a hadron or hadrons,

where in this thesis we consider single-hadron FFs as well as di-hadron FFs (DiFFs).

In general, all of these distributions depend on the parton, which may be an up,

down, strange, charm, bottom, or top quark (and all of their corresponding anti-

quarks), or a gluon. There are also different distributions depending on the hadron’s

spin relative to its momentum. If the spin has no particular direction and is averaged

over, we speak of “spin-averaged” or “unpolarized” distributions. If the spin is in-

stead parallel or transverse to its momentum, we speak of “helicity” or ”transversity”

distributions, respectively, often collectively called “polarized” distributions.

Currently, there are three methods to gain information on the parton correlation

functions. The first, as mentioned above, is through high-energy scattering experi-

ments. With the experimental cross section matched with the corresponding factor-

ization theorem, the functions can be extracted through comparison of the two. This

process of extracting the functions through a comparison of theory and experiment is
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known as a “QCD analysis” and, if all relevant data are made use of, a “global QCD

analysis.” The second method is through model calculations, where one proposes a

simplified model of the strong interaction that allows one to calculate the functions

without experimental input. The third method is known as lattice QCD, which is

the only computational method that allows one to calculate the functions from first

principles. This thesis will primarily focus on using global QCD analyses to extract

the functions with four chapters dedicated to the subject, along with another chapter

on a model calculation.

In this thesis we aim to address some of the open questions that remain about

hadron structure. The global QCD analyses to follow primarily concern the 1D PDFs,

including the spin-averaged, helicity, and transversity distributions. Even with these

simplest of functions, many questions remain. The first such question that we address

is the nonperturbative origin of both the spin-averaged and helicity “sea asymmetry,”

which quantifies the difference between anti-up and anti-down quarks in the proton.

We also comment on the “proton spin puzzle,” a long-standing problem in describing

how the proton’s spin is delegated among its valence quarks, sea quarks, and gluons.

The proton has spin 1/2, which, according to the Jaffe and Manohar spin sum rule [30],

can be attributed to the partons through

1

2
=

1

2
∆Σ(µR) + ∆G(µR) + LQ+G(µR), (1.3)

where ∆Σ is the quark and antiquark helicity, ∆G is the gluon helicity, and LQ+G is

the parton orbital angular momentum. Through a global analysis of helicity PDFs we

are able to gain information on the first two terms. Finally, one has the transversity

PDFs, which are the most difficult to access of the 1D PDFs and are still poorly

known. Currently, results from global analyses of DiFFs [31, 32] and TMDs [33, 34],

as well as those from lattice QCD [35–37], do not provide a consistent picture of the

proton’s transverse spin structure. Further work has also been conducted to estimate

the impact of the future Electron Ion Collider (EIC), specifically its impact on the

strange quark’s helicity [38], the spin-averaged strange distribution, and the weak

mixing angle [39]. These impact studies will not be covered in this thesis.
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1.2 Global QCD Analysis

Here we cover the basics of extracting parton correlation functions from experimental

data through the process of a global QCD analysis, with further details provided in

Chapter 2. The first step of each global QCD analysis is to parameterize the functions

at a chosen input energy scale. The choices for the parameterizations and the input

scale are heavily dependent on the analysis, and will be discussed individually for each

one. Constraints on these parameterizations can be found in sum rules and isospin

relations. In the following discussion, we focus on the proton, which has 2 valence

up quarks (uv), 1 valence down quark (dv), and no strange valence (sv). Further,

the total momentum of all partons, including the gluon (g) must be equal to that of

the proton. Valence quarks are defined as qv = q − q̄, with q̄ the antiquark of q and

q = u, d for the proton. Sea quarks are defined as all non-valence quarks which, for

the proton and including only the lightest three quarks, are q = s, ū, d̄, s̄. These facts

lead to the following valence and momentum sum rules on the spin-averaged PDFs:∫ 1

0

dx uv(x, µR) = 2, (1.4a)∫ 1

0

dx dv(x, µR) = 1, (1.4b)∫ 1

0

dx sv(x, µR) = 0, (1.4c)∫ 1

0

dx x

(
u+(x, µR) + d+(x, µR) + s+(x, µR) + g(x, µR)

)
= 1, (1.4d)

where q+ ≡ q + q̄. Corresponding sum rules apply to other hadrons such as the

pion and kaon. While many experimental measurements are performed directly on a

proton target, there are also a number that are performed on nuclear targets which

also contain neutrons. Fortunately, thanks to isospin symmetry, one does not need to

consider entirely new functions for the neutron. Instead, the functions for the neutron

and proton can be related through

un(x, µR) = dp(x, µR), dn(x, µR) = up(x, µR), (1.5)

where p (n) denotes the function within a proton (neutron), and all other PDFs are

the same between the proton and neutron. The only approximation entering these
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relations is the neglect of the mass difference between up and down quarks.

With the functions parameterized, one then uses the factorization theorem to

relate the functions to the experimental observable. However, the experimental mea-

surements often take place at energy scales that are different from the input scale, and

so the functions must first be evolved to that scale. For all of the functions involved

in the global analyses of this thesis, the equation governing this evolution is known

as the DGLAP evolution equation [40–42]. It is given by

∂fi(x;µR)

∂ lnµ2
R

=
αs

2π

∑
j

[Pij ⊗ fi] (x;µR), (1.6)

where fi is the parton correlation function of flavor i and Pij are the splitting func-

tions, which can be computed in perturbative QCD order by order in αs. The symbol

⊗ represents the convolution

[C ⊗ f ](x) =

∫ 1

x

dw

w
C(w)f(

x

w
). (1.7)

We note that for PDFs the so-called space-like splitting functions are to be used, while

for FFs the time-like splitting functions are to be used. At LO in αs, they are equal

upon switching i ↔ j. The LO space-like and time-like functions were computed

in Refs. [40–43] and Refs. [44–46] respectively, and calculations to Next-to-Leading

Order (NLO) [47–52] and even Next-to-Next-to-Leading Order (NNLO) [53–55] are

available.

With the functions evolved to the experimental energy scale, the factorization the-

orem allows a direct comparison between theory and data. Through this comparison,

one can determine the parameters that enter the parameterization of the functions

through the minimization of some metric, chosen in the following analyses to be the

χ2. With the parameters determined, one has thus “extracted” the functions through

the use of experimental data and factorization theorems.

1.3 Dissertation Outline

The following research can be divided into two categories: global QCD analyses,

where the results are presented in Chapters 2 – 5, and model calculations, where the

results are presented in Chapter 6.
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In Chapter 2 we present a simultaneous global QCD analysis of spin-averaged

PDFs and FFs [56]. In particular, we focus on the question of the sea asymmetry,

defined as the difference between anti-down and anti-up quarks: d̄ − ū. Previous

experiments have demonstrated that this asymmetry is nonzero, despite the fact

that a significant asymmetry cannot be generated perturbatively from gluons split-

ting into quark-antiquark pairs due to the (approximately) equal masses of up and

down quarks. As such, nonperturbative approaches are required to explain this phe-

nomenon. In this chapter we will present the results of the PDFs from an analysis

including the latest data relevant for extracting the sea asymmetry. Our results will

be compared to other global QCD analyses and to nonperturbative models.

In Chapter 3 we present a simultaneous global QCD analysis of nuclear effects in

deuterium, helium, and tritium as well as spin-averaged PDFs [57]. We include the

latest data from the MARATHON collaboration, which measured the Deep Inelastic

Scattering (DIS) process on helium and tritium targets. We use this new data and the

mirror symmetry of helium and tritium to extract “isovector” nuclear effects, which

are nuclear effects that differ between the two A = 3 nuclei. We present the first

extraction of such effects, as well as results for the d/u quark ratio and nuclear effects

in deuterium.

In Chapter 4 we present a simultaneous global QCD analysis of helicity PDFs,

spin-averaged PDFs, and FFs [58]. Analogous to Chapter 2, we focus again on the sea

asymmetry except this time for the helicity PDFs, defined as ∆ū−∆d̄, and include

the latest data relevant for its extraction. We compare our result to other global QCD

analyses and model predictions, and calculate the contribution to the proton’s spin

from the light quarks and antiquarks. We also present results for the gluon’s helicity,

relevant for the proton spin sum rule in Eq. (1.3). For all of the results we also look

at the impact of imposing positivity constraints on the helicity PDFs. Finally, we

present the results for the pion, kaon, and unidentified hadron FFs and compare to

other analyses.

In Chapter 5 we present a simultaneous global QCD analysis of DiFFs and transver-

sity PDFs [59,60]. We start by proposing a new definition of unintegrated DiFFs that

is compatible with the probability interpretation of collinear DiFFs, and we discuss

the corresponding evolution equations. We then present results for the DiFFs using

the latest data to constrain them, as well as data generated from the Monte Carlo
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event generator PYTHIA. With the DiFFs determined from data, we show the re-

sults for the extracted transversity PDFs as well as the up, down, and isovector tensor

charges. These results are compared to previous extractions of transversity PDFs us-

ing the di-hadron channel, as well as to extractions using single-hadron production in

a TMD framework. Finally, we also compare our tensor charges to those found from

lattice QCD.

In Chapter 6, we present results for quasi-distributions of GPDs (quasi-GPDs)

within a model approximation known as the scalar diquark spectator model [61, 62].

We perform a perturbative calculation of quasi-GPDs and observe consistent features

of the model. From the quasi-GPDs, we are also able to easily derive the quasi-

PDFs. All of the quasi-distributions are compared to their corresponding light-cone

distribution, to which they should reduce to in the limit of large forward momentum.

We also look into the axial-vector diquark spectator model and compare its features

to the scalar case. Finally, we discuss some model-independent results of quasi-PDFs

and quasi-GPDs which can be used to shed light on systematic uncertainties of lattice-

QCD calculations.

In Chapter 7 we provide a general summary of the thesis and an outlook on the

topics discussed in this thesis.
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CHAPTER 2

SPIN-AVERAGED PARTON

DISTRIBUTION FUNCTIONS

In this chapter we present the details of a global QCD analysis of spin-averaged

PDFs and FFs. We focus in particular on the sea asymmetry d̄ − ū, where high-

energy scattering experiments and global QCD analyses of the data have conclusively

demonstrated a sea asymmetry in the proton [63]. The result cannot be explained

perturbatively through the splitting of gluons into quark-antiquark pairs [64], and re-

quires nonperturbative mechanisms, such as dynamical chiral symmetry breaking and

the pion cloud of the nucleon [65–75], or dynamics related to the Fermi-Dirac statistics

of quarks and the Pauli exclusion principle [76–81]. More recently, exploratory stud-

ies have been made in extracting information on the isovector sea quark distributions

directly from lattice QCD calculations [37, 82–85].

The first experimental indications of a light-quark sea asymmetry came from the

CFS group at Fermilab in 1981 [86]. Measuring the Drell-Yan process, where a

quark and antiquark from colliding hadrons annihilate into a virtual photon that

subsequently decays into a lepton-antilepton pair, they found that the d̄ distribu-

tion, integrated over parton momentum fraction x, was larger than the integrated

ū distribution. The first high-precision experimental evidence for a sea asymmetry

came a decade later from the New Muon Collaboration (NMC) at CERN [87, 88],

which used measurements of inclusive deep-inelastic scattering (DIS) on hydrogen

and deuterium to test the Gottfried sum rule [89] and determine that the integral∫ 1

0
dx
[
d̄(x) − ū(x)

]
must be positive. Further evidence was provided by the NA51

Collaboration at CERN [90] using the Drell-Yan process, and indications for a nonzero
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asymmetry were also found by the HERMES Collaboration [91] in semi-inclusive DIS

of charged pions.

The most conclusive evidence for an excess of d̄ over ū was provided in 1998 by

the Fermilab E866 (NuSea) experiment [92–94], which measured Drell-Yan lepton-pair

production cross sections in proton-proton (pp) and proton-deuteron (pD) scattering.

While the NuSea experiment probed the asymmetry up to momentum fractions x ≈
0.3, the subsequent Fermilab E906 (SeaQuest) experiment [95] extended the range

up to x ≈ 0.4, finding some tensions with the NuSea result in the high-x region. The

NuSea data had suggested a significant fall in the d̄/ū ratio for x ≳ 0.3, albeit with

large uncertainties, which is difficult to accommodate in many of the nonperturbative

models [65–80]. The SeaQuest experiment was partially motivated to verify this

behavior at large x.

An alternative method for extracting the d̄ − ū asymmetry involves W -lepton

production in hadronic collisions, whereby a quark and antiquark annihilate into a

W boson that decays into a detected lepton and a neutrino. This has been measured in

pp̄ scattering at the Tevatron and in pp collisions at the Large Hadon Collider (LHC)

and the Relativistic Heavy Ion Collider (RHIC). Recently, high-precision data from

the STAR Collaboration at RHIC on the ratios of W -lepton production cross sections

have been made available [96]. Since RHIC has a lower COM energy of
√
s = 0.51 TeV

compared to the Tevatron (
√
s = 1.96 TeV) and the LHC (

√
s ≥ 7 TeV), these

data are sensitive to parton distributions at higher values of x, which can potentially

provide information on the distributions of light sea quarks in this difficult to measure

region.

Ref. [56] was the first global QCD analysis to include the SeaQuest and STAR

W -lepton data, and these new results will be discussed in this chapter. In addition,

results will be shown for the many other datasets in this analysis, which include data

on inclusive and semi-inclusive DIS, Drell-Yan, W and Z boson production, and jet

production. With this data combined, the resulting sea asymmetry, as well as the

rest of the PDFs, will be shown and discussed.

2.1 Bayesian Global QCD Analysis

In this section, we cover the fundamentals of global QCD analyses, relevant for Chap-

ters 2 – 5, starting with the Bayesian aspects of the analysis. In general, a Bayesian

11



analysis uses Bayes’ theorem to determine the probability of a hypothesis given certain

information. In the specific case of a global QCD analysis, we start by parametrizing

the non-perturbative objects which, in the chapters to follow, includes PDFs, single

hadron FFs, and DiFFs. The collection of parameters used to parametrize all of the

objects is denoted by a and acts as the hypothesis of our Bayesian analysis, while

the experimental measurements act as the evidence. We then sample the posterior

distribution given by

P(a|data) ∝ L(a, data)π(a), (2.1)

with a likelihood function of Gaussian form,

L(a, data) = exp
(
− 1

2
χ2(a, data)

)
, (2.2)

and a flat prior function π(a) that vanishes in regions where the parameters a give

unphysical PDFs, FFs, or DiFFs. The χ2 function in (2.2) is defined as [97]

χ2(a) =
∑
i,e

(
di,e −

∑
k r

k
eβ

k
i,e − Ti,e(a)/Ne

αi,e

)2

+
∑
k

(
rke
)2

+
∑
e

(
1−Ne

δNe

)2

, (2.3)

where di,e is the experimental data point i from dataset e, and Ti,e is the corresponding

theoretical value. All uncorrelated uncertainties are added in quadrature and labeled

by αi,e, while βk
i,e represents the k-th source of point-to-point correlated systematic

uncertainties for the i-th data point weighted by rke . The latter are optimized per

values of the parameters a via ∂χ2/∂rke = 0, which introduces the second penalty

term in Eq. (2.3). We include normalization parameters Ne for each dataset e as part

of the posterior distribution per data set, with a Gaussian penalty controlled by the

experimentally quoted normalization uncertainties δNe.

The posterior distribution is sampled via data re-sampling, whereby multiple max-

imum likelihood optimizations are carried out by adding Gaussian noise with width

αi,e to each data point across all data sets. The resulting ensemble of n parameter

samples {ak; k = 1, . . . , n}, referred to as a “replica,” is then used to obtain statistical

estimators for a given non-perturbative function or observable, generically defined as

12



O(a), such as the mean and variance,

E[O] =
1

n

∑
k

O(ak), (2.4a)

V[O] =
1

n

∑
k

[
O(ak)− E[O]

]2
. (2.4b)

In the chapters to follow, the agreement between data and theory will be assessed

by defining the “reduced” χ2 for each dataset e as

χ2
red,e ≡

1

N e
dat

∑
i

(
di,e − E

[∑
k r

k
eβ

k
i,e + Ti,e/Ne

]
αi,e

)2

+
∑
k

(
rke
)2
, (2.5)

with N e
dat the total number of data points for each experiment, and E[...] represents

the mean theory as defined in Eq. (2.4a). This definition of the χ2 is more convenient

compared to Eq. (2.3) as it condenses the χ2 distribution of the replicas (of which

there are generally O(1000)) into a single number.

Another aspect of the following global analyses is data resampling, which is used

to propagate the errors on the data to the extracted distributions, as an alternative

to the Hessian [98] or Lagrange multiplier [99] methods. Instead of using the data

directly, we generate “pseudo-data.” Dropping the i, e subscripts, each pseudo-data

point d̃ is generated through [100]

d̃ = (1 +RnorδN)

[
d+Runcorrα +

∑
k

Rcorrβk

]
, (2.6)

where Rnor, Runcorr, and Rcorr are random numbers from the normal distribution.

This recipe takes into account all three types of errors defined in Eq. (2.3). This

pseudo-data generation process is repeated for each replica, so that each replica has a

corresponding unique set of pseudo-data. In this way the errors on the experimental

data are propagated to the resulting distributions.

The final aspect that we discuss here is the “multi-step strategy” of extracting

distributions, with a simplified example shown in Table 2.1. The essence of this

strategy is to start with a minimal amount of data and parameters and to add more

data and more parameters in subsequent steps. This eases the computational burden

of the analysis, and also makes it easier for the minimization algorithm to find the

global minimum so that we are less likely to end up with “failed” replicas with very

13



step data fitted distributions fixed distributions
01 DIS PDFs —
02 +Drell-Yan PDFs —
03 +W/Z production PDFs —
04 +jet production PDFs —
05 SIA (π) π FFs PDFs
06 +SIDIS (π) π FFs PDFs
07 SIA (K) K FFs PDFs, π FFs
08 +SIDIS (K) K FFs PDFs, π FFs
09 Inclusive + π PDFs, π FFs K FFs
10 Inclusive + π + K PDFs, π FFs, K FFs —

Table 2.1: Multi-step process. A simplified example of the multi-step process. We
start by fitting only DIS data with PDF parameters free to vary. In subsequent steps,
we add more data and fit more distributions. In some steps, some of the distributions
are fixed.

large χ2. In the simplified example, we start only with DIS data and with only

fitting the spin-averaged PDFs. Since DIS is a computationally simple observable

(relative to the others) and there are not too many parameters, the fit will converge

quickly and most of the replicas will succeed in finding the global minimum of the χ2.

While the PDFs started with random parameters, after this first step they will now

reside in a “reasonable” region of the parameter space that is capable of describing

the DIS data. This helps in the following steps where we add data that is more

computationally expensive, as the PDFs are no longer starting off with a completely

random guess. In later steps we begin fitting FFs with the PDFs fixed in order to

get them also into a reasonable position. With all of the distributions in a reasonable

position, in the final steps we fit all of the data with all of the parameters free to

vary. By choosing these steps intelligently, we are able to break a computationally

intractable problem into multiple steps and thus make it possible.

2.2 Processes

In this analysis of spin-averaged PDFs we include inclusive data on DIS, Drell-Yan,

W -lepton production, and jet production. Further, to constrain the FFs, we include

14
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Figure 2.1: Deep inelastic scattering process. The process ℓN → ℓ′X in the approx-
imation of the exchange of a single electroweak gauge boson at LO in perturbative
QCD.

semi-inclusive DIS and e+e− annihilation data. In the subsections below we summa-

rize each of these processes and the relevant equations.

2.2.1 Deep Inelastic Scattering

In deep inelastic scattering, a high-energy lepton ℓ with four-momentum k scatters

off of a nucleon or nucleus target and is detected (or reconstructed if the outgoing

lepton is a neutrino) with four-momentum k′. The target N has four-momentum P ,

while the exchanged particle, which may be a photon (γ), Z boson, or W± boson,

has four-momentum q = k− k′. The recoiling system X (which, in this and following

figures, consists of all of the X shown in the figure as well as the remnants of any

outgoing quark) has invariant mass W . This process, ℓN → ℓ′X, is shown in Fig. 2.1.

In the unpolarized case, both the spin of the lepton and target are averaged over. In

this subsection it will be assumed that the target is a proton of mass M .

Neglecting the mass of the lepton, one can define the invariant quantities:

s ≡ (P + k)2, Q2 ≡ −q2, xbj ≡
Q2

2P · q
=

Q2

2Mν
, y ≡ P · q

P · k
=

Q2

xbj(s−M2)
, (2.7)
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where Q2 is the four momentum transfer squared, xbj is the Bjorken scaling variable,

y is the inelasticity and s is the squared COM energy of the reaction. The quantity ν

is given by ν ≡ E −E ′, where E (E ′) is the energy of the initial (final) lepton in the

target rest frame. We note that beyond s there are only two independent variables

in the case of averaged or longitudinal polarizations for which one could choose xbj

and Q2. The cross section for this process can then be written as [11]:

d2σ

dxbjdy
=

2πyα2

Q4

∑
j

ηjL
µν
U,jW

U
µν , (2.8)

where α is the electromagnetic fine structure constant, Lµν
U,j is the unpolarized leptonic

tensor, and WU
µν is the unpolarized hadronic tensor. The summation is over j =

γ, γZ, Z for the neutral current (NC) process, and j = W for the charged current

(CC) process. The factors ηj are given by:

ηγ = 1,

ηγZ =

(
GFM

2
Z

2
√

2πα

)(
Q2

Q2 +M2
Z

)
,

ηZ = η2γZ ,

ηW =
1

2

(
GFM

2
W

4πα

Q2

Q2 +M2
W

)2

, (2.9)

where GF is the Fermi constant, MZ is the mass of the Z boson, and MW is the mass

of the W boson.

For spin-averaged electrons and NC, the unpolarized leptonic tensors are given by

LU,γ
µν = 2(kµk

′
ν + k′µkν − gµνk · k′),

LU,γZ
µν = geVL

U,γ
µν , (2.10)

LU,Z
µν =

[
(geV )2 + (geA)2

]
LU,γ
µν ,

where geV and geA are the vector and axial couplings, respectively, of the electron to

the Z boson. geV can be written in terms of the weak mixing angle θW as geV =

−1
2

+ 2 sin2 θW , while geA = −1
2
. The unpolarized hadronic tensor can be defined in
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terms of the proton structure functions F p
1,2,3 as:

WU
µν =

(qµqν
q2
− gµν

)
F p
1 +

(
P µ +

qµ

2xbj

)(
P ν +

qν

2xbj

) F p
2

P · q
− iϵµναβ

qαP β

2P · q
F p
3 , (2.11)

where ϵµναβ is the Levi-Civita tensor. Note the coefficients of F p
1 and F p

2 are sym-

metric under µ ↔ ν, while the coefficient of F p
3 is anti-symmetric. The F1,2 are

parity-conserving structure functions, while F3 is parity-violating. Performing the

contraction in Eq. (2.8), one arrives at the spin-averaged NC DIS cross section

d2σNC

dxbjdy
=

4πα2

xbjyQ2

[(
1− y −

x2bjy
2M2

Q2

)
F p
2 + y2xbjF

p
1 ∓

(
y − y2

2

)
xbjF

p
3

]
, (2.12)

where the plus (minus) is taken for negative (positive) lepton scattering. Note that

a sum over the γ, γZ, and Z channels has been performed such that the structure

functions above are defined in terms of the individual channel structure functions

F p,γ
1,2,3, F

p,γZ
1,2,3 , and F p,Z

1,2,3 as:

F p
1,2 = F p,γ

1,2 − geV ηγZF
p,γZ
1,2 +

(
(geV )2 + (geA)2

)
ηZF

p,Z
1,2 ,

F p
3 = −geAηγZF

p,γZ
3 + 2geV g

e
AηZF

p,Z
3 . (2.13)

For the HERA data used in this fit, the measured observable is the reduced cross

section, defined as

σNC
red ≡

xbjyQ
2

2πα2Y +

d2σNC

dxbjdy
≈ F p

2 −
y2

Y +
F p
L ± xbj

Y −

Y +
F p
3 , (2.14)

where

Y ± ≡ 1± (1− y)2, (2.15)

and

F p
L(xbj, Q

2) ≡ ρ2F p
2 − 2xbjF

p
1 , (2.16)

where

ρ2 ≡ 1 +
4x2bjM

2

Q2
, (2.17)
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and the
x2
bjy

2M2

Q2 term in Eq. (2.12) has been neglected since at the relevant kinematics

xbj is small and M2 ≪ Q2.

Expanding in powers of M2

Q2 and
Λ2
QCD

Q2 the NC structure functions can be written

in terms of the spin-averaged PDFs q, g as:

F p
1 (xbj, Q

2) =
1

2

∑
q

e2q
[
CDIS

1,q ⊗ q+ + CDIS
1,g ⊗ g

]
+O

( [M2,Λ2
QCD]

Q2

)
,

F p
2 (xbj, Q

2) = x
∑
q

e2q
[
CDIS

2,q ⊗ q+ + CDIS
2,g ⊗ g

]
+O

( [M2,Λ2
QCD]

Q2

)
, (2.18)

F p
3 (xbj, Q

2) =
∑
q

e2q
[
CDIS

3,q ⊗ q−
]

+O
( [M2,Λ2

QCD]

Q2

)
,

where the sum q runs over all quark flavors, eq is the charge of the quark of flavor q,

and q± ≡ q ± q̄. The 1/Q2 corrections, which include target mass and higher twist

corrections, are not relevant for the results discussed in this chapter. They will be

discussed in Chapter 3 in relation to nuclear corrections. The DIS hard scattering

coefficients, CDIS
i,f with i = 1, 2, 3 and f = q, g, are expanded to NLO in the strong

coupling constant αs(µR) as

CDIS
i,f = C

DIS,(0)
i,f +

αs(µR)

4π
C

DIS,(1)
i,f +O(α2

s),

with the coefficients taken from [49]. The hard scattering coefficients depend on the

renormalization scale, while the PDFs depend on the factorization scale, both of which

are taken to be µR = µF = Q for the DIS process. For the neutron functions F n
1,2,3,

the same proton PDFs are used except with the switch u ↔ d that is derived from

isospin symmetry. Nuclear structure functions FA
2,L,3 will be discussed in Chapter 3.

For the charged current process, which has been measured at HERA, the only

channel is W± for which the leptonic tensor is given by

LU,W
µν = 4(kµk

′
ν + k′µkν − gµνk · k′). (2.19)

Substitution into Eq. (2.8) then leads to

d2σCC,W±

dxbjdy
=

8πα2

xbjyQ2
ηW

[
(1− y −

x2bjy
2M2

Q2
)F p,W±

2 + y2xbjF
p,W±

1

18



∓ (y − y2

2
)xbjF

p,W±

3

]
, (2.20)

and for the reduced cross section

σCC,W±

red ≡ xbjyQ
2

16πα2ηW

d2σCC,W±

dxbjdy
≈ Y +

4
F p,W±

2 − y2

4
F p,W±

L ∓ xbj
Y −

4
F p,W±

3 , (2.21)

where FW±
1,2,3 are the CC structure functions and again the

x2
bjy

2M2

Q2 term has been

neglected. The CC structure functions can be expanded similarly to the NC structure

functions as

F p,W±

1 (xbj, Q
2) =

∑
q

[
CDIS

1,q ⊗ q + CDIS
1,g ⊗ g

]
+O

( [M2,Λ2
QCD]

Q2

)
,

F p,W±

2 (xbj, Q
2) = 2x

∑
q

[
CDIS

2,q ⊗ q + CDIS
2,g ⊗ g

]
+O

( [M2,Λ2
QCD]

Q2

)
, (2.22)

F p,W±

3 (xbj, Q
2) = 2

∑
q

[
IqC

DIS
3,q ⊗ q

]
+O

( [M2,Λ2
QCD]

Q2

)
,

where the summation is over q = ū, d, s, c̄, b, t̄ for W+ and q = u, d̄, s̄, c, b̄, t for W−.

The factor Iq in F3 is 1 for quarks and −1 for antiquarks. The DIS hard scattering

kernels are the same as those in Eq. (2.18).

2.2.2 Drell-Yan Processes

Included in this analysis are also data from proton-proton, proton-antiproton, and

proton-deuteron collisions. The first type of collision that we discuss is the Drell-Yan

process given by hAhB → γ∗/ZX → ℓℓ̄X. This process is shown in Fig. 2.2. In this

analysis hA denotes a proton while hB may denote a proton, antiproton, or deuteron

for the Drell-Yan processes. Furthermore, ℓ and ℓ̄ denote a lepton anti-lepton pair,

while X denotes the undetected part of the final system. At leading order, a quark

(q) and antiquark (q̄) from the incoming particles annihilate to create a photon or Z

boson.

The double differential Drell-Yan lepton-pair cross section can be written in terms

of convolutions of the PDFs in the colliding hadrons with short-distance partonic cross
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Figure 2.2: Drell-Yan process. The process hAhB → γ∗/ZX → ℓℓ̄X at LO in pertur-
bative QCD.

sections σ̂DY
ab [101] as

d2σDY

dM2
ℓℓ dY

=
4πα2

9sM2
ℓℓ

∑
ab

∫
dx1

∫
dx2 (2.23)

× fa(x1, µF ) fb(x2, µF ) σ̂DY

ab (x1, x2, s,Mℓℓ, µR, µF ),

where x1 (x2) is the momentum fraction of the parton coming from hA (hB), α is

the electromagnetic coupling, s is the invariant mass squared of the reaction, and µR

and µF are the renormalization and factorization scales, respectively. We write the

cross section as differential in the invariant mass of the lepton pair squared, M2
ℓℓ, and

the rapidity of the lepton pair in the COM frame, Y . For the Drell-Yan process, the

“Feynman-x” variable

xF ≡ x1 − x2, (2.24)

is also commonly used. We note that at LO in αs, one has x1 = Mℓℓ√
s
eY and x2 =

Mℓℓ√
s
e−Y , and thus xF = 2Mℓℓ√

s
coshY .

The sum over the quark flavors a, b runs over all partonic channels that can con-

tribute to the Drell-Yan process, for which the scale is set to µR = µF = Mℓℓ. The

partonic cross sections σ̂DY
ab are computed to NLO in the strong coupling αs(µR), with

the NLO expressions taken from Ref. [101]. For pp scattering, the PDFs fa,b are those
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in the proton. For proton-deuteron scattering, the x of the parton in the deuteron

target is small enough that nuclear corrections can be neglected and it is reasonable

to approximate the pD cross section by a simple sum of proton and neutron cross

sections [102],

σpD ≈ σpp + σpn, (2.25)

with the PDFs in the neutron related to those in the proton through isospin symmetry

(see Eq. (1.5)).

We now discuss specifically the fixed-target experiments performed by the NuSea

and SeaQuest collaborations, defining hA to be the target and hB to be the beam.

They provide the cross sections σpp and σpD. Alternatively (or in addition), they

provide the ratio σpD/2σpp. The experiments were designed to be most sensitive

to the x1 ≫ x2 regime (with x1 still small enough so that nuclear corrections are

negligible), where, keeping only the up and down (anti)quarks, one has

σpp ∝
4

9
u(x1)ū(x2) +

1

9
d(x1)d̄(x2),

σpn ∝
4

9
u(x1)d̄(x2) +

1

9
d(x1)ū(x2).

Using Eq. (2.25), one then has for the ratio

σpD
2σpp

≈ 1

2

[1 + 1
4
d(x1)
u(x1)

]

[1 + 1
4
d(x1)
u(x1)

d̄(x2)
ū(x2)

]
[1 +

d̄(x2)

ū(x2)
]. (2.26)

Finally, with d(x)≪ 4u(x), one has [94]

σpD
2σpp

∣∣∣∣
x1≫x2

≈ 1

2

[
1 +

d̄(x2)

ū(x2)

]
. (2.27)

Thus the ratio is almost directly sensitive to the sea asymmetry d̄/ū (or d̄−ū) and is an

important tool for its extraction. The impact of including the Drell-Yan measurement

for the sea asymmetry will be shown in Section 2.6.

Measurements of the W -lepton production process are also included in this anal-

ysis, which includes the processes hAhB → W−X → ℓν̄ℓX (shown in Fig. 2.3) and

hAhB → W+X → ℓ̄νℓX. In these processes, hA always denotes proton while hB may

denote a proton (if the data is from the LHC or RHIC) or an antiproton (if the data
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Figure 2.3: W boson production process. The W− boson production process pp →
W−X → ℓ ν̄ℓX at LO in perturbative QCD. The W+ boson production process is
similar, but with ℓ→ ℓ̄ and ν̄ℓ → νℓ.

is from the Tevatron). ℓ (ℓ̄) denotes a lepton (anti-lepton), while νℓ (ν̄ℓ) denotes the

corresponding neutrino (anti-neutrino). At leading order, a quark and antiquark from

the incoming particles annihilate to create a W boson.

We first focus specifically on the measurements from the Tevatron on reconstructed

W and Z bosons, where hB is an antiproton. For the Z boson production observable,

the calculation is the same as that for Drell-Yan, except that the result is integrated

over Mℓℓ, generally from 60 ≲ Mℓℓ ≲ 120 GeV, in order to isolate the Z boson

contribution. For the W boson production process the calculation is similar, with the

channels adjusted appropriately and weighted with the CKM matrix elements. The

result is also integrated over 0 < Mℓℓ <
√
s. The observable measured in this case is

the W boson asymmetry

AW (YW ) =
dσW+

/dYW − dσW−
/dYW

dσW+/dYW + dσW−/dYW
, (2.28)

where YW is the rapidity of the W boson and dσW±
/dYW is the differential cross

section for W± production. At LO and considering only the up and down quarks,

one has

AW (YW ) ≈ u(x1)d̄(x2) + u(x2)d̄(x1)− ū(x1)d(x2)− ū(x2)d(x1)

u(x1)d̄(x2) + u(x2)d̄(x1) + ū(x1)d(x2) + ū(x2)d(x1)
.
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At large YW , one has x1 ≫ x2, and so:

AW (YW ) −−−−−→
large YW

u(x1)d̄(x2)− ū(x2)d(x1)

u(x1)d̄(x2) + ū(x2)d(x1)
.

Approximating now that ū ≈ d̄ at small x, one arrives at

AW (YW ) −−−−−→
large YW

1− d(x1)/u(x1)

1 + d(x1)/u(x1)
. (2.29)

Since large YW corresponds to large x1, the W boson asymmetry provides strong

constraints on the d/u ratio at large x.

In contrast to the Tevatron, the measurements from the LHC are differential in

the outgoing lepton’s kinematics. In this case, the double differential cross section is

given by [103]

d2σW

dpℓT dηℓ
=

2

pℓT

∑
ab

∫ V

VW

dv

∫ 1

VW/v

dw (2.30)

× x1fa(x1, µF )x2fb(x2, µF ) σ̂W

ab(v, w, s, µR, µF ),

which is differential in the outgoing lepton’s pseudorapidity, ηℓ, and its transverse

momentum, pℓT . Labeling the momenta of the incoming hadrons by P1 and P2, we

define the Mandelstam invariants T ≡ (P1 − pℓ)
2 and U ≡ (P2 − pℓ)

2, which then

allows us to introduce the variables V ≡ 1 + T/s and W ≡ −U/(s + T ), where s

is the COM energy of the proton-proton collision. Defining v and w as the partonic

analogues of V and W , we can write for the parton momentum fractions x1 = VW/vw

and x2 = (1− V )/(1− v). The sum over the quark flavors a, b runs over all partonic

channels that can contribute to W -lepton production, for which the renormalization

and factorization scales are chosen to be the mass of the W boson, µR = µF = MW .

The partonic cross sections σ̂W
ab are again computed at NLO in the strong coupling

αs(µR), with the NLO expressions used here taken from Ref. [103]. Taking the ratio

of the W+ and W− cross sections for pp reactions, at LO and considering only up

and down (anti)quarks, one has

σW+

pp

σW−

pp

≈ u(x1)d̄(x2) + u(x2)d̄(x1)

d(x1)ū(x2) + d(x2)ū(x1)
. (2.31)

This observable, in addition to the DY observable Eq. (2.27), also provides sensitivity
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Figure 2.4: Jet production process. The process hAhB → jet X at leading order.

to the light antiquarks and thus the sea asymmetry.

2.2.3 Jet Production

Measurements of the jet production process hAhB → jet X, shown in Fig. 2.4 are also

included in this analysis. In this process, hA always denotes a proton while hB may

denote a proton (if the data is from RHIC) or an antiproton (if the data is from the

Tevatron). X denotes the undetected part of the final system. A quark or gluon (a

and b) from the two incoming particles interact through a hard scattering, and one

outgoing parton is the seed of a single jet. For jet production, the double differential

cross section is given by [104]

d2σjet

dpjetT dηjet
=

2

pjetT

∑
ab

∫ V

VW

dv

∫ 1

VW/v

dw

× x1fa(x1, µF )x2fb(x2, µF ) σ̂jet
ab (v, w, pjet, µR, µF ; r), (2.32)

which is differential in the outgoing jet’s pseudorapidity, ηjet, and its transverse mo-

mentum, pjetT . Here pjet is the momentum of the jet and r the jet radius. The variables

V,W, v and w are defined in Section 2.2.2. Note that Eq. (2.32) is very similar to

Eq. (2.30). The sum over the quark flavors a, b runs over all partonic channels that can

contribute to jet production, for which the renormalization and factorization scales

are chosen to be the jet’s transverse momentum, µR = µF = pjetT . The partonic cross
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Figure 2.5: Semi-inclusive deep inelastic scattering process. The process ℓN → ℓ′hX
with a single photon exchange at leading order in perturbative QCD.

sections σ̂jet
ab are again computed at NLO in the strong coupling αs(µR), with the NLO

expressions used here taken from Refs. [104, 105]. We note that a, b can be a gluon,

and thus the single jet production process is sensitive to the gluon distribution even

at LO.

2.2.4 Semi-Inclusive Deep Inelastic Scattering

The semi-inclusive DIS (SIDIS) process ℓN → ℓ′hX is shown in Fig. 2.5. It is identical

to the DIS process (Subsection 2.2.1), except that in the final state, in addition to

the scattered lepton, a hadron is detected with momentum Ph. In this process, we

define the “fragmentation variable”

zH ≡
Ph · P
q · P

. (2.33)

One can define structure functions analogously to Eq. (2.18):

F
h(p)
1 (xbj, zH , Q

2) =
1

2

∑
q=u,ū,...,s̄

e2q
[
CSIDIS

1,qq ⊗ q ⊗Dh
q + CSIDIS

1,gq ⊗ q ⊗Dh
g
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+CSIDIS
1,qg ⊗ g ⊗Dh

q

]
+O

( [M2,Λ2
QCD]

Q2

)
, (2.34a)

F
h(p)
2 (xbj, zH , Q

2) = x
∑

q=u,ū,...,s̄

e2q
[
CSIDIS

2,qq ⊗ q ⊗Dh
q + CSIDIS

2,gq ⊗ q ⊗Dh
g

+CSIDIS
2,qg ⊗ g ⊗Dh

q

]
+O

( [M2,Λ2
QCD]

Q2

)
, (2.34b)

where the sum q runs over all quark flavors. The SIDIS hard scattering coefficients,

CSIDIS
i,ff ′ with i = 1, 2 and ff ′ = qq, gq, qg, are expanded to NLO in the strong coupling

constant αs(µR) with the coefficients taken from [106]. The hard scattering coefficients

depend on the renormalization scale, while the PDFs and FFs depend on the factor-

ization scale, both of which are taken to be µR = µF = Q for the SIDIS process (as

in the DIS process). For the neutron functions F
n(h)
1,2 , the same proton PDFs are used

except with the switch u↔ d that is derived from isospin symmetry (see Eq. (1.5)).

For the deuterium structure function we ignore nuclear effects and simply take the

sum of the proton and neutron structure functions divided by A = 2. Analogous to

the inclusive DIS case in Eq. (2.16), one also has F
p(h)
L ≡ ρ2F

p(h)
2 − 2xbjF

p(h)
1 .

The observable measured in SIDIS experiments is the multiplicity Mh, defined

as the differential cross section for hadron production normalized to the differential

inclusive DIS cross section. Ignoring terms of order M2/Q2, it can be written in terms

of the structure functions as [107–111]

dMh

dzh
= xbj

Y +F h
1 + (1− y)F h

L

xbjY +F1 + (1− y)FL

, (2.35)

with Y + defined as in Eq. (2.15).

2.2.5 Semi-Inclusive Annihilation

The semi-inclusive annihilation (SIA) process e+e− → hX is shown in Fig. 2.6. In

this process two electrons annihilate to form a photon or Z boson which splits into

a qq̄ pair. The quarks then hadronize to form a detected hadron with momentum

Ph and the undetected final system X. In this process, we define the “fragmentation

variable”

zh ≡
2Ph · q
s

, (2.36)
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e−

h

Xf
γ/Z

q

q̄

Figure 2.6: Semi-inclusive annihilation process. The process e+e− → hX at leading
order in perturbative QCD.

where s is the COM energy of the colliding electrons. One can define structure

functions analogously to Eq. (2.18):

F h
1 (zh, Q

2) =
1

2

∑
q

e2q
[
CSIA

1,q ⊗Dh
q+ + CSIA

1,g ⊗Dh
g

]
+O

(Λ2
QCD

Q2

)
, (2.37)

F h
L(zh, Q

2) = x
∑
q

e2q
[
CSIA

L,q ⊗Dh
q+ + CSIA

L,g ⊗Dh
g

]
+O

(Λ2
QCD

Q2

)
, (2.38)

where the sum q runs over all quark flavors, eq is the charge of the quark of flavor q,

and Q2 = s. The SIA hard scattering coefficients, CSIA
i,f with i = 1, L and f = q, g,

are expanded to NLO in the strong coupling constant αs(µR) with the coefficients

taken from [107]. The hard scattering coefficients depend on the renormalization

scale, while the FFs depend on the factorization scale, both of which are taken to

be µR = µF =
√
s for the SIA process. The measured observable in SIA is given

by [108–110]

dσSIA

dzh
= σ0

[
2F h

1 + F h
L

]
, (2.39)

where σ0 ≡ 4πα2/s.
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2.3 PDF Parametrization

Our PDF extraction procedure is based on Bayesian inferences using Monte Carlo

techniques developed in previous JAM analyses [112–116]. We parametrize the PDFs

at the input renormalization scale µ2
0 = m2

c , where mc is the mass of the charm

quark. As the input scale decreases, the errors from the backward evolution increase

due to the truncation of the perturbative series. This scale is chosen to be as small as

possible while keeping these errors under control [113]. The PDFs are parametrized

using a generic template function of the form

f(x, µ2
0) =

N

M
xα(1− x)β(1 + γ

√
x+ ηx), (2.40)

where a = {N,α, β, γ, η} is the set of parameters to be inferred, and M = B[α +

2, β + 1] + γB[α + 5
2
, β + 1] + ηB[α + 3, β + 1] normalizes the function to the second

moment to maximally decorrelate the normalization and shape parameters (which

would otherwise be correlated through the momentum sum rule Eq. (1.4d)).

To characterize the nucleon valence region and discriminate it from the sea com-

ponents, we parametrize the light-quark and strange PDFs according to

u = uv + ū, d = dv + d̄,

ū = S1 + ū0, d̄ = S1 + d̄0, (2.41)

s = S2 + s0, s̄ = S2 + s̄0,

where the dependence on x and the scale µ2
0 has been suppressed for convenience. The

input quark distributions uv, dv, ū0, d̄0, s0, and s̄0, as well as the gluon distribution g,

are parametrized individually as in Eq. (2.40). For the sea quark PDFs, the additional

functions S1 and S2 are also parametrized via Eq. (2.40), and are designed to allow

a more singular small-x behavior compared to the valence distributions by allowing

the corresponding α parameter to more negative values. Letting S1 ̸= S2 allows for

different small-x behaviors for the light sea quarks and the strange quarks. This

separation is designed so that the ū0, d̄0, s0, and s̄0 distributions account for the

nonperturbative contributions to the sea, while the S1 and S2 distributions account

for the perturbative contributions.

The normalization parameter N for the gluon distribution is fixed by the momen-

tum sum rule, while the corresponding normalization parameters for uv, dv, and s0
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are fixed by the valence number sum rules (see Eq. (1.4c)). For the uv, dv, g, ū0, and

d̄0 distributions, the parameters γ and η in Eq. (2.40) are included to allow sufficient

flexibility. We have verified that including these parameters for S1, S2, s0, or s̄0 does

not lead to significant changes to the final results, so for these distributions the γ and

η parameters are set to zero. In total there are 33 fitted parameters for the PDFs, as

well as 58 fitted normalization parameters. The parametrization of the single hadron

FFs will be discussed in Chapter 4.

The scale dependence of the PDFs and FFs is determined according to the DGLAP

evolution equations (Eq. (1.6)), with the PDFs, FFs, and αs evolved according to their

renormalization group equation (RGE) at next-to-leading logarithmic accuracy with

the boundary condition αs(MZ) = 0.118. For light and for heavy quarks, the PDFs

and FFs are evolved using the zero-mass variable-flavor-number scheme. The values

of the heavy quark mass thresholds for the evolution of the PDFs, FFs, and αs are

taken from the PDG values mc = 1.28 GeV and mb = 4.18 GeV in the MS scheme [11].

2.4 Mellin Space Techniques

By choosing parametrizations that can be analytically converted to Mellin space, one

can use Mellin space techniques to greatly increase the efficiency of the analysis. These

techniques are used to convert convolution integrals into matrix multiplications. This

is relevant for the DGLAP evolution equation (see Eq. (1.6)) and for the calculation of

hadron-hadron collision observables. In the latter case, it also allows one to isolate and

pre-calculate parameter-independent integrals prior to the actual fitting procedure.

The N th Mellin moment of a PDF fj(x, µ0) at the initial scale µ0 is given by

f̃j(N,µ0) =

∫ 1

0

dxxN−1fj(x, µ0), (2.42)

where N is also termed the “conjugate variable” to x. A similar expression holds for

the FFs, with x → z. With the PDFs converted to Mellin space, one can write the

DGLAP evolution equation (Eq. (1.6)) as [117–121]

∂f̃i(x;µR)

∂ lnµ2
R

=
∑
j

[
P̃ij ⊗ f̃i

]
(x;µR), (2.43)
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where P̃ij are the Mellin moments of the splitting kernels. Following the conventions

of Ref. [121], we solve Eq. (2.43) by working in a flavor singlet and nonsinglet basis

and defining:

f̃±3 ≡ f̃u± − f̃d± , (2.44a)

f̃±8 ≡ f̃u± + f̃d± − 2f̃s± , (2.44b)

f̃±15 ≡ f̃u± + f̃d± + f̃s± − 3f̃c± , (2.44c)

f̃±24 ≡ f̃u± + f̃d± + f̃s± + f̃c± − 4f̃b± , (2.44d)

f̃±35 ≡ f̃u± + f̃d± + f̃s± + f̃c± + f̃b± − 5f̃t± , (2.44e)

f̃± ≡ f̃u± + f̃d± + f̃s± + f̃c± + f̃b± + f̃t± , (2.44f)

where f̃q± = f̃q ± f̃q̄. To avoid the system of equations becoming degenerate, one

only considers the equations up to f̃±n2
f−1, where nf is the number of active flavors.

Eq. (2.43) can then be expressed as

∂f̃±i(x;µR)

∂ lnµ2
R

= P̃±
NSf̃±i, (2.45a)

∂f̃−(x;µR)

∂ lnµ2
R

= P̃−
NSf̃−, (2.45b)

∂

∂ lnµ2
R

(
f̃+
f̃g

)
=

(
P̃qq P̃qg

P̃gq P̃gg

)(
f̃+.

f̃g

)
. (2.45c)

Explicit expressions for all of the splitting kernels in Mellin space can be found in

Appendix B of Ref. [113]. The equations are easily computed in this basis, and the

basis Eq. (2.44) can be inverted to get the evolved PDFs.

With the DGLAP evolution equations written in Mellin space, one can also write

the observables as inverse Mellin transforms. Focusing on hadron-hadron collision

processes, one can schematically write the cross-section as

dσ =
∑
ij

Hij(x1, x2, µR)⊗ fi(x1, µR)⊗ fj(x2, µR), (2.46)

where Hij is the relevant partonic cross section for the process, x1 and x2 are the

partonic momentum fractions of the two protons, and i and j run over the channels
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that contribute to the process. The double convolution is given by

[
C ⊗ f ⊗ g

]
(x, z) ≡

∫ 1

x

dw

w

∫ 1

z

dv

v
C(w, v)f(

x

w
)g(

z

v
). (2.47)

Since the analytical expressions of the Mellin moments of the partonic cross sec-

tions are not known, we follow the strategy of Ref. [106] and precalculate the Mellin

moments numerically. One can then write the cross section as a 2D inverse Mellin

transform with N being the conjugate variable to x1 and M to x2:

dσ =
∑
ijkl

1

(2πi)2

∫
dN

∫
dMf̃j(N,µ0)f̃l(M,µ0)

⊗
[
x−N
1 x−M

2 H̃ik(N,M, µR)US
ij(N,µR, µ0)U

S
kl(M,µR, µ0)

]
, (2.48)

where H̃ik(N,M, µR) are the moments of the partonic cross section. The solution

of the DGLAP evolution is encoded in the matrix US
ij(N,µR, µ0) which evolves the

moments of the PDFs f̃j(N,µ0) from µ0 to µR. The superscript S denotes the space-

like evolution of the PDFs, and the FFs would instead have a timelike (T ) evolution.

Note that, crucially, the quantity in brackets does not depend on any of the fitted

parameters, and therefore only needs to be calculated once prior to the fit, massively

reducing computation time. This strategy can also be applied to single convolutions

such as in DIS, although the computational benefits are much smaller.

2.5 Data and Quality of Fit

The spin-averaged PDFs were extracted using F2 data from fixed-target experiments

on p, D, 3He, and 3H from BCDMS [122], NMC [123,124], SLAC [125], and Jefferson

Lab [126–128] including, in particular, the data from the MARATHON collaboration

[129]. Reduced neutral and charged current proton cross sections from the combined

H1/ZEUS analysis from HERA [130] are also included. The kinematic constraints

W 2 > 3.5 GeV2 and Q2 > m2
c are applied to all of the DIS data. The cut on

W 2 is placed to avoid the resonance region, and we find that reducing the cut any

further significantly harms the description of the data. The cut on Q2 is placed to

match the input scale (see Section 2.3). In terms of hadron-hadron collision data, we

include Drell-Yan di-muon data in pp and pD collisions from the Fermilab E866 [93,

94] and E906 experiments [95]. For weak vector boson mediated processes we use
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reconstructed Z/γ∗ cross sections and W± asymmetries from the Tevatron [131–134],

as well as inclusiveW±-lepton asymmetries from CMS [135–138], LHCb [139,140], and

STAR [96]. Finally, jet production data from the Tevatron [141,142] and STAR [143]

are included with a cut on the jet transverse momentum of pjetT > 8 GeV.

For semi-inclusive data, we include data on unpolarized SIDIS on deuterium tar-

gets from COMPASS [144,145] with the cuts Q2 > m2
c and W 2 > 10 GeV2, the latter

allowing one to neglect higher twist, nuclear, and target mass corrections, which

would be difficult to account for simultaneously with final-state hadron mass correc-

tions [146]. An additional cut is placed on the fragmentation variable 0.2 < zH < 0.8

to ensure the applicability of the leading power formalism and avoid large-z threshold

corrections [116]. Furthermore, SIA data is included from the TASSO [147–151] and

ARGUS [152] collaborations at DESY; the TPC [153–155], HRS [156], SLD [157], and

BABAR [158] collaborations at SLAC; the OPAL [159,160], ALEPH [161], and DEL-

PHI [162] collaborations at CERN; and the TOPAZ [163] and Belle [164] at KEK.

The SIA data are restricted to 0.2 < zh < 0.9. The kinematics (at LO in αs) are

shown for all experiments in Fig. 2.7.

The χ2
red values and fitted normalizations for the unpolarized DIS data are shown

in Table 2.2, while Table 2.3 shows the values for the unpolarized hadron-hadron

collision data. We note that when the experimental observable contains a ratio of

cross sections, the normalization uncertainty may be zero or negligible. Thus the

uncertainty is not provided and we do not include a fitted normalization parameter.

Figs. (2.8)–(2.17) show the data and theory comparison for all of the inclusive data

included in this analysis. The DIS data is shown in Fig. 2.8 for the neutral current

proton data, Fig. 2.9 for the neutral current deuteron data, Fig. 2.10 for the neutral

current A = 3 data, and Fig. 2.11 for the charged current proton data. Note that in

Fig. 2.8 and Fig. 2.9 the scattering angle is given by θ = 2 sin−1
√
Q2/(4E2 − 2EQ2

Mxbj
),

where E is the energy in the lab frame (E = 5.5 GeV for Jefferson Lab Hall C) and

M is the nucleon mass.

The DY process is presented in Fig. 2.12, where the ratio of pD to pp cross

sections is shown, and in Fig. 2.13, where the absolute pp cross section is shown. For

reconstructed W and Z boson production data, the comparison is shown in Fig. 2.14.

The comparison for W±-lepton asymmetries is shown in Fig. 2.15, while Fig. 2.16

shows the W+/W− ratio. Fig. 2.17 shows the comparison for the jet production

data.
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type experiment ref. beam target observable Ndat χ2
red fitted norm.

fixed target BCDMS [122] µ p F2 351 1.20 0.995(27)
BCDMS [122] µ D F2 254 1.08 1.015(30)

NMC [123] µ p F2 275 1.67 1.018(19)
NMC [124] µ D/p F2 189 0.89 0.998(11)
SLAC [125] e p F2 530 0.78 1.032(20)
SLAC [125] e D F2 541 0.84 1.030(18)

JLab Hall C [126] e p F2 92 1.19 1.037(18)
JLab Hall C [126] e D F2 91 0.87 1.003(18)
JLab Hall C [128] e 3He/D F2 13 0.31 1.011(18)

MARATHON [129] e D/p F2 7 1.06 1.018(6)
MARATHON [129] e 3He/3H F2 21 0.67 1.006(12)

tagged JLab BONuS [127] e n/D F2 137 1.24 1.007(44)
collider HERA (NC e−) [130] e p σred 159 1.68 —

HERA (NC e+) [130] e p σred 945 1.41 —
HERA (CC e−) [130] e p σred 42 1.31 —
HERA (CC e+) [130] e p σred 39 1.12 —

Total 3686 1.15

Table 2.2: χ2 table: Unpolarized DIS. Summary of the χ2
red values for the inclusive

DIS data used in this analysis, as well as their fitted normalizations.

For the latest W -lepton data from STAR, shown in Fig. 2.16, the description

suffers slightly at high and at low pseudorapidities, leading to a χ2
red of 1.99 for

these data. From Ref. [96], it is known that this is a common feature of most PDF

extractions. This discrepancy is also partially due to some tension with the NuSea

data, and the χ2
red improves to 1.54 upon its removal.

The χ2
red values and fitted normalizations for the unpolarized SIDIS data are shown

in Table 2.4, while Table 2.5, Table 2.6, and Table 2.7 show the values for SIA pion

data, kaon data, and unidentified hadron data respectively. The data and theory

comparisons for SIDIS are shown in Figs. (2.18)–(2.20), while for SIA they are shown

in Figs. (2.21)–(2.23).
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type experiment ref. process variables
√
s (GeV) observable Ndat χ2

red fitted norm.
Drell-Yan E866 [92] pp→ γ∗ → µ+µ− Mℓℓ, xF 39 M3

ℓℓdσ
pp 184 1.12 1.119(75)

E866 [94] pp, pD → γ∗ → µ+µ− Mℓℓ, xF 39 dσpD/2dσpp 15 1.06 0.996(9)
E906 [95] pp, pD → γ∗ → µ+µ− Mℓℓ, xF 15 dσpD/2dσpp 6 0.96 0.998(11)

Z rapidity CDF [131] pp̄→ Z/γ∗ yZ 1960 dσ 28 1.16 0.994(60)
D0 [132] pp̄→ Z/γ∗ yZ 1960 dσ/σ 28 0.94 —

W asymmetry CDF [133] pp̄→ W yW 1960 AW 13 1.50 —
D0 [134] pp̄→ W yW 1960 AW 14 0.77 —

lepton rapidity CMS [135] pp→ W → eνe ηe 7000 Ae 6 0.80 —
CMS [135] pp→ W → µνµ ηµ 7000 Aµ 6 0.12 —
CMS [136] pp→ W → eνe ηe 7000 Ae 11 0.94 —
CMS [137] pp→ W → µνµ ηµ 7000 Aµ 11 0.35 —
CMS [138] pp→ W → µνµ ηµ 8000 Aµ 11 1.42 —
LHCb [139] pp→ W → µνµ ηµ 7000 Aµ 8 0.57 —
LHCb [140] pp→ W → µνµ ηµ 8000 Aµ 8 0.30 —

STAR [96] pp→ W → eνe ηe 510 dσW+
/dσW−

9 1.99 —

inclusive jets D0 [141] pp̄→ jet yjet, p
jet
T 1960 dσ 110 1.04 0.765(87)

CDF [142] pp̄→ jet yjet, p
jet
T 1960 dσ 76 1.87 0.856(76)

STAR MB [143] pp→ jet yjet, p
jet
T 510 dσ/2π 3 0.08 0.986(42)

STAR HT [143] pp→ jet yjet, p
jet
T 510 dσ/2π 9 1.14 0.975(98)

Total 556 1.19

Table 2.3: χ2 table: Unpolarized pp collisions. Summary of the χ2
red values for the

hadron-hadron collision data used in this analysis, as well as their fitted normalizations.
All processes are inclusive and the undetected part of the final system X has been
suppressed in the “process” column.

experiment ref. beam target hadron Ndat χ2
red fitted norm.

COMPASS [144] µ D π+ 249 1.00 1.310(48)
COMPASS [144] µ D π− 249 0.88 1.271(52)
COMPASS [145] µ D K+ 247 1.34 1.302(136)
COMPASS [145] µ D K− 247 1.29 1.205(109)
COMPASS [144] µ D h+ 249 0.96 1.285(65)
COMPASS [144] µ D h− 249 0.45 1.266(60)
Total 1490 0.98

Table 2.4: χ2 table: SIDIS. Summary of the χ2
red values for the SIDIS data on the

multiplicity used in this analysis, as well as their fitted normalizations.
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experiment ref.
√
s (GeV) Ndat χ2

red fitted norm.
TASSO [147] 12 1 1.17 1.111(73)
TASSO [148] 14 4 3.05 0.988(58)
TASSO [148] 30 4 0.82 1.024(32)
TASSO [151] 34 5 1.13 1.026(49)
TASSO [151] 44 3 1.58 0.992(39)
TPC [154] 29 3 1.09 —
TPC [155] 29 9 0.62 —
TPC(c) [153] 29 3 0.51 —
TPC(b) [153] 29 3 2.49 —
TOPAZ [163] 58 1 0.09 —
SLD [157] 91 15 1.54 0.999(9)
SLD(c) [157] 91 15 1.24 1.009(3)
SLD(b) [157] 91 15 0.75 1.000(3)
ALEPH [161] 91 5 0.75 0.998(26)
OPAL [159] 91 6 2.88 —
OPAL(c) [160] 91 5 2.13 1.314(53)
OPAL(b) [160] 91 5 2.03 1.276(72)
DELPHI [162] 91 6 2.55 —
DELPHI(b) [162] 91 6 1.09 —
BABAR [158] 11 27 0.20 0.979(8)
BELLE [164] 11 70 0.09 0.876(12)
ARGUS [152] 10 20 1.80 1.012(11)
Total 231 0.91

Table 2.5: χ2 table: SIA pion. Summary of the χ2
red values for the pion SIA data used

in this analysis, as well as their fitted normalizations.
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experiment ref.
√
s (GeV) Ndat χ2

red fitted norm.
TASSO [148] 14 2 1.95 0.969(26)
TASSO [148] 22 2 0.07 1.001(15)
TASSO [151] 34 2 0.02 0.994(22)
TPC [154] 29 2 4.46 —
TPC [155] 29 7 0.60 —
TOPAZ [163] 58 1 0.25 —
SLD [157] 91 15 0.52 1.016(7)
SLD(c) [157] 91 15 2.14 1.019(6)
SLD(b) [157] 91 15 1.16 0.992(2)
ALEPH [161] 91 5 0.09 1.003(23)
OPAL [159] 91 6 0.41 —
OPAL(c) [160] 91 5 3.41 1.310(44)
OPAL(b) [160] 91 5 1.51 1.297(61)
DELPHI [162] 91 6 1.76 —
DELPHI [162] 91 6 0.40 —
DELPHI(b) [162] 91 6 0.08 —
BABAR [158] 11 28 0.48 0.967(17)
BELLE [164] 11 70 0.18 0.963(24)
ARGUS [152] 10 15 0.53 1.004(6)
Total 213 0.70

Table 2.6: χ2 table: SIA kaon. Summary of the χ2
red values for the kaon SIA data

used in this analysis, as well as their fitted normalizations.

experiment ref.
√
s (GeV) Ndat χ2

red fitted norm.
TASSO [151] 35 8 3.34 0.922(39)
TASSO [151] 44 8 0.80 0.953(39)
TPC [154] 29 10 1.83 —
SLD [157] 91 15 1.89 1.002(10)
SLD(c) [157] 91 15 0.99 1.007(6)
SLD(b) [157] 91 15 0.86 1.010(5)
ALEPH [161] 91 19 0.33 0.998(10)
OPAL [159] 91 6 0.44 —
OPAL(c) [160] 91 6 0.49 —
OPAL(b) [160] 91 6 0.10 —
DELPHI [162] 91 6 0.73 —
DELPHI(b) [162] 91 6 0.67 —
Total 120 1.07

Table 2.7: χ2 table: SIA unidentified hadron. Summary of the χ2
red values for the

unidentified hadron SIA data used in this analysis, as well as their fitted normalizations.
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Figure 2.7: Kinematics of unpolarized datasets. Kinematic coverage of the datasets
included in this analysis. The top panel shows the data as a function of x and Q2. The
variable x represents xbj (Eq. (2.7)) for DIS and SIDIS and xF (Eq. (2.24)) for vector
boson and jet production, while the scale Q2 represents the four-momentum transfer
squared for DIS and SIDIS, the mass squared of the intermediate boson for vector
boson production, and the transverse momentum squared for jet production. For the
DIS data we isolate and show the MARATHON [126] (pink circles). For Drell-Yan we
split the data into those from NuSea [93, 94] and SeaQuest [95]. Also indicated are
the DIS cuts of W 2 = 10 GeV2 (dashed black line) and W 2 = 3.5 GeV2 (solid black
line). The bottom panel shows the semi-inclusive data as a function of z and Q2. The
variable z represents zH (Eq. (2.33)) for SIDIS, and zh (Eq. (2.36)) for SIA.
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Figure 2.8: Data vs. Theory: Unpolarized DIS (proton). All proton DIS data included
in this analysis, plotted as a function of Q2 against the mean JAM result (black lines)
with 1σ uncertainty bands in gold. Results are scaled by factors of 2i for clarity. The
top row shows F p

2 data from BCDMS [122], NMC [123], SLAC [125], and Hall C [126]
plotted for different ranges of xbj (left) or θ (right). The bottom row shows neutral
current cross-section data from HERA [130] at

√
s = 318, 300, 251, and 225 GeV plotted

for different ranges of xbj. For readability in this figure, xbj has been shortened to x.
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Figure 2.9: Data vs. Theory: Unpolarized DIS (deuteron). All deuteron DIS data
included in this analysis, plotted against the mean JAM result (black lines) with 1σ
uncertainty bands in gold. Results are scaled by factors of 2i or 4i for clarity. The
top row shows FD

2 data from BCDMS [122], SLAC [125], and Hall C [126] plotted as a
function of Q2 for different ranges of xbj (left) or θ (right). The bottom left panel shows
FD
2 /F p

2 data from NMC [124] and MARATHON [129] plotted as a function of Q2 for
different ranges of xbj. The bottom right panel shows Fn

2 /F
D
2 data from BONuS [127]

plotted as a function of xbj with for different ranges of Q2. For readability in this figure,
xbj has been shortened to x.
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Figure 2.10: Data vs. Theory: Unpolarized DIS (helium and tritium). All A = 3 DIS
data included in this analysis, plotted as a function of xbj against the mean JAM result

(black lines) with 1σ uncertainty bands in gold. The left panel shows F
3He
2 /FD

2 data
from Hall C [128], while the right panel shows F

3He
2 /F

3H
2 data from MARATHON [129].
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Figure 2.11: Data vs. Theory: Unpolarized DIS (charged current). All charged-
current DIS data included in this analysis, plotted as a function of Q2 for different
ranges of xbj against the mean JAM result (black lines) with 1σ uncertainty bands in
gold. Results are scaled by factors of 5i for clarity. For readability in this figure, xbj
has been shortened to x.
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Figure 2.12: Data vs. Theory: Unpolarized Drell-Yan (ratios). Drell-Yan cross
section ratio σDY

pD/2σ
DY
pp (differential in Mℓℓ and xF ) from SeaQuest [95] (red circles)

and NuSea [94] (blue triangles) compared with the JAM results at their respective
kinematics (red and blue 1σ uncertainty bands), as a function of the target momentum
fraction x2, with the corresponding x1 ranges indicated. The ratio of data to the average
theory is illustrated in the lower panel with 1σ theoretical uncertainties at the SeaQuest
and NuSea kinematics.
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Figure 2.13: Data vs. Theory: Unpolarized Drell-Yan (cross section). Drell-Yan cross
section from NuSea [94] (red circles) as a function of xF compared with the mean JAM
result (black lines) with 1σ uncertainty bands in gold. The Q2 bins are indicated and
results are scaled by factors of 10i for clarity. The highest Q2 bin 160 < Q2 < 280 GeV2

has not been plotted. Note that the Q2 ∈ [75, 100] bin is absent in the experimental
data to avoid the Υ resonance which lies at Q2 ≈ 89 GeV2.
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Figure 2.14: Data vs. Theory: Unpolarized W/Z boson production. Reconstructed
Z boson normalized cross-sections and reconstructed W boson asymmetry data from
Tevatron [131–134], plotted as a function of yZ and yW compared with the mean JAM
result (black lines) with 1σ uncertainty bands in gold. The ratio of data to the average
theory is illustrated in the lower panel with 1σ theoretical uncertainties (gold bands).
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Figure 2.15: Data vs. Theory: Unpolarized W -lepton asymmetries. Inclusive W±-
lepton asymmetries from CMS [135–138] and LHCb [139, 140] plotted as a function
of |ηℓ| compared to the mean JAM result (black lines) with 1σ uncertainty bands in
gold. The ratio of data to the average theory is illustrated in the lower panel with 1σ
theoretical uncertainties (gold bands).
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Figure 2.16: Data vs. Theory: Unpolarized W -lepton ratio. W -lepton cross section
ratio σW+

pp /σW−

pp from STAR [96] (black circles) compared with the JAM fit (red 1σ
uncertainty band), as a function of the lepton pseudorapidity, ηℓ. The ratio of data to
average theory is shown in the lower panel together with the 1σ theoretical uncertainty
(red band).
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Figure 2.17: Data vs. Theory: Unpolarized jet production. Single jet production
data in pp̄ collisions from D0 [141] and CDF [142] and in pp collisions from STAR [143]
plotted as a function of pjetT with approximately constant ηjet compared with the mean
JAM fit (solid lines) with 1σ uncertainty bands in gold. The results are scaled by
factors of 2i or 10i for clarity. The ratio of data to average theory for the STAR data
is shown in the lower right panel together with the 1σ theoretical uncertainties (gold
bands).
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Figure 2.18: Data vs. Theory: Unpolarized SIDIS (pion). Pion multiplicities
dMh/dzH in SIDIS from COMPASS [144] plotted as a function of zH for different
ranges of xbj and y against the mean JAM result. Each panel shows a different bin of
xbj, while the colors indicate different bins of y. The solid JAM curves correspond to
the π+ multiplicities, while the dashed curves correspond to π−. Results are scaled by
a factor of 2i for clarity.
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Figure 2.19: Data vs. Theory: Unpolarized SIDIS (kaon). Kaon multiplicities
dMh/dzH in SIDIS from COMPASS [145] plotted as a function of zH for different
ranges of xbj and y against the mean JAM result. Each panel shows a different bin of
xbj, while the colors indicate different bins of y. The solid JAM curves correspond to
the K+ multiplicities, while the dashed curves correspond to K−. Results are scaled
by a factor of 2i for clarity.
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Figure 2.20: Data vs. Theory: Unpolarized SIDIS (hadron). Unidentified charged
hadron multiplicities dMh/dzH in SIDIS from COMPASS [144] plotted as a function of
zH for different ranges of xbj and y against the mean JAM result. Each panel shows a
different bin of xbj, while the colors indicate different bins of y. The solid JAM curves
correspond to the h+ multiplicities, while the dashed curves correspond to h−. Results
are scaled by a factor of 2i for clarity.
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Figure 2.21: Data vs. Theory: SIA (pion). Data to theory ratios for SIA pion
production cross sections as a function of zh. The data points over theory from ARGUS
[152], BELLE [164], BABAR [158], TASSO [147,148,151], TPC [153–155], OPAL [159,
160], ALEPH [161], DELPHI [162], and SLD [157] are shown in black, while the 1σ
uncertainty band of the fitted result is shown in red. The labels (c) and (b) indicate
that the data are for charm and bottom quark production respectively.
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Figure 2.22: Data vs. Theory: SIA (kaon). Data to theory ratios for SIA kaon
production cross sections as a function of zh. The data points over theory from ARGUS
[152], BELLE [164], BABAR [158], TASSO [148, 151], TPC [154, 155], OPAL [159,
160], ALEPH [161], DELPHI [162], and SLD [157] are shown in black, while the 1σ
uncertainty band of the fitted result is shown in blue. The labels (c) and (b) indicate
that the data are for charm and bottom quark production respectively.
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Figure 2.23: Data vs. Theory: SIA (hadron). Data to theory ratios for SIA unidenti-
fied charged hadron production cross sections as a function of zh. The data points over
theory from TASSO [151], TPC [154], OPAL [159, 160], ALEPH [161], DELPHI [162],
and SLD [157] are shown in black, while the 1σ uncertainty band of the fitted result is
shown in green. The labels (c) and (b) indicate that the data are for charm and bottom
quark production respectively.
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Figure 2.24: Extracted spin-averaged PDFs. Comparison of the JAM PDFs from this
analysis (red bands) with NLO results from the NNPDF4.0 [165] (gold), ABMP16 [166]
(blue), CJ15 [167] (green), CT18 [168] (gray), and MSHT20 [169] (cyan) parametriza-
tions at the scale Q2 = 10 GeV2, with the bands representing 1σ uncertainty. Note
that x multiplied by the PDFs are shown.

2.6 Extracted Spin-Averaged PDFs

This analysis [56] is based on more than 900 Monte Carlo samples, which we use to

ensure the statistical convergence of the PDFs, from which the means and expectation

values are then computed using Eqs. (2.4). In this section we show only the spin-

averaged PDFs, except for the quark ratio d/u which is closely tied to the extraction of

nuclear effects and will be discussed in Chapter 3. The FFs will be shown in Chapter 4,

as they play a larger role in the extraction of helicity PDFs than spin-averaged PDFs

due to the relative lack of precision in the polarized data. The resulting spin-averaged

parton densities are displayed in Fig. 2.24, where we show the valence (uv and dv),

gluon (g), light antiquark (d̄ + ū), and strange (s + s̄) distributions at the scale1

Q2 = 10 GeV2. The results are compared to several other groups [165–169].

In the valence sector, our results for both uv and dv are slightly larger than those

from the other groups near the peaks of the distributions. At lower x, the uv distribu-

1We note that here and in the following we often use Q and µR interchangeably for the renor-
malization scale.
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tion agrees with the other groups, while the dv PDF agrees best with the CT18 [168]

and NNPDF4.0 [165] parametrizations. For the gluon PDF, our results are largely in

agreement with other extractions, although at low x there are some differences with

the ABMP16 [166] fit. The same is true for the sum of light sea quark distributions,

d̄+ ū, but the disagreements are with CJ15 [167]. For the strange distribution s+ s̄,

our result is somewhat suppressed at low x relative to the other extractions. We

note the following three points regarding the size of the strange distribution and its

potential correlations to the inputs of the analyses shown here. First, this analysis

is the only analysis to include SIDIS data, which were found in previous JAM anal-

yses [115, 116] to suppress the strange distribution. Secondly, this analysis, along

with CJ15, does not include W/Z boson production data from ATLAS [170–176],

which were found to enhance the strange quark distribution at low x. The other four

analyses include this data. Finally, the only analysis that parameterizes the nonper-

turbative charm is NNPDF4.0, which may play a role in the shape of the strange

quark distribution [177].

2.6.1 Spin-Averaged Sea Asymmetry

As mentioned previously, the latest SeaQuest and STAR W -lepton results were first

included in Ref. [56], and we now discuss the light-quark sea asymmetry and its

relation to these new datasets. We note that the SeaQuest collaboration recently re-

leased updated results [178] with two methods of extracting the cross-section ratios:

the “Intensity-Extrapolation” (IE) method, used in their previous publication [95],

and the new “Mass-Fit” (MF) method. They find complete agreement between these

two methods, so we continue to use the IE-generated data here and do not consider

the MF-generated data. The impact on the light-quark sea asymmetry from both the

new STAR measurement [96] of W -lepton cross sections and the SeaQuest measure-

ment [95] of Drell-Yan di-muon production is shown in Fig. 2.25. From the baseline

analysis, which excludes these new datasets, the STAR cross section ratios are added

first in order to assess their impact. While the STAR data do not lead to significant

shifts in the central values of d̄/ū, they do reduce the uncertainties somewhat, by up

to ≈ 20% at x ≈ 0.2. This modest impact can be understood from the fact that the

NuSea Drell-Yan measurements are more directly sensitive to d̄/ū (see Eqs. (2.27)

and (2.31)), and already provide the bulk of the constraints on the ratio even when

compared to high precision W -lepton and reconstructed W data from the Tevatron
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and LHC. Since the STAR data overlap kinematically with the NuSea measurement,

it is therefore difficult to improve on the extraction of d̄/ū using W -lepton production

alone (see, in this context, Fig. 2.27 and the corresponding text below).

After adding the STAR data to the baseline, the SeaQuest Drell-Yan cross section

ratios are then included. In this case, the SeaQuest data greatly reduce the uncer-

tainties on the d̄/ū ratio, by up to ≈ 50% at x ≳ 0.3. Moreover, the addition of

the SeaQuest data also increases the d̄/ū ratio for x ≈ 0.2, where it remains above

unity up to values of x ≈ 0.4. This is a direct consequence of the extended x range of

the data compared with the earlier NuSea results, from x ≈ 0.3 up to x ≈ 0.4, with

higher precision at the largest x values. This feature is also reflected in the d̄ − ū

difference remaining positive across the entire range of x probed.

With the new data from STAR and SeaQuest included, the final d̄/ū ratio and

x(d̄− ū) difference are shown in Fig. 2.26, compared with the corresponding distribu-

tions from several other groups [165–169] at Q2 = 10 GeV2 (see also Refs. [179,180]).

We note that of the other analyses shown in the plot, only the NNPDF4.0 analy-

sis includes the new data from STAR and SeaQuest. Our results are in agreement,

within errors, with those from ABMP16 [166] and CT18 [168] (except with ABMP16

at low x ≲ 0.04), whose ratios also remain positive. Although there are differences in

the shapes of the ratios, our results also largely agree within errors with those from

NNPDF4.0 [165] and CJ15 [167]. The disagreement with CJ15 at high x results from

their choice of parametrization that forces d̄/ū→ 1 as x→ 1, and, more importantly,

the fact that this fit predates the SeaQuest data, which pull the ratio upwards at

large x. Similarly, the disagreement with MSHT20 [169] at high x is likely due to the

lack of the SeaQuest data in the MSHT20 analysis.

It is instructive to examine the impact of individual datasets on the light-quark

sea asymmetry, x(d̄ − ū), which we illustrate in the left panel of Fig. 2.27. Starting

with inclusive DIS data only, and excluding data from the NMC experiment, the

asymmetry is consistent with zero within large uncertainties. Upon the inclusion of

the NMC data [123,124], the errors are significantly reduced, and the asymmetry gives

an indication of deviation from zero in the range 0.01 < x < 0.2. When W -lepton, re-

constructed W and Z boson, and jet production data from RHIC, Tevatron, and the

LHC are included (but not the new STAR data [96]), the asymmetry becomes signifi-

cantly larger, and more distinguishable from zero below x = 0.3. The new constraints

come primarily from the high precision W and W -lepton asymmetry measurements
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from the Tevatron and LHC, which are sensitive to ū and d̄ (see Eq. (2.31)). The

further addition of the NuSea [94] Drell-Yan data greatly decreases the uncertainty,

showing that these data still provide a strong constraint on the asymmetry even when

compared to the Tevatron and LHC W and W -lepton asymmetries. Finally, the in-

clusion of the new SeaQuest [95] and STAR [96] data reduces the uncertainty on the

asymmetry even further, while increasing the magnitude at x ≳ 0.2, as already seen

in Fig. 2.25 except now displayed on a logarithmic x scale.

The impact of the various datasets on the antiquark asymmetry can also be rep-

resented in the form of the truncated moment,
∫ 1

0.01
dx(d̄− ū), illustrated in Fig. 2.27

in the form of the normalized yield of the Monte Carlo replicas. We choose x = 0.01

for the lower limit as this is approximately the extent to which existing data provide

information on the asymmetry (see Fig. 2.7). We choose x = 1 as the upper limit

due to the fact that for ū and d̄ the β parameter in Eq. (2.40) is always significantly

larger than zero, so that the distributions are very small at large x and there is no

need to worry about introducing errors into the integral. Note that because of large

uncertainties associated with the small-x extrapolation, estimates of the total mo-

ment are not as meaningful without additional constraints on the x → 0 behavior.

For the same combinations of datasets as described above, one observes that prior to

the addition of the NMC data the truncated moments of the replicas can vary widely

between −0.2 and +0.15. Once the NMC data are added, the moments become al-

most entirely positive, and the yield continues to contract as more data are added.

Once all of the data are included, the truncated moments are tightly gathered around

0.1.

The shape and magnitude of the d̄ − ū asymmetry has long been an intriguing

puzzle for our understanding of the nonperturbative structure of the nucleon. A

frequently used interpretation of the excess of d̄ over ū in the proton sea has been

that associated with the pion-cloud model and the prevalence of the virtual p→ nπ+

dissociation [65]. Scattering from the π+ component of the proton wave function then

naturally enhances the d̄ distribution, even though some of this will be cancelled by

the subdominant p→ ∆++π− dissociation, which favors ū over d̄. As an illustration,

in Fig. 2.28 we compare the inferred JAM asymmetry with d̄− ū at x > 0 calculated

from a convolution of the p → baryon + π splitting functions and the valence PDF

of the pion [181–183],

(d̄− ū)(x) =
[(
fnπ+ + f∆0π+ − f∆++π−

)
⊗ q̄πv

]
(x), (2.49)
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where the convolution integral is defined as f ⊗ q =
∫ 1

0
dy
∫ 1

0
dzf(y) q(z) δ(x − yz),

and y is the light-cone fraction of the proton’s momentum carried by the pion.

For the calculation shown in Fig. 2.28, the pion PDF is taken from the recent NLO

analysis of pion-induced Drell-Yan and deep-inelastic leading neutron electroproduc-

tion data by Barry et al. [184]. The splitting functions are computed at one-pion loop

order from chiral effective theory [181–183], using several different models for the ul-

traviolet regulators [185, 186]. For the regulator mass parameters, we use the values

from the global analysis in Ref. [186], for which the integrated splitting function was

found to be ⟨n⟩πN = 0.22. Normalizing the various models of the regulator function

to this value, the resulting band in Fig. 2.28 can be taken as a representation of the

uncertainty on the calculated asymmetry. The uncertainty also includes the errors

from the Monte Carlo analysis, although these are small compared to the variations

in the models.

The agreement between the calculated asymmetry and the extracted JAM PDFs

is generally good within the uncertainties, with the model giving a slightly harder x

dependence compared with the global fit. Qualitative agreement with the extracted

asymmetry is also found for various other nonperturbative models (chiral loop and

other) discussed in Refs. [63,66–75,77–80]. Since these models are largely in agreement

for the unpolarized sea asymmetry, the next step to discriminate between them is to

look at the polarized sea asymmetry, where the differences between their predictions

are more pronounced. See, in this context, Subsection 4.4.1.

2.7 Summary

In this chapter we have presented the results of a global QCD analysis of spin-averaged

PDFs including the SeaQuest measurement of pp and pD Drell-Yan cross sections [95]

and the latest STAR measurement of the W -lepton production process [96]. The

inclusion of the SeaQuest data reduces the uncertainty on the d̄/ū ratio by up to

50% at high values of x, and strongly suggests that the d̄ − ū asymmetry remains

positive up to x ≈ 0.4. The impact of the STAR data is less dramatic due to the

lower sensitivity of the W -lepton production process to the sea asymmetry when

compared to the Drell-Yan process, but the data still leads to a modest reduction of

uncertainties in the x ≈ 0.2 region. Although the new SeaQuest data indicate some

tension with the earlier NuSea Drell-Yan measurement [93, 94] at large x, a good
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simultaneous description of both datasets is still possible due to the larger relative

uncertainties of the NuSea data at high x. There is some difficulty in describing the

latest STAR data at high and low pseudorapidities, which is partially due to tension

with the NuSea data, but this feature is common among most PDF extractions. The

shape and magnitude of d̄− ū from the global analysis is consistent with expectations

from nonperturbative models, such as those based on chiral symmetry breaking in

QCD, all of which predict a positive asymmetry up to x ∼ 0.4 − 0.5. We also

examined in detail the impact of various datasets and processes on the asymmetry.

Finally, we compared our extracted PDFs to those of other analyses and find some

notable differences, particularly for the strange quark PDF. These differences may be

explained by the inclusion of SIDIS data, the inclusion of Z boson production data

from ATLAS, or the parameterization of the nonperturbative charm.
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Figure 2.25: Impact of SeaQuest and STAR data on sea asymmetry. Impact on the
d̄/ū ratio (top panel) and the asymmetry x(d̄ − ū) (middle panel) from the W -lepton
data from STAR [96] (blue bands) and the Drell-Yan measurement from SeaQuest [95]
(red bands) relative to the “baseline” (green bands) which contains all data except
these. The STAR and SeaQuest data are added in succession. The uncertainty on
d̄/ū for these two scenarios normalized to that of the baseline are shown in the bottom
panel. All bands represent 1σ uncertainty.
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Figure 2.26: Extracted sea asymmetry. Comparison of the JAM d̄/ū and x(d̄ −
ū) PDFs (red bands) with the NLO parametrizations from NNPDF4.0 [165] (gold),
CJ15 [167] (green), MSHT20 [169] (cyan), ABMP16 [166] (blue), and CT18 [168] (gray)
at the scale Q2 = 10 GeV2. All bands represent 1σ uncertainty.
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Figure 2.27: Impact of various datasets on sea asymmetry. Comparison of x(d̄ − ū)
with different combinations of datasets (left panel). First only DIS data [122, 125–
127, 130] excluding NMC are included in the fit (gold band). Then data are added
successively, with NMC [123, 124] (gray); W -lepton and W asymmetries/Z boson
production/jet production from RHIC [143], Tevatron [131–134, 141, 142], and the
LHC [135–140] (green); NuSea [92, 94] (blue); and finally the SeaQuest Drell-Yan [95]
and STAR W -lepton ratio [96] (red). For the same combinations of data, the normal-
ized yield of the Monte Carlo replicas for the truncated moment

∫ 1
0.01 dx(d̄− ū) is also

shown (right panel).
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Figure 2.28: Extracted sea asymmetry compared to pion cloud model. Compari-
son of the extracted JAM x(d̄ − ū) distribution (red band) at Q2 = 10 GeV2 with
results from nonperturbative calculations based on chiral symmetry breaking and the
pion cloud [181, 182]. The JAM band represents 1σ uncertainty, while the pion cloud
band includes model dependence associated with the shape of the ultraviolet regulator
function [184–186].
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CHAPTER 3

EXTRACTION OF NUCLEAR

AND HIGHER TWIST EFFECTS

In this chapter we present the details of a simultaneous global QCD analysis of nuclear

and higher twist effects in DIS in the context of spin-averaged PDFs. The general

details of such an analysis were discussed in Section 2.1. We note that the analysis in

Chapter 2 also contained nuclear and higher twist effects, but the related discussion

is reserved for this chapter. We focus in particular on the inclusion of data from the

MARATHON experiment and its use in extracting “isovector” nuclear effects, which

will be defined below (see Eq. (3.5)).

The scattering of leptons off light nuclear targets has been used to access the

structure of the neutron and thus the structure of the down quark, where knowledge

at large x has remained elusive [187, 188]. The traditional method of extracting

neutron structure from inclusive deuteron DIS has been shown to be handicapped by

significant uncertainties in the nuclear corrections at high x [167,189,190].

The MARATHON experiment was designed to exploit the mirror symmetry of A = 3

nuclei to extract the neutron to proton structure function ratio from the ratio of
3He and 3H cross sections, where nuclear effects are expected to largely cancel [191,

192]. Differences between the free nucleon and nuclear structure functions were first

observed by the European Muon Collaboration (EMC) [193], which is now referred

to as the “nuclear EMC effect.”

The results from the MARATHON experiment that was performed at Jefferson Lab

Hall A were presented in Ref. [129]. The experiment measured the 3He/3H cross

section ratio in the range of xbj values between 0.195 and 0.825 and Q2 between 2.7
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and 11.9 GeV2, with the D/p ratio taken over a smaller xbj range as a systematic

check. Using as an input the deuteron EMC ratio

R(D) ≡ FD
2 /(F

p
2 + F n

2 ), (3.1)

or the super-ratio of the 3He and 3H EMC ratios,

R ≡ R(3He)/R(3H), (3.2)

where

R(3He) ≡ F
3He
2 /(2F p

2 + F n
2 ), (3.3)

R(3H) ≡ F
3H
2 /(F p

2 + 2F n
2 ), (3.4)

the neutron to proton ratio F n
2 /F

p
2 can be directly extracted using the measured

FD
2 /F

p
2 or F

3He
2 /F

3H
2 ratios, respectively.

In the MARATHON analysis [129], the model calculation of Kulagin and Petti

(KP) [194] was used to extract F n
2 /F

p
2 from R. Assuming that all EMC ratios for

A = 2 and A = 3 nuclei cross unity at x = 0.31, an overall normalization of 1.025

was applied to the 3He/3H data to match the ratio F n
2 /F

p
2 extracted from FD

2 /F
p
2 at

x = 0.31 using the KP model. While the unity crossing is approximately established

empirically from measurements of the EMC effect in heavy nuclei, FA
2 /F

D
2 [195,196],

it has not been demonstrated experimentally for light nuclei, with A ≤ 3. The

MARATHON data are unique in their ability to provide information on isovector effects,

with n/p values for 3He and 3H ranging from 1
2

to 2.

In the following we do not assume any prior knowledge of R. In contrast, by as-

suming the KP model [194] for the nuclear corrections, the MARATHON analysis [129]

introduces significant bias into the extracted F n
2 /F

p
2 ratio and underestimates the true

uncertainties associated with the model dependence of the super-ratio. In particular,

while the KP model assumes that the off-shell modifications of bound protons and

neutrons are equal and identical for all nuclei [194], this analysis allows a data-driven

identification of explicit isospin dependent nuclear effects in A = 3 systems. This

“isovector” EMC effect can be directly quantified by comparing the PDFs in the
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proton bound in 3He and in 3H and defining the quantity

∆q
3 ≡

qp/3H − qp/3He

qp/3H + qp/3He

, (3.5)

for q = u and d quarks. We note that one can also write (see Eq. (3.15)):

∆u
3 =

up/3H − dn/3H
up/3H + dn/3H

, ∆d
3 =

dn/3He − up/3He

dn/3He + up/3He

, (3.6)

which illustrates that we are comparing, within the same nucleus, the difference of

up and down quarks within protons and neutrons, respectively, where they are each

the dominant valence quark. Hence the term “isovector effect.”

Ref. [57] was the first global QCD analysis to include the MARATHON data on

FD
2 /F

p
2 and F

3He
2 /F

3H
2 , as well as the Jefferson Lab Hall C data on F

3He
2 /FD

2 [128]. In

this chapter we discuss the results of this analysis, including the first extraction of an

isovector nuclear effect. We also show and discuss results for EMC ratios, the F n
2 /F

p
2

structure function ratio, the d/u PDF ratio, and extracted higher twist functions.

3.1 Corrections in Deep Inelastic Scattering

The DIS process was discussed in Subsection 2.2.1. Here we discuss corrections to

the DIS structure functions that are relevant at low W 2 ≲ 10 GeV2. These include

target mass corrections, higher twist corrections, and nuclear corrections.

3.1.1 Target Mass Corrections

One can consider target mass corrections (TMCs) to the structure functions that

take into account the O
(
M2

Q2

)
corrections, as well as potentially higher order terms

in the expansion. The topic of TMCs for DIS off the nucleon has been reviewed in

Refs. [197, 198], while Ref. [199] provides a recent comprehensive study for nuclear

targets. Here we are considering two approaches for dealing with TMCs. The Aivazis-

Olness-Tung (AOT) [200] method of TMCs factorizes the structure functions in terms

of the so-called Nachtmann variable given by [201]

xN =
2xbj
1 + ρ

,
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where ρ was defined in Eq. (2.17). Note that as M2/Q2 → 0, ρ → 1 and xN → xbj.

The AOT structure functions are derived by expanding the hadronic tensor twice.

First it is expanded under the Massless Target Approximation (MTA) in terms of

the “massless” structure functions F
p(0)
i , given in Eq. (2.18). Expanding it without

approximating the mass to be zero, it can be written in terms of the AOT structure

functions F p,AOT
2 . The two hadronic tensors must be the same regardless of how they

are expanded, and relating the two leads to the following expressions for the AOT

structure functions in terms of the massless structure functions [198]

F p,AOT
2 (xN, Q

2) =
1 + ρ

2ρ2
F

p(0)
2 (xN, Q

2) +O
(Λ2

QCD

Q2

)
,

F p,AOT
L (xN, Q

2) =
ρ− 1

2
F

p(0)
2 (xN, Q

2) + F
p(0)
L (xN, Q

2) +O
(Λ2

QCD

Q2

)
, (3.7)

F p,AOT
3 (xN, Q

2) =
1

ρ
F

p(0)
3 (xN, Q

2) +O
(Λ2

QCD

Q2

)
.

Note that the massless structure functions are now evaluated at xN . The expressions

for the neutron structure functions are the same with p→ n. It is seen that as ρ→ 1

one recovers FAOT
i → F

(0)
i , with i = 2, L, 3.

On the other hand, the Georgi-Poltizer (GP) [202] approach to TMCs uses the

operator product expansion to get the following relations between the corrected struc-

ture functions and the massless ones [203],

F p,GP
2 (xN, Q

2) =
(1 + ρ)2

4ρ3
F

p(0)
2 (xN, Q

2)

+
3x(ρ2 − 1)

2ρ4

[
hp2(xN, Q

2) +
ρ2 − 1

2xρ
gp2(xN, Q

2)
]

+O
( [M2,Λ2

QCD]

Q2

)
,

F p,GP
L (xN, Q

2) =
(1 + ρ)2

4ρ
F

p(0)
L (xN, Q

2) (3.8)

+
x(ρ2 − 1)

ρ2

[
hp2(xN, Q

2) +
ρ2 − 1

2xρ
gp2(xN, Q

2)
]

+O
( [M2,Λ2

QCD]

Q2

)
,

F p,GP
3 (xN, Q

2) =
1 + ρ

2ρ2
F

p(0)
3 (xN, Q

2) +
ρ2 − 1

2ρ3
hp3(xN, Q

2) +O
( [M2,Λ2

QCD]

Q2

)
,

with analogous expressions for the neutron structure functions and where the func-

tions hp2, h
p
3, and gp2 (which should not be confused with the spin-dependent g2 struc-
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ture function) are given by:

hp2(xN, Q
2) =

∫ 1

xN

du
F

p(0)
2 (u,Q2)

u2
,

gp2(xN, Q
2) =

∫ 1

xN

du(u− xN)
F

p(0)
2 (u,Q2)

u2
,

hp3(xN, Q
2) =

∫ 1

xN

du
F

p(0)
3 (u,Q2)

u
.

It is again seen that as ρ → 1 one recovers FGP
i → F

(0)
i , with i = 2, L, 3. Note that

the AOT and GP structure functions are different in how they account for the O
(
M2

Q2

)
corrections [198].

3.1.2 Higher Twist Corrections

After applying the TMCs, any residual 1/Q2 corrections are taken into account by

parametrizing them as “higher twist” effects. These can be applied to the structure

functions multiplicatively [167] or additively [166] as

FN
TMC+HT ≡ FN

TMC ∗ (1 + CN
HT/Q

2), (Multiplicative) (3.9a)

FN
TMC+HT ≡ FN

TMC + CN
HT/Q

2. (Additive) (3.9b)

We note that FN
TMC+HT are the quantities that are measured in the experiments,

as the experimental observables naturally include all target mass and higher twist

corrections. Given sufficient flexibility in the parameterization, both methods should

lead to the same result as it is simply a parameterization choice. Both methods are

tested in this analysis, and the higher twist is parametrized as

CN
HT(x) = hNx

aN (1− x)bN (1 + cNx), (3.10)

where N = p, n and bN = 0 when using the multiplicative parameterization [167]. The

higher twist function for the proton and neutron structure functions are parameterized

and fit independently in this analysis, but we also test the case where Cp
HT = Cn

HT. In

the kinematic region where higher twist corrections are relevant, one has y ≪ 1 and

so Y − ≈ 0 (see Eq. (2.15)). From Eq. (2.14), it can be seen then that σred ≈ F2, and

so the higher twist corrections for FL,3 are not nearly as relevant. When using the
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multiplicative parametrization, the same CN
HT is used for all structure functions FN

2,L,3.

However when using the additive parametrization, the function is only used for FN
2

and set for zero for FN
L,3. The two cases are treated differently as assuming the same

absolute higher twist contributions to the three structure functions is clearly wrong,

while assuming the same percentage contribution is more reasonable. In theory, TMCs

and higher twist effects should be taken into account for the CC structure functions

as well. However the CC structure functions are only measured at kinematics where

W 2 > 10 GeV2 and we do not include their TMCs or higher twist effects in this

analysis.

3.1.3 Nuclear Corrections

In this analysis the nuclear structure functions FA
2,L,3 are also included, with A =

D, 3He, 3H. As a first approximation the nuclear structure functions can be written

as FA
i =

∑
N F

N
i , where N sums over the nucleons in A. However, nuclear effects,

such as Fermi motion, binding, and the fact that the nucleons are off-shell, become

increasingly important as x increases (off-shell effects will be addressed in Subsec-

tion 3.1.4).

In order to take these effects into account, the nuclear impulse approximation is

used where, at x ≳ 0.2, the scattering takes place incoherently from individual off-

shell nucleons in the nucleus [204–207]. In the weak binding approximation [206,207],

appropriate for A ≤ 3, the nucleus is approximated as a system of weakly bound

nucleons with four-momentum pµ = (M + ϵ,p), where ϵ is the off-shell energy, p is

the three-momentum, and one has |p|, |ϵ| ≪ M . The variable y ≡ MA

M
p·q
P ·q = p0+ρpz

M
,

where MA is the mass of A, is the light-cone fraction of the nuclear momentum carried

by the interacting nucleon and ranges from 0 < y < MA/M . The nucleon’s virtuality

v(p2) ≡ (p2−M2)/M2 measures the extent that the nucleon is off-shell. The nuclear

structure function can be expanded around v = 0 to order v such that the leading

term represents the on-shell part of the structure function and the second term of the

expansion the off-shell correction.

Focusing first on the on-shell part of the structure functions, to order p2/M2 they

can be written in the weak binding approximation as a convolution with on-shell
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smearing functions [167,194,208,209]

F
A(on)
2 =

∑
N

∫ MA/M

x

dy
[
f
N/A
22 (y, ρ)FN

2 (
x

y
,Q2)

]
,

F
A(on)
L =

∑
N

∫ MA/M

x

dy
[
f
N/A
LL (y, ρ)FN

L (
x

y
,Q2) + f

N/A
L2 (y, ρ)FN

2 (
x

y
,Q2)

]
,(3.11)

F
A(on)
3 =

∑
N

∫ MA/M

x

dy
[
f
N/A
33 (y, ρ)FN

3 (
x

y
,Q2)

]
.

Here the nucleon structure functions have had target mass and higher twist corrections

applied. The smearing functions are given by

f
N/A
ij (y, ρ) =

∫
d4p

(2π)4
FN/A

0 (ϵ,p)
(
1 +

ρpz
M

)
Cijδ

(
y − 1− ϵ+ ρpz

M

)
, (3.12)

where FN
0 /A is the nonrelativistic nucleon spectral function for the nucleon N in

nucleus A and the coefficients are

C22 =
1

ρ2

[
1 +

ρ2 − 1

2y2M2
(2p2 + 3p2

⊥)
]
,

CLL = 1,

CL2 = (ρ2 − 1)
p2
⊥

y2M2
,

C33 = 1.

The diagonal smearing functions fN
ii are normalized such that integrating over y with

ρ = 1 yields unity. Note that at finite Q2 the longitudinal structure function FA
L

receives contributions also from the FN
2 nucleon structure functions, while FA

2 and

FA
3 are always “diagonal” [209].

3.1.4 Off-Shell Corrections

As only F2 has been measured in the region where off-shell corrections are relevant,

we consider only off-shell corrections to F2 and use the notation f
(on/off)
N/A as the on-

shell and off-shell smearing functions for F2, with the on-shell smearing function

corresponding to f
N/A
22 in Eq. (3.12). The off-shell smearing function is the same as

Eq. (3.12), except with an extra factor of the nucleon virtuality v(p2) in the integrand.

The off-shell corrections can be formulated at the nucleon level as in [209], but this
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Figure 3.1: Off-shell spectator model. Illustration of the DIS process off of a proton
in 3He (left) and 3H (right). For 3He the spectator system is a proton and neutron with
third component of isospin I3 = 0. For 3H, the spectator system is two neutrons with
I3 = −1.

formulation with isospin dependence introduces explicit charge symmetry breaking,

which one ultimately would want to test [210]. On the other hand, by formulating

the off-shell corrections at the quark level one can ensure that charge symmetry is

respected. The off-shell corrections to the structure functions can be formulated at

the quark level within the impulse approximation [57]. The PDFs can be written as

a sum of on-shell and off-shell contributions as

qA(x,Q2) =
∑
N

qN/A(x,Q2) =
∑
N

[
q
(on)
N/A(x,Q2) + q

(off)
N/A(x,Q2)

]
, (3.13)

where qN/A refers to the PDF of a quark q in a nucleus N , as modified within a nucleus

A. One can expand the PDFs in terms of the nucleon virtuality v(p2) to obtain

qN/A(p2) = qN + v(p2)δqN/A + ...,

where qN is the on-shell part of the PDF and δqN/A the off-shell part. In the weak

binding approximation, these two terms can be written as convolutions with smearing

functions:

q
(on)
N/A(x,Q2) = f

(on)
N/A ⊗ qN(x,Q2),

q
(off)
N/A(x,Q2) = f

(off)
N/A ⊗ δqN/A(x,Q2),

The convolution here is the same as in Eq. (1.7) except that the upper limit is equal

to the number of protons and neutrons in the nucleus A.

The off-shell PDFs in Eq. (3.14) cannot be calculated, and so are parametrized
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and extracted from data. Since nuclear effects are only relevant at x ≳ 0.2, only the

valence quarks u and d are considered. With q = u, d, N = p, n, and A = D, 3He, 3H,

this leads to twelve functions in total. This number is reduced thanks to isospin

symmetry, which requires that for deuterium

δup/D = δdn/D, δdp/D = δun/D. (3.14)

Similarly, for 3He and 3H one has the relations

δup/3He = δdn/3H, δdp/3He = δun/3H, (3.15a)

δup/3H = δdn/3He, δdp/3H = δun/3He, (3.15b)

reducing the number of functions to six. We emphasize that the relations above are

model-independent and hold with an accuracy that is sufficient for our purpose here.

To further reduce the number of functions, we rely on a spectator model, shown

in Fig. 3.1 for 3He and 3H. In the following, we assume that the photon (we consider

only NC here) interacts with a proton inside of the nucleus. Beginning with the

deuteron, we have the two off-shell functions

δu ≡ δup/D , δd ≡ δdp/D . (3.16)

For each quark flavor, we decompose the function into its isoscalar and isovector

exchange contributions

δu = δusp/D + δuvp/D , (3.17)

δd = δdsp/D + δdvp/D . (3.18)

The (magnitude of the) strength of the interaction between the active quark and the

spectator neutron is the same for up quarks and down quarks, for both the isoscalar

and isovector exchange. However, we use that there are approximately twice as many

(valence) up quarks in the proton than (valence) down quarks. This leads to

δusp/D = 2δdsp/D , δuvp/D = −2δdvp/D . (3.19)

Note the minus sign in the case of the isovector exchange contribution, which is due

to the fact that the third component of isospin I3 has a reversed sign for up quarks
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and down quarks. With these relations, one also has

1

2
(δu+ 2δd) = δusp/D , (3.20)

that is, this linear combination does not contain a contribution from the isovector

exchange.

We consider now the case for 3He. If we again focus on quarks inside the proton,

the spectator system is given by one proton and one neutron. While the total isospin

I in this case can be 0 or 1, the third component of the isospin is always I3 = 0.

Therefore, we do not consider any contribution from isovector exchange and, by the

same reasoning we use above for the deuteron, we find

δup/3He = δusp/3He = 2δdsp/3He = 2δdp/3He. (3.21)

Compared to the deuteron, this leads to one additional off-shell function. In order to

simplify our analysis, we relate the off-shell function in 3He to the scalar exchange

part in the deuteron according to

δup/3He = δusp/D =
1

2
(δu+ 2δd). (3.22)

Finally, we consider 3H, where the spectator system is given by two neutrons with

third component of isospin I3 = −1. In analogy to the deuteron we can write

δup/3H = δusp/3H + δuvp/3H , (3.23)

δdp/3H = δdsp/3H + δdvp/3H , (3.24)

as well as

δusp/3H = 2δdsp/3H , δuvp/3H = −2δdvp/3H . (3.25)

This leaves us with two additional off-shell functions, which we relate to the ones

discussed above through

δusp/3H = δup/3He = δusp/D , δuvp/3H = δuvp/D, (3.26)

from which one finds immediately the relations

δup/3H = δu , δdp/3H = δd . (3.27)
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Through this model, we have now reduced the six functions down to two: δu and δd.

This modeling was done assuming that the boson interacts with a proton, but one

can also assume that the photon interacts with a neutron. In that case, an analogous

derivation leads to the same relations between the six functions.

To preserve the number of valence quarks in the nucleons bound in a nucleus, the

off-shell functions must satisfy∫ 1

0

dx δu(x) =

∫ 1

0

dx δd(x) = 0. (3.28)

The two off-shell functions are parametrized with the template

δq(x, µ2
0) =

N

M
xα(1− x)β(1 + ηx), (3.29)

where M = B[α + 2, β + 1] + ηB[α + 3, β + 1] normalizes the function to the second

moment to decorrelate the normalization and shape parameters. All quark flavors are

set to zero at the input scale except for δu and δd, which evolve with Q2 in the same

way as the on-shell PDFs. The η parameters are fixed by the sum rules Eq. (3.28),

while the N,α, and β parameters are inferred from the data.

Note that because the off-shell functions δq are convoluted with the off-shell

smearing functions, f
(off)
N/A , their contribution to the total PDF is generally one or

two orders of magnitude smaller. The size of the off-shell smearing functions, av-

eraged over y and at ρ = 1, are shown in Table 3.1. Note that isospin symmetry

relates the neutron smearing functions to the proton smearing functions through

fn,D = fp/D , fn,3He = fp,3H, and fn,3H = fp,3He. It is seen that the off-shell effects

in 3He and 3H are larger than those in D, due to the fact that v(p2) is generally

larger in the former nuclei. Thus the MARATHON measurements [129] of F
3He
2 and

F
3H
2 at high x are critical for the extraction of off-shell effects. As the baseline for our

analysis, we use the Paris [211] wavefunction for A = 2 and KPSV [212] for A = 3.

We have tested the other wavefunctions and find that all of the quantities of interest

are largely unaffected by this choice.

3.2 Results

The data used in this analysis, as well as their χ2
red values and normalizations, are sum-

marized in Section 2.5. The resulting fits to the MARATHON FD
2 /F

p
2 and F

3He
2 /F

3H
2
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Paris [211] AV18 [213] CD-Bonn [214] WJC1 [215] WJC2 [216] KPSV [212] SS [217] Average

⟨f (off)
p/D ⟩ -4.3% -4.5% -3.7% -6.1% -4.9% — — -4.7%

⟨f (off)

p/3He⟩ — — — — — -6.8% -5.6% -6.2%

⟨f (off)

p/3H⟩ — — — — — -9.5% -8.0% -8.8%

Table 3.1: Off-shell smearing functions relative to on-shell. Average off-shell proton
smearing function values for D, 3He, and 3H. For D, the values are calculated using
the Paris [211], AV18 [213], CD-Bonn [214], WJC1 [215], and WJC2 [216] smearing
functions, while for 3He and 3H they are calculated using the KPSV [212] and SS [217]
smearing functions. The average over all groups is also shown.

data are shown in Fig. 3.2 both without and without the off-shell corrections. For

D/p we are able to fit the data well in both cases with a fitted normalization of

1.018(6). For the 3He/3H ratio, the description of the high-x data improves with

the inclusion of off-shell corrections, with the χ2
red increasing significantly from 0.31

to 1.29 when the off-shell corrections are not included. This dataset displays by far

the largest sensitivity to off-shell corrections, and thus is critical for the extraction of

these effects. We repeat that in Ref. [129] a normalization of 1.025(7) was included

for this dataset based on results from the KP model [194], which assumes that R(D)

and R are unity at x = 0.31. To avoid this model bias, we remove this normalization

from the data and instead allow the global fit to determine the normalization. Our

fitted value of 1.006(12) is in disagreement with the value from the KP model.

The result for the super-ratio R in Eq. (3.2) is shown in Fig. 3.3. Our analysis

shows that it is consistent with unity until xbj ≈ 0.6, at which point it dips and reaches

a mean value of 0.96 at xbj = 0.825. The uncertainties on the super-ratio range from

±0.4% at low xbj up to ±3.5% at the highest xbj. Without the MARATHON data

the uncertainties on R (not shown in Fig. 3.3) vary between 1.3% and 6.5%. This

improvement demonstrates that the 3He/3H data provide a significant amount of in-

formation on the super-ratio. Our results disagree with the KP model [194], which

predicts a rise to R = 1.01 at xbj = 0.825 [129]. They also suggest that the uncertain-

ties from the KP model, which are an order of magnitude smaller than our extraction

even after the inclusion of the MARATHON data, are significantly underestimated.

The result for the F n
2 /F

p
2 structure function ratio is shown in Fig. 3.4. Related

to the disagreements in the super-ratio, we also find differences between our result

for F n
2 /F

p
2 and the extraction in Ref. [129] based on the KP model. We find that

while the MARATHON data lowers the central value at low xbj for the n/p ratio, the

central value is still well above the KP model extraction. At high xbj values the
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Figure 3.2: Data vs. Theory: MARATHON . Ratios FD
2 /F p

2 (left) and F
3He
2 /F

3H
2

(right) from MARATHON [129] (black circles) as a function of xbj at the experimental
kinematics Q2 = 14xbj GeV2 compared with the full JAM fit (red solid lines and 1σ
uncertainty bands) and with an on-shell fit (green dashed lines) which sets the off-shell
corrections to zero.

disagreements are smaller and the inclusion of the MARATHON data brings our result

slightly closer to the KP model extraction.

The d/u quark ratio is shown in Fig. 3.5, where it is seen that the inclusion of

the MARATHON data has a very small impact. The small changes for d/u at high x

combined with the large differences between the on-shell and off-shell fits at high x

(see Fig. 3.2) illustrate an important point: Due to the strong constraints placed on

the d/u ratio by vector boson production data, and in particular the W asymmetry

data from CDF [133] and D0 [134], the high-x MARATHON data primarily provide

new information on nuclear effects, such as the off-shell corrections, which are most

relevant in that region.

For the deuteron EMC ratioR(D) (Eq. (3.1)) shown in Fig. 3.6, in the intermediate-

xbj region our result is generally in agreement with the CJ15 extraction [167], while

at high xbj it is between the CJ15 the AKP17 [189] fits. Notably, we do not see a

strong indication for a unity crossing at xbj = 0.31, as was assumed in Ref. [129]. The
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Figure 3.3: Super-ratio R. Result for the super-ratio R (Eq. (3.2)) as a function
of xbj including the MARATHON data (red band) at Q2 = 14xbj GeV2. The result
is compared with the KP model input (gray band) used to extract the Fn

2 /F
p
2 ratio

in [129].

inclusion of the MARATHON D/p data reduces the ratio in the range 0.2 < xbj < 0.4.

The impact of the MARATHON data on the off-shell corrections δu and δd is shown

in Fig. 3.7. In particular, whereas in the KP model [129,194] the proton and neutron

off-shell effects are set equal, in our analysis we allow flavor dependence of the effects

to be determined from the global fit. Indeed, we find that while the δu/u ratio is

consistent with zero, for the d quark the δd/d ratio is enhanced at large values of x.

It is important to note that δq does not directly show the contribution to the PDF,

as it must first be convoluted with the (small) off-shell smearing function.

Since 3He and 3H are mirror nuclei, the ratio ∆q
3 would vanish if the nuclear

corrections were purely isoscalar. Instead, the behavior in Fig. 3.7 indicates some

deviations from zero for ∆d
3 at x ≳ 0.4 and for ∆u

3 at x ≳ 0.6. The fact that the

∆q
3 are nonzero and of opposite sign for u and d quarks suggests the presence of

an isovector component to the EMC effect. This effect is not taken into account in
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Figure 3.4: Fn
2 /F

p
2 structure function ratio. Result for the Fn

2 /F
p
2 ratio as a function

of xbj including the MARATHON data (red band) and without the MARATHON data
(yellow band) at Q2 = 14xbj GeV2. The results are compared to the KP model results
of Ref. [129].

standard nuclear PDF analyses [218–221] which assume up/A = dn/A, and thus may

impact not only all nuclear PDF fits, but also numerical calculations that utilize

nuclear PDFs in quark-gluon plasma simulations in heavy-ion collisions or neutrino-

nucleus interactions in high-energy astrophysics.

Finally, we show the extracted higher twist functions in Fig. 3.8 using AOT TMCs

[198,200] and the multiplicative HT parameterization Eq. (3.9a). We show the results

at a fixed W 2 = 3.0 GeV2, corresponding to the minimum cut on W 2, and extend the

xbj range down to xbj = 0.43 where Q2 = 1.60 GeV2, corresponding to the minimum

cut on Q2. Since higher twist effects are most relevant at low Q2, this allows us to

show them at their largest while respecting the W 2 cut on our analysis. Interestingly,

at xbj < 0.65, we see differences between the proton and neutron CN
HT functions,

showing that the data is capable of distinguishing between the two functions when

they are not forced to be equal. We also see differences between the additive higher
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Figure 3.5: d/u quark ratio. Result for the d/u ratio as a function of x including
the MARATHON data (red band) and without the MARATHON data (yellow band) at
Q2 = 10 GeV2.

twist contributions to the F2 structure functions, given by FN
2,TMC×CN

HT/Q
2, between

the proton and neutron throughout most of the range of xbj. We have tested other

scenarios, such as using GP TMCs, using the additive parameterization Eq. (3.9b),

and setting Cp
HT = Cn

HT. Generally, the description of the data remains very similar,

as do the PDFs and off-shell functions. When using GP TMCs, there are some

changes in the higher twist functions to compensate for the difference in taking into

account the M2/Q2 corrections. The higher twists remain similar when using the

additive parameterization. We do find that the higher twists depend on the choice of

W 2 cut. Thus we refrain from making conclusive statements about the higher twist

contributions. We do conclude that all other results are stable regardless of how one

chooses to implement TMCs or higher twists.
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Figure 3.6: Deuteron EMC ratio R(D). Result for the deuteron EMC ratio R(D)
(Eq. (3.1)) as a function of xbj including the MARATHON data (red band) and without
the MARATHON data (yellow band) at Q2 = 10 GeV2. The results are compared with
that from CJ15 [167] (green band) and AKP17 [189] (light blue band).

3.3 Summary

In this chapter we have presented the results of a global QCD analysis of spin-averaged

PDFs and nuclear PDFs including the latest data from the MARATHON collaboration

on helium and tritium targets [129]. Our findings were the first indication of an

isovector effect in nuclear structure functions, and demonstrate the power of combin-

ing the MARATHON 3He/3H data with a global QCD analysis to provide simultaneous

information on PDFs and nuclear effects in A ≤ 3 nuclei. Our extraction shows

disagreement with the KP model when it comes to the EMC ratios for deuterium, he-

lium, and tritium as well as the F n
2 /F

p
2 ratio. We found that the MARATHON 3He/3H

data is particularly sensitive to off-shell corrections at high xbj, making it vital for

their extraction. We ultimately find a non-zero isovector nuclear effect, which may

impact nuclear PDF analyses and all numerical calculations that utilize them. We
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Figure 3.7: Isovector effect. Ratio of off-shell to on-shell PDFs δq/q (left) and the
difference between proton valence quarks in 3He and 3H normalized to the sum, ∆q

3

(right), as a function of x for valence u (red bands) and d (blue bands) quarks, at
Q2 = 10 GeV2.

have also studied the impact of TMCs and higher twist contributions. While it is

difficult to make conclusive statements on the higher twist contributions, we find

that our results for the PDFs and off-shell functions are stable regardless of choices

relating to TMCs and higher twists.
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Figure 3.8: Extracted higher twist functions. They are shown as a function of xbj
for the proton (red bands) and neutron (blue bands). The top panel shows the multi-
plicative higher twist function CN

HT divided by Q2, while the bottom panel shows the
additive contribution to the F2 structure function FN

2,TMC × CN
HT/Q

2. The results are

shown at fixed W 2 = 3.0 GeV2, with Q2 varying from 1.6 GeV2 at the lowest value
of xbj shown (corresponding to the minimum Q2 cut on this analysis) to 19 GeV2 at
the highest value of xbj. Results were extracted using AOT TMCs [198, 200] and the
multiplicative HT parameterization Eq. (3.9a).
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CHAPTER 4

HELICITY PARTON

DISTRIBUTION FUNCTIONS

In this chapter we present the details of a simultaneous global QCD analysis of helicity

PDFs, spin-averaged PDFs, and FFs. The general details of such an analysis were dis-

cussed in Section 2.1. We focus in particular on the polarized sea asymmetry ∆ū−∆d̄

and its extraction from W -lepton production. While the total light quark contribu-

tions to the helicity are well determined from polarized inclusive deep-inelastic scatter-

ing (DIS) data [222–235], and jet production in polarized pp collisions [143,236–242]

provides constraints on the gluon helicity [243, 244], far less is known about the po-

larization of the antiquark sea. There have been some intriguing hints of a polarized

antiquark asymmetry, ∆ū−∆d̄, from polarized semi-inclusive DIS (SIDIS) measure-

ments [245–248], in analogy with the spin-averaged ū − d̄ asymmetry inferred from

unpolarized DIS and Drell-Yan measurements [87, 88, 93–95] (see also Chapter 2).

Various nonperturbative model calculations have also been performed [77, 249–252],

some of which predict large positive ∆ū−∆d̄ asymmetries [250–252].

Recently more probes of antiquark polarization have been possible through W -

lepton production in polarized pp collisions. In particular, the STAR [253–255] and

PHENIX [256,257] collaborations at RHIC have used polarized pp collisions at COM

energy
√
s = 510 GeV to measure the longitudinal single–spin asymmetry. Com-

bined with the DIS observables, these asymmetries provide a vital new handle on the

extraction of the polarized antiquark distributions ∆ū and ∆d̄.

Previous global analyses [243, 258–260] have sought to extract the asymmetry

under various assumptions and with different methods for estimating uncertainties.
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De Florian et al. (DSSV) [258] extracted a positive ∆ū−∆d̄ asymmetry from spin-

dependent data with fixed input for unpolarized PDFs and fragmentation functions

(FFs), assuming PDF positivity and SU(3) symmetry for axial-vector charges within

errors. The impact of the latter assumptions was examined in a simultaneous analysis

of spin PDFs and FFs by the JAM collaboration [114], who found polarized light anti-

quark and strange PDFs consistent with zero when the constraints were relaxed. The

Monte Carlo analysis by the NNPDF collaboration [260] generated prior samples from

the DSSV fit [258], thus inheriting the corresponding biases. The NNPDF analysis

also used a reweighting procedure involving χ2-based weights, which is inconsistent

with the Gaussian likelihood used in the generation of the replicas [261].

Instead of relying on reweighting prescriptions and assumptions about PDF pos-

itivity or flavor symmetry, here we present a new simultaneous global QCD analysis

of unpolarized and polarized PDFs and FFs, including for the first time STAR AW
L

data, along with data on inclusive and semi-inclusive polarized lepton-nucleon DIS

and jet production in polarized pp collisions [244]. The Monte Carlo analysis allows

us to more reliably quantify the uncertainties on all distributions, and examine the

interplay between the sea asymmetry and parametrizations of FFs. The simultaneous

determination of both types of PDFs also provides the first self-consistent extraction

of the antiquark polarization ratios ∆ū/ū and ∆d̄/d̄.

Ref. [58] was the first simultaneous analysis of all of spin-averaged PDFs, helicity

PDFs, and FFs, and was also the first to include the latest W -lepton production data

from STAR. Such a simultaneous fit is potentially important in order to properly

quantify the errors on the helicity PDFs, given that the spin-averaged PDFs and the

FFs enter into the observables we consider here that constrain them. In this chapter

we show the resulting polarized sea asymmetry and the impact of the new data. In

addition, results will be shown for the many other datasets in this analysis, which

include data on inclusive and semi-inclusive DIS and jet production. The resulting

gluon helicity distribution will also be discussed, along with the FFs compared to

previous analyses.

4.1 Processes

In this analysis we include polarized inclusive data on DIS, W -lepton production,

and jet production. Further, we include polarized semi-inclusive DIS data. In the
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subsections below we summarize each of these processes and the relevant equations.

4.1.1 Polarized Deep Inelastic Scattering

The basics of the DIS process were summarized in Section 2.2.1 [11], with the LO

diagram shown in Fig. 2.1. Here we discuss the case where both the lepton and target

are polarized. Since no polarized charged current (CC) data exist, only the neutral

current (NC) case is discussed below. Analogous to Eq. (2.8), the cross section for

polarized DIS is given by:

d2∆σ

dxbjdy
=

2πyα2

Q4

∑
j

ηjL
µν
P,jW

P
µν , (4.1)

where Lµν
P,j and W P

µν are the polarized leptonic and hadronic tensors. The summation

is again over j = γ, γZ, Z for the NC process, with the factors ηj given in Eq. (2.9).

For polarized electrons and NC, the polarized leptonic tensors are given by

LP,γ
µν = −2iλϵµναβk

αk′β,

LP,γZ
µν = eλgeAL

P,γ
µν , (4.2)

LP,Z
µν = 2eλgeV g

e
AL

P,γ
µν ,

where e = ±1 and λ = ±1 are the charge (in units of the elementary charge) and

helicity of the incoming lepton. The polarized hadronic tensor is given by

W P
µν = iϵµναβ

qα

P · q

[
Sβg1(x,Q

2) +
(
Sβ − S · q

P · q
P β
)
g2(x,Q

2)
]
, (4.3)

which is defined in terms of the structure functions g1,2. Here Sβ is the nucleon spin

four-vector, with the conventions S2 = −M2 and S ·P = 0. Note that the coefficients

of g1 and g2 are anti-symmetric under µ↔ ν.

In polarized DIS experiments, the measured observables are generally the longi-

tudinal and transverse double spin asymmetries [112]

A∥ =
σ↑⇑ − σ↓⇑

σ↓⇑ + σ↑⇑ , A⊥ =
σ↑⇒ − σ↓⇒

σ↓⇒ + σ↑⇒ .

Here ↑ (↓) denotes the spin of the lepton along (opposite to) the beam direction, ⇑
denotes the spin of the target along the beam direction, and⇒ denotes the spin of the
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target perpendicular to the beam direction. The cross section σ↑⇑ (σ↓⇑) is calculated

by taking λ = 1 (λ = −1) in Eq. (4.3), Sµ along the beam direction in Eq. (4.3), and

contracting the resulting tensors in Eq. (4.1). Similarly, for σ↑⇒ one takes Sµ to be

perpendicular to the beam direction in Eq. (4.3). One then arrives at the result

A∥ = D (A1 + ηA2), A⊥ = d (A2 − ζA1). (4.4)

Defining γ2 ≡ ρ2 − 1 ≡ 4x2M2

Q2 , the kinematic variables are given by

D =
y (2− y)(2 + γ2y)

2(1 + γ2)y2 +
[
4(1− y)− γ2y2

]
(1 +R)

,

d =

√
4(1− y)− γ2y2

2− y
D,

η = γ
4(1− y)− γ2y2

(2− y)(2 + γ2y)
,

ζ = γ
2− y

2 + γ2y
.

(4.5)

The virtual photoproduction asymmetries A1 and A2 can be written in terms of ratios

of the spin-dependent and spin-averaged structure functions,

A1 =
(g1 − γ2g2)

F1

, A2 = γ
(g1 + g2)

F1

. (4.6)

Finally, R is the ratio of longitudinal to transverse photoproduction cross sections

and is given in terms of the spin-averaged structure functions by

R =
(1 + γ2)F2 − 2xF1

2xF1

=
FL

2xF1

. (4.7)

Note that a sum over the γ, γZ, and Z channels has been performed such that g1,2

above are defined in terms of the individual channel structure functions gγ1,2, g
γZ
1,2 , and

gZ1,2 as

g1,2 = gγ1,2 − geV ηγZg
γZ
1,2 +

(
(geV )2 + (geA)2

)
η2γZg

Z
1,2.

Neglecting terms of O
(

[M2,Λ2
QCD]

Q2

)
, the NC proton structure function gp1 can be
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written at leading twist (τ = 2) in terms of the helicity PDFs ∆q,∆g as:

g
p(τ2)
1 (x,Q2) =

1

2

∑
q

e2q
[
∆CDIS

1,q ⊗∆q+ + 2∆CDIS
1,g ⊗∆g

]
, (4.8)

where the sum q runs over all quark flavors and ∆q+ ≡ ∆q + ∆q̄. The symbol ⊗
is defined in Eq. (1.7). The polarized DIS hard scattering coefficients, ∆CDIS

1,f with

f = q, g, are expanded to NLO in the strong coupling constant

∆CDIS
i,f = ∆C

DIS,(0)
i,f +

αs(Q
2)

4π
∆C

DIS,(1)
i,f +O(α2

s),

with the coefficients taken from [49]. The hard scattering coefficients depend on

the renormalization scale, while the PDFs depend on the factorization scale, both of

which are taken, as in the unpolarized case, to be µR = µF = Q for the DIS process.

For the neutron functions g
n(τ2)
1 , the same proton PDFs are used except with the

switch u↔ d that is derived from isospin symmetry.

In the following analysis, we will use a cut on the invariant mass squared of

W 2 > 10 GeV2 and assume that γ ≪ 1, from which it follows that η → 0. The

asymmetries then approach:

A∥ →
y(2− y)

y2 + 2(1− y)(1 +R)

g1
F1

, A1 →
g1
F1

, A⊥, A2 → 0. (4.9)

In the analysis we fit only data on A∥ and A1 using the exact expressions in Eq. (4.4)

and Eq. (4.6), and set g2 = 0 as the terms containing it are kinematically suppressed

at the kinematics that we consider. We also neglect target mass and higher twist

corrections to g1, which are most significant in the region below W 2 = 10 GeV2.

These effects were explored in a previous JAM analysis [112], and will be explored

again in a future analysis [262]. Nuclear effects for g1, on the other hand, can still be

relevant with W 2 > 10 GeV2.

Nuclear corrections for the unpolarized structure functions were discussed in Sub-

section 3.1.3. The polarized nuclear structure functions can be defined analogously

to the unpolarized ones as in Eq. (3.12), leading to [263–265]

gAi (x,Q2) =
∑
N

∫ MA/M

x

dy

y
∆f

N/A
ij (y, ρ)gNj (

x

y
,Q2). (4.10)
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Here ∆f
N/A
ij (y, ρ) are the polarized smearing functions defined analogously to Eq. (3.12).

In the limit of zero nuclear binding and ρ → 1, one can write the nuclear structure

functions as weighted sums of the nucleon structure functions:

gD1 = P
p/D
1 gp1 + P

n/D
1 gn1 , (4.11a)

g
3He
1 = 2P

p/3He
1 gp1 + P

n/3He
1 gn1 , (4.11b)

where P
N/A
1 are the effective polarizations defined as

P
N/A
1 =

∫
dy∆f

N/A
ii (y, ρ = 1). (4.12)

One can calculate for the deuteron [263] P
p/D
1 = P

n/D
1 = 0.913 using the Paris spectral

functions [211], or P
p/D
1 = P

n/D
1 = 0.940 using the CD-Bonn spectral functions [214].

For helium, one has P
p/3He
1 = −0.028 and P

n/3He
1 = 0.851 using the KPSV spec-

tral functions [212], or P
p/3He
1 = −0.021 and P

n/3He
1 = 0.884 from the SS spectral

functions [217].

From this one approximation one sees that, especially for 3He, nuclear corrections

cannot be neglected even in the W 2 > 10 GeV2 region where ρ ≈ 1 is a reasonable

approximation. In this analysis we use Eq. (4.10) to calculate gA1 , which preserves

the x dependence (contained in ρ) of the nuclear effects unlike the approximation in

Eq. (4.11). We ignore off-shell effects as they are likely to be smaller than the errors

on the currently available polarized data [265] and negligible in the W 2 > 10 GeV2

region.

4.1.2 Polarized W-lepton Production

The W -lepton production process is shown in Fig. 2.3. For polarized W -lepton pro-

duction, data is only available from RHIC, where hA and hB both denote protons

that are longitudinally polarized. The measured observable is the single longitudinal

spin asymmetry, defined as

AW±

L ≡ dσ++ + dσ+− − (dσ−+ + dσ−−)

dσ++ + dσ+− + dσ−+ + dσ−− ≡ d∆σW

dσW
, (4.13)

where dσ++ (dσ−−) is the cross section with both protons polarized parallel (anti-

parallel) to the proton’s momentum and dσ+− (dσ−+) is the cross section where hA is
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polarized parallel (anti-parallel) to its momentum and hB anti-parallel (parallel). We

note that in contrast to the other observables (DIS discussed above and jet production

discussed below), the observable here is a (longitudinal) single spin asymmetry. Such

an asymmetry exists due to the fact that the weak force violates parity. Double spin

asymmetries also exist for W -lepton production [255], but we do not include them

here due to their large uncertainties which lead to them having no impact on the

helicity PDFs [260]. The denominator was defined in Eq. (2.30), with the numerator

defined analogously [103]

d2∆σW

dpℓT dηℓ
=

2

pℓT

∑
ab

∫ V

VW

dv

∫ 1

VW/v

dw (4.14)

× x1∆fa(x1, µF )x2fb(x2, µF ) ∆σ̂W

ab(v, w, s, µR, µF ).

It is written as differential in the outgoing lepton’s pseudorapidity, ηℓ, and its trans-

verse momentum, pℓT . The variables V,W, v and w are defined in Section 2.2.2. The

sum over the quark flavors a, b runs over all partonic channels that can contribute

to W -lepton production, for which the renormalization and factorization scales are

chosen to be the mass of the W boson, µR = µF = MW . The partonic cross sections

∆σ̂W
ab are computed at NLO in the strong coupling αs(µR), with the NLO expressions

used here taken from Ref. [103].

At LO in αs and considering only up and down (anti)quarks, the asymmetries can

be approximated as

AW+

L ∝ ∆d̄(x1)u(x2)−∆u(x1)d̄(x2)

d̄(x1)u(x2) + u(x1)d̄(x2)
, (4.15a)

AW−

L ∝ ∆ū(x1)d(x2)−∆d(x1)ū(x2)

ū(x1)d(x2) + d(x1)ū(x2)
, (4.15b)

showing that they are sensitive to the light antiquarks ∆ū and ∆d̄ individually. In

particular, at large backwards rapidity one has x2 ≫ x1. Since at large x the quarks

dominate over the antiquarks, the asymmetries approach

AW+

L → ∆d̄(x1)

d̄(x1)
, AW−

L → ∆ū(x1)

ū(x1)
, (4.16)

and thus provide direct sensitivity to the polarized antiquarks. Combined with DIS

and SIDIS observables, these asymmetries provide a vital extra handle on the ex-
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traction of the polarized antiquarks. We note that the PHENIX collaboration mea-

sures the A
W

±
/Z

L asymmetry, which includes contributions from the Z, γ, and γ/Z

channels as well. These contributions are added to the numerator (denominator)

of the asymmetry, using Eq. (4.14) (Eq. (2.30)) with ∆σ̂W
ab → ∆σ̂Z

ab, ∆σ̂γ

ab, ∆σ̂γZ

ab

(σ̂W
ab → σ̂Z

ab, σ̂
γ

ab, σ̂
γZ

ab ) and adjusting the quark channels appropriately. The NLO

expressions for ∆σ̂Z
ab, ∆σ̂γ

ab, ∆σ̂γZ

ab , σ̂Z
ab, σ̂

γ

ab, and σ̂γZ

ab are also taken from Ref. [103].

4.1.3 Polarized Jet Production

The jet production process is shown in Fig. 2.4. For polarized jet production, data is

only available from RHIC, where hA and hB both denote protons that are longitudi-

nally polarized. The measured observable is the double longitudinal spin asymmetry,

defined as

Ajet
LL ≡

dσ++ − dσ+−

dσ++ + dσ+− ≡
d∆σjet

dσjet
, (4.17)

where dσ++ is the cross section with both protons polarized parallel to the proton’s

momentum and dσ+− is the cross section where hA is polarized parallel to its mo-

mentum and hB anti-parallel. The denominator was defined in Eq. (2.32), while the

numerator is defined analogously [104]

d2∆σjet

dpjetT dηjet
=

2

pjetT

∑
ab

∫ V

VW

dv

∫ 1

VW/v

dw

× x1∆fa(x1, µF )x2∆fb(x2, µF ) ∆σ̂jet
ab (v, w, pjet, µR, µF ; r). (4.18)

It is written as differential in the outgoing jet’s pseudorapidity, ηjet, and its transverse

momentum, pjetT . Here pjet is the momentum of the jet and r the jet radius. The

variables V,W, v and w are defined in Section 2.2.2. The sum over the quark flavors

a, b runs over all partonic channels that can contribute to jet production, for which

the renormalization and factorization scales are chosen to be the jet’s transverse

momentum, µR = µF = pjetT . The partonic cross sections ∆σ̂jet
ab are again computed at

NLO in the strong coupling αs(µR), with the NLO expressions used here taken from

Refs. [104,105]. We note that a, b can be a gluon, and thus the single jet production

process is sensitive to the gluon helicity even at LO. Thus the polarized jet production

process is very sensitive to the gluon helicity and is vital for its extraction.
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4.1.4 Polarized Semi-Inclusive Deep Inelastic Scattering

The SIDIS process is shown in Fig. 2.5. In the case of having both the target and

incoming lepton polarized, and ignoring target mass effects, one can define the virtual

photoproduction asymmetry Ah
1 for polarized SIDIS analogous to the polarized DIS

asymmetry A1 (see Eq. (4.6)):

Ah
1(x, z,Q2) =

gh1 (x, z,Q2)

F h
1 (x, z,Q2)

. (4.19)

The unpolarized structure function F h
1 was defined in Eq. (2.34b) and gh1 is defined

analogously to g1 (see Eq. (4.8)):

g
h(p)
1 (x, z,Q2) =

1

2

∑
q=u,ū,...,s̄

e2q
[
∆CSIDIS

1,qq ⊗∆q ⊗Dh
q

+∆CSIDIS
1,gq ⊗∆q ⊗Dh

g

+∆CSIDIS
1,qg ⊗∆g ⊗Dh

q

]
+O

( [M2,Λ2
QCD]

Q2

)
, (4.20)

where the sum q runs over all quark flavors and eq is the charge of the quark of flavor

q. The polarized SIDIS hard scattering coefficients, CSIDIS
1,ff with f = qq, gq, qg, are

expanded to NLO in the strong coupling constant αs(Q
2) with the coefficients taken

from [106]. The hard scattering coefficients depend on the renormalization scale,

while the PDFs and FFs depend on the factorization scale, both of which are taken

to be µR = µF = Q for the polarized SIDIS process. For the neutron functions gn,h1 ,

the same proton helicity PDFs are used except with the switch ∆u↔ ∆d that follows

from isospin symmetry. For the nuclear structure functions we use Eq. (4.11) to take

nuclear effects into account. Note that the DIS observable provides sensitivity to

∆q+ (see Eq. (4.8)), while the SIDIS observable provides sensitivity to ∆q and ∆q̄

individually. Thus the combination of DIS and SIDIS data can, in theory, provide

information on the sea quarks, with pion production in SIDIS, in particular, providing

sensitivity to ∆ū and ∆d̄ and kaon production to ∆s and ∆s̄.

4.2 Parametrization

The parameterization of the unpolarized PDFs was discussed in Section 2.3. For the

polarized PDFs and FFs at the input scale µ0 = mc we use the template Eq. (2.40),
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except now with γ = 0 and M = B[α + 1, β + 1] + ηB[α + 2, β + 1] normalizing the

function to the first moment. This is in contrast to the spin-averaged PDFs being

normalized to the second moment in Section 2.3 due to the momentum sum rule

depending on the second moment and the first moments not existing for the spin-

averaged PDFs. The first moment was chosen for the helicity PDFs in previous JAM

analyses [112] due to potential correlations from fitting the weak neutron and hyperon

decay constants (which are proportional to the first moment). Although we no longer

fit these constants in the current analysis, we keep the convention of normalizing to

the first moment. To characterize the nucleon valence region and discriminate it from

the sea components, we parametrize the light-quark and strange PDFs according to

∆u = ∆uv + ∆ū, ∆d = ∆dv + ∆d̄,

∆ū = ∆S + ∆ū0, ∆d̄ = ∆S + ∆d̄0, (4.21)

∆s = ∆S + ∆s0, ∆s̄ = ∆S + ∆s̄0,

where the dependence on x and the scale µ2
0 has been suppressed for convenience. The

input quark distributions ∆uv, ∆dv, ∆ū0, ∆d̄0, ∆s0, and ∆s̄0, as well as the gluon

distribution ∆g, are parametrized individually as in Eq. (2.40). For the sea quark

PDFs, the additional function ∆S is also parametrized via Eq. (2.40), and is designed

to allow a more singular small-x behavior compared to the valence distributions by

allowing the corresponding α parameter to more negative values. The parametriza-

tion is such that all sea quarks have the same small-x behavior. We note that this

parameterization is slightly less flexible than the one used for the spin-averaged PDFs

in Section 2.3, with γ = 0 and all of the sea quarks sharing the same ∆S function.

The former restriction can be afforded due to the fact that the polarized data are sig-

nificantly less precise compared to the unpolarized data. The latter restriction does

not affect the results of the analysis since there are no polarized data below x ≈ 0.01.

The same template (Eq. (2.40)) is used for FFs (normalized to the second mo-

ment), but with x replaced by the momentum fraction z of the parton carried by the

hadron, and with η = γ = 0 for the pion and kaon FFs. For all FFs we parameter-

ize Dh
g with the template Eq. (2.40). For the π+ FFs, we assume charge symmetry,

Dπ+

u = Dπ+

d̄
, Dπ+

d = Dπ+

ū , as well as Dπ+

q = Dπ+

q̄ for the heavier quarks q = s, c, b,

while for the K+ FFs we take DK+

d = DK+

ū = DK+

d̄
and DK+

q = DK+

q̄ for q = c, b, and

allow DK+

u and DK+

s̄ FFs to differ. DK+

s is parameterized independently. Although
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the DK+

u and DK+

s̄ are the favored FFs for the kaon, we allow them to differ due

to the fact that for u it is necessary to form a secondary (s, s̄) pair before forming

a K+ = (u, s̄). This is not true for s̄, so we expect DK+

u to be suppressed relative

to DK+

s̄ [266] (see Fig. 4.18). The FFs for negatively charged mesons are related by

D
π−/K−
q = D

π+/K+

q̄ for all flavors. We use two terms, each of the form Eq. (2.40), for

Dπ+

u , Dπ+

d , DK+

u , and DK+

d , and one for all other pion and kaon FFs.

The parametrizations for the unidentified hadron FFs are identical to those in

Ref. [116]. Namely, we parametrize the residual Dδh+ ≡ Dh+ −Dπ+ −DK+
; have γ

and η free; and assume Dδh+

u = Dδh+

d = Dδh+

s , Dδh+

ū = Dδh+

d̄
= Dδh+

s̄ , Dδh+

c = Dδh+

c̄ ,

and Dδh+

b = Dδh+

b̄
. Further, we set the N, γ, and η parameters for the antiquarks

to be equal to those of the quarks. For the residual FFs, one has Dδh−
q = Dδh+

q̄ .

We tested that adding further flexibility to the FFs, such as η ̸= 0 for the pion and

kaon, does not affect the quality of the fit nor the extracted distributions. Overall,

35 leading-twist PDFs and FFs are fitted with a total of 146 parameters. Including

parameters for higher twist and off-shell corrections to structure functions, plus data

normalizations, brings the number of parameters to 227.

Recently the question of PDF positivity beyond leading order in αs in the MS

scheme has been disucssed [267,268]. Such a constraint would require |∆f(x, µ2
R)| ≤

f(x, µ2
R) to hold for all flavors at all x and µ2

R. To explore this question phenomenolog-

ically, we perform analyses with and without the positivity constraints. The baseline

analysis, referred to in the following as “JAM”, does not enforce positivity; how-

ever, when included, the positivity constraints are enforced approximately on each

Monte Carlo replica by imposing a penalty on the χ2 function when the bounds are

violated [269].

In practice, we rewrite the constraints in terms of the helicity-basis PDFs f ↑↓

f ↑(x, µ2
R) ≡ q(x, µ2

R) + ∆q(x, µ2
R) ≥ 0, (4.22)

f ↓(x, µ2
R) ≡ q(x, µ2

R)−∆q(x, µ2
R) ≥ 0. (4.23)

For each replica and at each step of the χ2 minimization we first calculate the spin-

averaged and polarized PDFs at the input scale µ2
R = µ2

0 = m2
c at 100 evenly spaced

points in the range 0.1 < x < 0.9, noting that if positivity is enforced at the input

scale it will automatically hold at larger scales [270, 271]. We repeat this process

for all of the quarks, antiquarks, and the gluon. Any helicity-basis PDFs that are
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negative contribute to the overall χ2 through

χ2
positivity = N2

(∑
x

∑
q

∑
i

Θ
[
− f i(x, µ2

0)
] [
f i(x, µ2

0)
])2

, (4.24)

where i =↑, ↓ and Θ(z) is the step function

Θ(z) = 0 if z < 0, Θ(z) = 1 if z > 0.

Through testing, it was found that a normalization N = 150 is sufficient to ensure

that the positivity bounds are satisfied without χ2
positivity dominating the entire χ2

function and decreasing the quality of the fit to the data.

This method of approximately enforcing positivity constraints through a penalty

on the χ2 function is similar to the method of Ref. [269], but with two advantages that

come from performing a simultaneous fit of spin-averaged and polarized PDFs. The

first is that we can compare the spin-averaged and polarized PDFs for each replica

individually, rather than comparing the polarized PDFs to the average of the spin-

averaged PDFs as was done in Ref. [269]. The second is that both types of PDFs can

be adjusted to ensure that the positivity constraints are satisfied, rather than just

the polarized PDFs.

4.3 Data and Quality of Fit

In this analysis we include measurements of the DIS asymmetries A∥ and A1 from

fixed-target experiments on proton, deuterium, and 3He from EMC [222], SMC [223,

224], COMPASS [225–227], SLAC [228–233], HERMES [234,235], and Jefferson Lab

[272–276]. The cuts on the four-momentum transfer Q and the hadronic final state

masses W for all DIS asymmetries are Q2 > m2
c and W 2 > 10 GeV2. For polarized

SIDIS, we include measurements of Ah
1 on proton, deuterium, and helium targets from

HERMES [246,277], COMPASS [247,248], and SMC [245] with the cuts Q2 > m2
c and

W 2 > 10 GeV2 and an additional cut on the fragmentation variable, 0.2 < zh < 0.8,

to ensure the applicability of the leading power formalism and avoid large-z threshold

corrections [116]. The included SIA data were discussed in Section 2.5.

Beyond DIS and SIA, we include polarized jet production data from STAR [143,

236–241] and PHENIX [242]. We include the single-spin asymmetries AW±
L from
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experiment ref. beam target obs. Ndat χ2
red fitted norm.

EMC [222] µ p A1 10 0.34 0.980(61)
SMC [223] µ p A1 11 0.34 —
SMC [223] µ D A1 11 1.81 —
SMC [224] µ p A1 7 1.42 —
SMC [224] µ D A1 7 0.67 —
COMPASS [226] µ p A1 11 1.04 0.967(47)
COMPASS [225] µ D A1 11 0.57 1.019(57)
COMPASS [227] µ p A1 35 0.88 1.003(60)
SLAC E80/E130 [228] e p A∥ 10 0.77 0.959(56)
SLAC E142 [229] e 3He A1 4 1.03 0.991(4)
SLAC E143 [231] e p A∥ 39 0.83 1.030(32)
SLAC E143 [231] e D A∥ 39 1.10 0.989(27)
SLAC E154 [230] e 3He A∥ 15 0.42 0.973(46)
SLAC E155 [233] e p A∥ 59 1.33 1.103(63)
SLAC E155 [232] e D A∥ 59 0.96 0.976(36)
HERMES [234] e “n” A1 5 0.15 0.995(7)
HERMES [235] e p A∥ 16 0.64 0.996(34)
HERMES [235] e D A∥ 16 1.07 0.961(33)
Total 365 0.95

Table 4.1: χ2 table: Polarized DIS A1 and A∥. Summary of the χ2
red values for

the polarized DIS data on A1 and A∥ used in this analysis, as well as their fitted
normalizations. Fitted normalizations are not provided in the cases where experimental
papers did not provide a normalization uncertainty.

STAR [255], as well as the single-spin asymmetries A
W±/Z
L from PHENIX [256, 257].

For the data that is relevant only for spin-averaged PDFs, the included data are

the same as those in Section 2.5. The kinematics (at LO in αs) are shown for all

experiments in Fig. 4.1.

The χ2
red values and fitted normalizations for the polarized DIS data are shown in

Table 4.1, while Table 4.2 shows the values for the polarized hadron-hadron collision

data. The χ2
red values and fitted normalizations for the polarized SIDIS data are

shown in Table 4.3. Figs. (4.2)–(4.6) show the data and theory comparison for all

of the inclusive data included in this analysis. The polarized DIS data are shown

in Fig. 4.2 for proton, Fig. 4.3 for the deuteron, and Fig. 4.4 for the “neutron” and

helium. The W/Z boson production data is shown in Fig. 4.5, while the polarized

jet production process is shown in Fig. 4.6. The data and theory comparisons for

polarized SIDIS are shown in Figs. (4.7)–(4.9).
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type experiment ref. process diff. obs. Ndat χ2
red fitted norm.

inclusive jets STAR [143] pp→ jet yjet, pT Ajet
LL 4 0.22 —

STAR [236] pp→ jet yjet, pT Ajet
LL 9 0.40 1.005(34)

STAR [237] pp→ jet yjet, pT Ajet
LL 7 1.51 1.007(10)

STAR [238] pp→ jet yjet, pT Ajet
LL 18 0.58 0.965(33)

STAR [239] pp→ jet yjet, pT Ajet
LL 12 1.58 1.019(25)

STAR [241] pp→ jet yjet, pT Ajet
LL 18 0.85 1.030(42)

STAR [240] pp→ jet yjet, pT Ajet
LL 13 0.73 0.948(38)

PHENIX [242] pp→ jet yjet, pT Ajet
LL 2 0.37 1.001(2)

W/Z production STAR [255] pp→ W → eνe ηe AW
L 12 0.65 0.972(25)

PHENIX [256] pp→ W → eνe ηe A
W/Z
L 2 0.21 0.995(9)

PHENIX [257] pp→ W → eνe ηe A
W/Z
L 4 0.64 1.003(2)

Total 101 0.80

Table 4.2: χ2 table: Polarized pp collisions. Summary of the χ2
red values for the

polarized hadron-hadron collision data used in this analysis, as well as their fitted
normalizations. All processes are inclusive and the undetected part of the final system
X has been suppressed in the “process” column.
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Figure 4.1: Kinematics of polarized datasets. Kinematic coverage of the datasets
included in this analysis. The top panel shows the data as a function of x and Q2. The
variable x represents Bjorken-x for polarized DIS and SIDIS and Feynman-x for vector
boson and jet production, while the scale Q2 represents the four-momentum transfer
squared for polarized DIS and SIDIS, the mass squared of the intermediate boson for
vector boson production, and the transverse momentum squared for jet production.
Also indicated is the DIS cut of W 2 = 10 GeV2 (dashed black line). The bottom panel
shows the semi-inclusive data as a function of z and Q2. For polarized SIDIS, z is
defined as in Eq. (2.33), while for SIA it is defined as in Eq. (2.36).
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experiment ref. beam target hadron Ndat χ2
red

HERMES [246] e p π+ 7 1.34
HERMES [246] e p π− 7 0.39
HERMES [246] e D π+ 7 1.19
HERMES [246] e D π− 7 2.57
COMPASS [247] µ p π+ 10 1.01
COMPASS [247] µ p π− 10 1.19
COMPASS [248] µ D π+ 8 0.37
COMPASS [248] µ D π− 8 0.45
HERMES [246] e D K+ 7 0.69
HERMES [246] e D K− 7 0.62
HERMES [246] e D K± 7 0.51
COMPASS [247] µ p K+ 10 0.18
COMPASS [247] µ p K− 10 0.24
COMPASS [248] µ D K+ 8 0.33
COMPASS [248] µ D K− 8 0.58
SMC [245] µ p h+ 12 1.71
SMC [245] µ p h− 12 1.10
SMC [245] µ D h+ 12 0.61
SMC [245] µ D h− 12 1.15
HERMES [246] e p h+ 7 0.70
HERMES [246] e p h− 7 0.55
HERMES [246] e D h+ 7 1.60
HERMES [246] e D h− 7 0.69
HERMES [246] e 3He h+ 7 0.62
HERMES [246] e 3He h− 7 0.51
COMPASS [248] µ D h+ 10 0.69
COMPASS [248] µ D h− 10 0.98
Total 231 0.85

Table 4.3: χ2 table: Polarized SIDIS. Summary of the χ2
red values for the polarized

SIDIS data on Ah
1 used in this analysis.
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Figure 4.2: Data vs. Theory: Polarized DIS (proton A1 and A∥). All proton polarized
inclusive DIS data on A1 and A∥ included in this analysis, plotted as a function of
xbj with different ranges of Q2 against the mean JAM result (colored lines) with 1σ
uncertainty bands in gold. The left panel shows A1 data from COMPASS [226, 227],
EMC [222], and SMC [223, 224]. The right panel shows A∥ data from HERMES [235]
and SLAC [228, 231, 233]. Data in different Q2 bins are increased by i for clarity, with
the dashed purple lines showing the different values of i.
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Figure 4.3: Data vs. Theory: Polarized DIS (deuteron A1 and A∥). All deuteron
polarized inclusive DIS data on A1 and A∥ included in this analysis, plotted as a function
of xbj with different ranges of Q2 against the mean JAM result (colored lines) with 1σ
uncertainty bands in gold. The left panel shows A1 data from COMPASS [225] and SMC
[223, 224]. The right panel shows A∥ data from HERMES [235] and SLAC [231, 232].
Data in different Q2 bins are increased by i for clarity, with the dashed purple lines
indicating the different values of i.
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Figure 4.4: Data vs. Theory: Polarized DIS (neutron and helium A1 and A∥). All
“neutron” and helium polarized DIS data on A1 and A∥ included in this analysis, plotted
as a function of xbj with different ranges of Q2 against the mean JAM result (colored
lines) with 1σ uncertainty bands in gold. The left panel shows A1 “neutron” data from
HERMES [234] and helium data from SLAC [229]. The right panel shows A∥ helium
data from SLAC [230]. Data in different Q2 bins are increased by i for clarity, with
the dashed purple lines indicating the different values of i. The “neutron” data from
HERMES was extracted using a measurement on a 3He target, corrected for nuclear
effects.
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Figure 4.5: Data vs. Theory: Polarized W/Z-lepton Production. Single-spin asym-

metries AW
L and A

W/Z
L versus lepton pseudorapidity ηℓ. Left panel: Asymmetries from

STAR [255] (black circles) at
√
s = 510 GeV and integrated over pℓT > 25 GeV, com-

pared with the full JAM fit (red solid lines and 1σ uncertainty bands) and with a fit
where ∆ū is set equal to ∆d̄ (green dashed lines). Right panel: Asymmetries from
PHENIX [256, 257] at

√
s = 510 GeV and integrated over pℓT > 16 GeV (blue points)

or pℓT > 30 GeV (purple points), compared with the full JAM fit (red points). The
W+/Z asymmetries are shown with circles, while the W−/Z asymmetries are shown
with squares (we show points instead of bands due to the wide binning of the PHENIX
data).
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Figure 4.6: Data vs. Theory: Polarized jets. Polarized double longitudinal jet asym-
metries Ajet

LL from STAR [143,236–241] (black circles) plotted as a function of pjetT and
compared to the JAM fit (red 1σ uncertainty bands). Each subplot shows the year
when the data was taken and the pseudorapidity bins ηjet or |ηjet|.
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Figure 4.7: Data vs. Theory: Polarized SIDIS (pion). Polarized SIDIS asymmetries
Aπ±

1 from HERMES [246] (red points) and COMPASS [247,248] (green points) plotted
as a function of xbj and compared to the JAM fit (1σ uncertainty bands). The top left
panel shows the results for the proton π+ asymmetry, the top right for the proton π−

asymmetry, the bottom left for the deuteron π+ asymmetry, and the bottom right for
the deuteron π− asymmetry. zH is integrated from 0.2 to 1 for SMC and HERMES,
and from 0.2 to 0.85 for COMPASS.
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Figure 4.8: Data vs. Theory: Polarized SIDIS (kaon). Polarized SIDIS asymmetries
AK±

1 from HERMES [246] (red points) and COMPASS [247,248] (green points) plotted
as a function of xbj and compared to the JAM fit (1σ uncertainty bands). The top left
panel shows the results for the protonK+ asymmetry, the top middle for the protonK−

asymmetry, the bottom left for the deuteron K+ asymmetry, the bottom middle for the
deuteron K− asymmetry, and the bottom right for the deuteron K± asymmetry. zH is
integrated from 0.2 to 1 for SMC and HERMES, and from 0.2 to 0.85 for COMPASS.
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Figure 4.9: Data vs. Theory: Polarized SIDIS (hadron). Polarized SIDIS asymmetries
Ah±

1 from HERMES [246] (red points), COMPASS [248] (green points), and SMC [245]
(blue points) plotted as a function of xbj and compared to the JAM fit (1σ uncertainty
bands). The top left panel shows the results for the proton h+ asymmetry, the top
right for the proton h− asymmetry, the middle left for the deuteron h+ asymmetry,
the middle right for the deuteron h− asymmetry, the bottom left for the helium h+

asymmetry, and the bottom right for the helium h− asymmetry. zH is integrated from
0.2 to 1 for SMC and HERMES, and from 0.2 to 0.85 for COMPASS.
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Figure 4.10: Extracted helicity PDFs. Helicity PDFs from JAM (red 1σ bands) at
Q2 = 10 GeV2 compared with a fit without RHIC W/Z data (yellow band) and the
result with positivity constraints (hatched band). The different panels show different
flavors, including x∆u+, x∆d+, x∆ū, x∆d̄, x∆s+, and x∆s−.

4.4 Extracted Helicity PDFs and Hadron FFs

This analysis [58] is based on more than 900 Monte Carlo samples, which we use to

ensure the statistical convergence of the PDFs and FFs, from which the means and

expectation values are then computed using Eq. (2.4). Although the spin-averaged

PDFs are included in this analysis, the resulting distributions do not change signifi-

cantly from what was shown in Chapter 2 and they will not be shown again here. This

lack of change is due to the high precision of the unpolarized data when compared

to the polarized. The resulting helicity parton densities are displayed in Fig. 4.10 at

the scale Q2 = 10 GeV2, compared with the fit including positivity constraints and
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Figure 4.11: Extracted helicity PDFs compared to other groups. Helicity PDFs from
JAM with positivity constraints (red 1σ bands) at Q2 = 10 GeV2 compared with the
NNPDFpol1.1 [260] and DSSV08 [258] analyses. The different panels show different
flavors, including x∆u+, x∆d+, x∆ū, x∆d̄, x∆s+, and x∆s−. Note that ∆s− = 0 for
NNPDFpol1.1 and DSSV08.

the fit without the RHIC W/Z data. For the ∆u+ and ∆d+ distributions, we find

that the inclusion of the RHIC W/Z data significantly decreases the uncertainty at

high x > 0.5, primarily due to the constraints on the antiquark distributions. The

inclusion of positivity constraints decreases the uncertainties even further at high x,

but does not drastically change the result for the ∆u+ and ∆d+ distributions. For

the strange distributions we again see a reduction of uncertainties at large x when

including the RHIC W/Z data. Positivity constraints provide a massive reduction in

uncertainties due to the strange helicity being bound by the spin-averaged strange

distribution. Both the ∆s+ and ∆s− distributions are consistent with zero through-
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out the entire range of x, as was found in the JAM17 analysis [114]. As discussed

in Section 4.2, we do not assume ∆s = ∆s̄ and thus a nonzero ∆s− is possible. A

nonzero ∆s− is expected from chiral symmetry breaking [278–280] from interactions

with mesons (such as Λ) that accompany the Goldstone boson, and the kaon SIDIS

data potentially provide sensitivity to the asymmetry. However, these data are not

precise enough to distinguish the asymmetry from zero.

In Fig. 4.11, the JAM results with positivity constraints are compared to the

NNPDF [260] and DSSV [258] analyses, which both also include positivity constraints,

at the scale Q2 = 10 GeV2. For the ∆u+ and ∆d+ distributions we see complete

agreement between the three groups. This is to be expected as these distributions

are primarily constrained by the polarized DIS data which is included in all three

analyses. For the ∆s+ distribution we find agreement within errors as well, although

the DSSV result suggests a slightly positive result around x ≈ 0.1 and the NNPDF

result suggests a negative result below x ≈ 0.1. Both DSSV and NNPDF assume

∆s = ∆s̄ and thus ∆s− = 0. The light sea quarks will be discussed in detail in

Section 4.4.1.

Given the phenomenological interest in the behavior of ∆q/q as x→ 1 [281–283],

our simultaneous extraction of unpolarized and helicity PDFs including the W -lepton

data provides the most reliable determination of the ratios to date. The results for

the light quark polarization ratios ∆q/q are shown in Fig. 4.12. As is well known, the

polarization is positive for u quarks and negative for d quarks. Without positivity

constraints, a nonzero ratio can be extracted for u up to x ≈ 0.8 and for d up to

x ≈ 0.6. With positivity constraints this is extended further up to x ≈ 0.85 and

x ≈ 0.7 for u and d, respectively. The inclusion of the latest W data also provides

unambiguous signs for ∆ū and ∆d̄, leading to a positive ∆ū/ū and a negative ∆d̄/d̄,

matching their quark counterparts. Without (with) positivity constraints, ∆ū/ū can

be distinguished from zero up to values of x ≈ 0.35 (x ≈ 0.40), while for ∆d̄/d̄ it

can be distinguished from zero up to x ≈ 0.35 (x ≈ 0.45). The inclusion of positivity

constraints makes little difference below x = 0.1 for both the quarks and antiquarks

but reduces the uncertainties at larger x.

In Fig. 4.13 we show the truncated integral
∫ 1

0.01
dx∆q(x) at Q2 = 4 GeV2 for

the light quarks and antiquarks before and after including the RHIC W data. The

lower limit of integration is chosen to roughly match the lower x limit of the data

(see Fig. 4.1). We see an improvement in the uncertainties for ∆u+ and ∆d+ of
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roughly 30%, while ∆ū sees an improvement of roughly 40% and ∆d̄ an improvement

of roughly 20%. While prior to the inclusion of the RHIC W data the sign of the

∆ū contribution to the proton spin was consistent with zero, after including these

data we find that ∆ū provides a small but unambiguously positive contribution to

the proton spin. Prior to the inclusion of the RHIC data, the result for ∆ū depends

heavily on the inclusion of positivity constraints. When the RHIC data are included,

however, this dependence is significantly reduced, allowing for an extraction that is

far less dependent on theoretical assumptions.

Our truncated moments for ∆u+ and ∆d+, with values 0.771(25) and −0.363(23),

respectively, are only slightly smaller in magnitude than the corresponding full mo-

ments from lattice QCD calculations, which find 0.864(16) for ∆u+ and −0.426(16)

for ∆d+ [284]. This comparison suggests that the contributions to the light quark

moments below x = 0.01 are small. We find nonzero truncated moments for ∆d̄ and,

for the first time, ∆ū, which was found to be consistent with zero in both the NNPDF

and DSSV analyses. Interestingly, the contributions from ∆ū [+0.044(17)] and ∆d̄

[−0.056(24)] approximately cancel in the sum.

4.4.1 Helicity Sea Asymmetry

The polarized antiquark asymmetry, shown in Fig. 4.14, is clearly nonzero for 0.01 <

x < 0.3. The inclusion of positivity constraints significantly reduces the uncertainties

at x ≳ 0.2, since the polarized sea quarks are restricted by the size of the unpolarized

sea quarks. In contrast to the final result, the results without the RHIC W data are

consistent with zero for x ≳ 0.07, illustrating the importance of the STAR W data

for the extraction of the polarized antiquark asymmetry in the intermediate-x region.

We furthermore compare our results to the asymmetries from the DSSV [258] and

NNPDF [260] groups. The DSSV fit [258] is qualitatively similar to our result without

the RHIC W data, as expected, with significantly smaller errors at high x due to the

inclusion of positivity constraints. The differences in the shape at x ≲ 0.1 may have

two causes. The first is the propagation of FF uncertainties, which are not propagated

in the DSSV analysis due to the lack of a simultaneous fit. The second is the parame-

terization flexibility of the helicity PDFs. While DSSV has 20 free parameters for the

helicity PDFs, this analysis has 32, which may impact the results. These factors may

also explain why the two analyses have similar error bands (except at high x where

positivity constraints explain the difference), despite the DSSV analysis not including
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any W -lepton production data. The NNPDF result [260], on the other hand, shows

only a slight deviation from zero at high values of x. This is consistent with this fit

taking the DSSV result [258] as the prior for ∆ū and ∆d̄, but with 4σ uncertainty, and

including the older STAR W data [254] in their reweighting analysis. These factors

also explain why the NNPDF analysis has larger errors throughout most of the range

of x. At high x the differences are again explained by positivity constraints. Our

analysis was thus the first extraction of a nonzero polarized antiquark asymmetry

in the intermediate-x region, where model calculations generally indicate the largest

effects [250–252].

In Fig. 4.15, we compare our result directly to several models. The meson cloud

result is taken directly from [249] at Q2 = 2.5 GeV2 and the statistical model result

is taken directly from [252] at Q2 = 10 GeV2. For the chiral soliton model, we

use the relation ∆d̄ − ∆ū = −2x0.12(d̄ − ū) between the helicity and spin-averaged

asymmetries at Q2 = 4 GeV2 derived in [251] and use the spin-averaged asymmetry

from the simultaneous extraction. While the results are plotted at slightly different

scales, we do not expect evolution to change the qualitative findings here. We see

complete agreement with both the statistical and chiral soliton models, which both

also peak around x ≈ 0.1. On the other hand, the meson cloud model predicts a

much smaller asymmetry with the opposite sign. This may indicate that the meson

cloud alone is not sufficient to explain the observed asymmetry.

4.4.2 Gluon Helicity

The extracted gluon helicity is shown in Fig. 4.16, both with and without positivity

constraints. As was found in Ref. [244], without positivity constraints there are

two distinct gluon solutions with opposite signs. When positivity constraints are

enforced, the negative solution is eliminated due to the fact that |∆g| > g at high x

for the negative solution. Table 4.4 shows the χ2
red for the polarized jet data, which is

most sensitive to the gluon helicity, for both the positive (+∆g) and negative (−∆g)

solutions. We see that the χ2
red is similar for both solutions, and there is no basis to

ignore the negative solution based on the data alone.

As discussed in Ref. [244], the positive solution results in positive contributions

from the gg and qg channels to the asymmetry. The negative solution results in a large

positive gg contribution and a large negative qg contribution, which mostly cancel and

end up giving a positive asymmetry similar to the positive solution. Solutions with
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experiment ref. Ndat χ2
red(+∆g) χ2

red(−∆g)
STAR [143] 4 0.22 0.22
STAR [236] 9 0.40 0.51
STAR [237] 7 1.51 1.49
STAR [238] 18 0.58 0.51
STAR [239] 12 1.60 1.42
STAR [241] 18 0.84 0.90
STAR [240] 13 0.72 1.09
PHENIX [242] 2 0.37 0.38
Total 83 0.84 0.88

Table 4.4: χ2 table: Polarized jet data with positive and negative ∆g. Summary of
the χ2

red values for the polarized jet production data for both the positive and negative
∆g solutions.

∆g near zero would lead to an asymmetry that is too small, thus leading to the two

distinct solutions. When positivity is enforced, the resulting single solution is similar

to the positive solution. All of these findings are consistent with those in Ref. [244].

Recently, it was found that charged pion production with large transverse momentum

in polarized SIDIS measured at Jefferson Lab could potentially distinguish between

the two solutions [285]. Future measurements at the EIC may also help [286], as well

as lattice QCD measurements [287–289].

In Fig. 4.16 the result with positivity constraints is compared to the NNPDF [260]

and DSSV [259] results, which also include positivity constraints. All three analyses

agree within errors. We note that the DSSV19 analysis also includes dijet production

data from STAR [290, 291] and single-hadron production data from PHENIX [292–

294], which provide extra constraints in the x ≈ 0.1 region. These datasets will be

included in future analyses. Further constraints on the gluon helicity at low x will be

provided by the EIC [38,39].

4.4.3 Fragmentation Functions

In Fig. 4.17, Fig. 4.18, and Fig. 4.19, we compare our extracted fragmentation func-

tions for pions, kaons, and unidentified hadrons to those of the JAM20-SIDIS [116]

and MAPFF1.0 [295] analyses. The MAPFF1.0 analysis did not include unidentified

hadrons, and so is not shown in Fig. 4.19. Generally we see agreement between the

two JAM analyses within errors, and significantly smaller errors on the JAM20-SIDIS
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Analysis π+ K+

JAM u = d̄, d = ū, s = s̄ u, s̄, s, d = d̄ = ū
JAM20-SIDIS [116] u = d̄, d = ū = s = s̄ u, s̄, s = d = d̄ = ū
MAPFF1.0 [295] u, d̄, d = ū, s = s̄ u, s̄, s = ū, d = d̄

Table 4.5: Fragmentation function comparison. Assumptions made about the pion
and kaon FFs in this analysis, the JAM20-SIDIS analysis [116], and the MAPFF1.0 [295]
analysis. All three analyses fit the c = c̄, b = b̄, and gluon FFs in addition to the FFs
listed in the table.

analysis, which will be discussed below. We note that the two analyses include the

same SIA and unpolarized SIDIS data, while this analysis includes polarized SIDIS

data in addition. The polarized SIDIS data does little to constrain the FFs, how-

ever, due to its large errors compared to the unpolarized data. Comparing to the

MAPFF1.0 analysis, we see some significant differences, such as for Dπ+

u and Dπ+

d̄
,

with the errors of MAPFF1.0 generally being larger than those in the JAM20-SIDIS

analysis.

One major difference between the MAPFF1.0 and JAM analyses is that MAPFF1.0

places a cut of W 2 > 25 GeV2 on the COMPASS SIDIS data, significantly reduc-

ing the number of points from 498 to 314 for the pion and 494 to 312 for the kaon.

But the most likely cause of the differences are the different parametrization choices,

summarized in Table 4.5 (the parametrization for this analysis is also summarized in

Section 4.2). For the pion, MAPFF1.0 has the most flexible parametrization, choosing

to have Dπ+

u ̸= Dπ+

d̄
and leaving four free functions for the three lightest (anti)quarks,

compared to three from this analysis, which sets Dπ+

u = Dπ+

d̄
, and two from the

JAM20-SIDIS analysis, which further sets Dπ+

s = Dπ+

d . For the kaon, both this anal-

ysis and MAPFF1.0 have four free functions for the three lightest (anti)quarks, but

assume different relations between the four unfavored light quarks, with this analysis

assuming DK+

d = DK+

d̄
= DK+

ū and MAPFF1.0 instead assuming DK+

s = DK+

¯̄u and

DK+

d = DK+

d̄
. The JAM20-SIDIS analysis reduces the number of free light quark

functions to three by further assuming that DK+

d = DK+

d̄
= DK+

ū = DK+

s . While

the parametrizations for Dδh+
are the same between the two JAM analyses, the

unidentified hadron FFs Dh+
= Dπ+

+DK+
+Dδh+

depends upon the pion and kaon

FFs and thus are also affected by these parametrization choices. This comparison

shows the importance of parametrization choices when it comes to extracting FFs.
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The MAPFF1.0 analysis also performs the analysis at NNLO accuracy, while the

two JAM analyses are at NLO accuracy, but this does not appear to make a large

difference above z = 0.2 (see Figures 1 and 2 in [295]).

In Fig. 4.20 we compare directly the different FFs, including the “residual” δh+ ≡
h+ − π+ − K+, for all flavors. The conclusions generally match those found in the

JAM20-SIDIS analysis [116]. Namely, we find that the pion FF dominates for most

channels, as expected due to the fact that the pion is the lightest hadron in the QCD

spectrum. The most notable exception to this is s̄→ K+. We also find that δh+ can

be sizeable and comparable to K+, indicating that the production of hadrons heavier

than the kaon can be sizeable. This is particularly true in the d channel, which can be

explained by proton production. The s channel is also large due to the assumption

that Dδh+

s = Dδh+

d . Finally, we find that Dδh+

b is larger than Dδh+

c , which can be

explained by the fact that the bottom quark has a larger phase space to transition

into heavier hadrons when compared to the lighter charm quark.

4.5 Summary

In this chapter we performed the first simultaneous extraction of helicity PDFs, spin-

averaged PDFs, and pion, kaon, and unidentified hadron FFs. This analysis included

the latest polarized W -lepton production data from the STAR collaboration, and led

to a data-driven extraction of a nonzero polarized sea asymmetry at intermediate

x. This extracted asymmetry is consistent with predictions from the statistical [252]

and chiral soliton models [251], but disagrees with the meson cloud model [249].

This analysis also provided a self-consistent extraction of the light quark polariza-

tions ∆q/q, and found ∆ū/u (∆d̄/d) is positive (negative) like its quark counterpart

∆u/u (∆d/d). From the extracted helicity PDFs, the truncated contributions to the

proton’s spin were calculated and compared to those of other extractions and lattice

QCD. This analysis found a nonzero contribution to the proton’s spin from ∆ū, and

that the contributions from the quarks below x ≈ 0.01 must be small in order to

match lattice QCD calculations [284].

It was also found that the extraction of the gluon helicity is heavily dependent

upon the imposition of positivity constraints, whose application beyond leading order

has been debated recently in the literature [267,268]. Without positivity constraints,

the data permit both a positive and negative solution. When the constraints are
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enforced, only the positive solution remains. These findings are in agreement with

those of another recent JAM analysis [244]. In the future, SIDIS data from Jeffer-

son Lab [285], jet production data from the EIC [286], and information from lattice

QCD [287–289] could help resolve this puzzle. Finally the extracted pion, kaon, and

unidentified hadron FFs were compared to those of other recent extractions. The com-

parison demonstrated the importance of parametrization choices particularly when it

comes to FFs.
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Figure 4.12: Light quark polarizations. The ratios ∆q/q are shown at Q2 = 10 GeV2.
The top panel shows u and d (coral and skyblue 1σ bands) while the bottom panel shows
ū and d̄ (red and blue 1σ bands). The results are compared to those with positivity
constraints (hatched bands).
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Figure 4.13: Truncated moments of helicity distributions. Truncated integrals∫ 1
0.01 dx∆q(x) at Q2 = 4 GeV2 for ∆u+, −∆d+, ∆ū and −∆d̄ from this analysis (red
rectangles) compared to the fit without the RHIC W/Z data (cyan) and with positivity
constraints (small hatched squares without RHIC and black squares with RHIC). For
the antiquarks, NNPDFpol1.1 (green points) and DSSV08 (blue points) are also shown.
The vertical height of the bands represents 1σ uncertainty.
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Figure 4.14: Extracted helicity sea asymmetry. Helicity sea quark asymmetry x(∆ū−
∆d̄) from JAM (red 1σ bands) at Q2 = 10 GeV2. In the top panel it is compared with
the fit without RHIC W/Z data (yellow band) and the result with positivity constraints
(hatched band). In the bottom panel it is compared to the NNPDFpol1.1 [260] and
DSSV08 [258] analyses.
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Figure 4.15: Extracted helicity sea asymmetry. Polarized sea quark asymmetry
x(∆ū − ∆d̄) from JAM (red 1σ band) at Q2 = 10 GeV2 compared with the statis-
tical model [252] at Q2 = 10 GeV2 (green 1σ band), the chiral soliton model [251] at
Q2 = 4 GeV2 (blue 1σ band), and the meson cloud model [249] at Q2 = 2.5 GeV2

(dot-dash magenta line).
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Figure 4.16: Extracted gluon helicity. Helicity gluon distribution x∆g from JAM at
Q2 = 10 GeV2. The top panel shows the replicas from the base fit (blue lines) and the
replicas from the fit with positivity constraints (red lines). The bottom panel compares
the result with positivity constraints (red 1σ band) with those of NNPDFpol1.1 [260]
and DSSV19 [259].
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Figure 4.17: Extracted pion FFs. Pion FFs from this analysis (red 1σ bands) at Q2 =
100 GeV2 compared with the JAM20-SIDIS [116] (blue bands) and MAPFF1.0 [295]
(green bands) analyses. The different panels show different flavors, and the FFs are
multiplied by z.

Figure 4.18: Extracted kaon FFs. Kaon FFs from this analysis (red 1σ bands) atQ2 =
100 GeV2 compared with the JAM20-SIDIS [116] (blue bands) and MAPFF1.0 [295]
(green bands) analyses. The different panels show different flavors, and the FFs are
multiplied by z.
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Figure 4.19: Extracted hadron FFs. Hadron FFs from this analysis (red 1σ bands)
at Q2 = 100 GeV2 compared with the JAM20-SIDIS [116] (blue bands) analysis. The
different panels show different flavors, and the FFs are multiplied by z.

Figure 4.20: All extracted FFs. FFs from this analysis at Q2 = 100 GeV2 for the
pion (red bands), kaon (blue bands), hadron (green bands), and the residual defined as
δh+ ≡ h+ − π+ −K+ (gold bands) . The different panels show different flavors, and
the FFs are multiplied by z.
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CHAPTER 5

DI-HADRON PRODUCTION

AND TRANSVERSITY PARTON

DISTRIBUTION FUNCTIONS

In this chapter we present the details of a simultaneous global QCD analysis of π+π−

DiFFs and transversity PDFs. The general details of such an analysis were discussed

in Section 2.1. We discuss two types of DiFFs: the “unpolarized DiFF”1 D1 , and

the Interference Fragmentation Function (IFF) H∢
1 . We emphasize that the IFF is

also a DiFF, so that the term DiFF can refer to both D1 and H∢
1 , but we will use the

term IFF to distinguish H∢
1 from D1. The IFF was first suggested in Ref. [296] and is

sensitive to the transverse polarization of the fragmenting quark. As the transversity

PDF is a chiral-odd function, in equations for cross sections it must always appear

alongside another chiral-odd function. In the case of di-hadron production in SIDIS

and pp, that chiral-odd function is the IFF. This allows an extraction of transver-

sity within a collinear framework, in contrast to the TMD framework used in the

“JAM3D” analyses [33, 34]. Such a collinear extraction has been performed previ-

ously by Radici, Bacchetta and coworkers from the Pavia group [31,32]2, and results

from lattice QCD also provide information on the proton’s transversity [35–37, 297].

However, the results from these three approaches currently cannot be reconciled.

1Since we only consider π+π− DiFFs in this analysis, the notations D1 and H∢
1 will always refer

to the π+π− DiFFs and IFFs, respectively.
2As we will be frequently referring to the 2018 analysis by Radici, Bacchetta et al., we will

abbreviate it as RB18 from now on.
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In Ref. [59] we will propose a new definition for the unintegrated DiFFs that

is compatible with the probability interpretation of collinear DiFFs. We will also

derive the LO evolution equations with this new definition and compare our findings

with previous results in the literature. In Ref. [60] we will use this new definition

and perform the first simultaneous global QCD analysis of π+π− DiFFs, IFFs, and

transversity PDFs. We improve upon previous collinear DiFF analyses [31, 32] by

including new data from Belle on the SIA cross section, new data from STAR on

pp collisions, and additional binnings of the SIA and SIDIS asymmetry data. We

also investigate in more detail how to use event generators (in this case PYTHIA) to

constrain D1. We will show results for the DiFFs, IFF, and transversity PDFs hq1.

Finally, we will show results for the tensor charges

δu ≡
∫ 1

0

dx(hu1 − hū1), (5.1a)

δd ≡
∫ 1

0

dx(hd1 − hd̄1), (5.1b)

and the isovector tensor charge

gT ≡ δu− δd, (5.2)

and compare to previous DiFF extractions, extractions in the TMD framework, as

well as lattice QCD. The tensor charge is a fundamental property of the proton

similar to the vector, axial, and scalar charges. It is relevant for QCD phenomenology

[31–33, 298–302], ab initio studies in lattice QCD [35, 36, 297, 303, 304], and beyond

the Standard Model physics [305–308].

5.1 Di-Hadron Fragmentation Functions

In this section we start with a new definition of the field-theoretic correlator for the

fragmentation into a di-hadron pair and derive the resulting DiFFs and evolution

equations. In this section we generalize to arbitrary hadron pairs h1h2 with masses

M1 and M2.
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5.1.1 Definition

We begin by defining the kinematics of hadron pair production. Consider a parton

with momentum k that fragments into two detected hadrons h1 and h2 with momenta

P1 and P2, respectively, with P 2
1 = M2

1 and P 2
2 = M2

2 . The total momentum of the

di-hadron pair is Ph = P1 + P2 and its relative momentum is R = (P1 − P2)/2.

The invariant mass of the di-hadron pair is M2
h = P 2

h . The hadrons carry fractions

z1 = P−
1 /k

− and z2 = P−
2 /k

− of the quark’s minus-lightcone momentum. We will

find it convenient to use the variables z ≡ z1 + z2 and ζ ≡ (z1 − z2)/z. Working in a

reference frame where Ph has no transverse component (P⃗h⊥ = 0), the momenta P1

and P2 can be written as

P1 =

(
M2

1 + R⃗ 2
T

(1 + ζ)P−
h

,
1 + ζ

2
P−
h , R⃗T

)
, P2 =

(
M2

2 + R⃗ 2
T

(1− ζ)P−
h

,
1− ζ

2
P−
h ,−R⃗T

)
.

Note that one readily finds

R⃗ 2
T =

1− ζ2

4
M2

h −
1− ζ

2
M2

1 −
1 + ζ

2
M2

2 , (5.3)

which implies the lower bound on Mh,

M2
h ≥

2

1 + ζ
M2

1 +
2

1− ζ
M2

2 .

We define the terms fully unintegrated DiFFs (uDiFFs) as those that depend upon

(z, ζ, R⃗T , k⃗T ) which, more precisely, means the scalars (z, ζ, R⃗ 2
T , k⃗T ·R⃗T , k⃗

2
T ). Upon in-

tegrating over k⃗T , we have “extended” DiFFs (extDiFFs) that depend upon (z, ζ, R⃗ 2
T ),

or alternatively (z, ζ,M2
h). Subsequent integration over R⃗T leads to collinear DiFFs

(cDiFFs) that depend upon (z, ζ), or alternatively (z1, z2). These functions give the

probability density for a parton i to fragment into, say, hadron h1 carrying the frac-

tion z1 of the parton’s longitudinal momentum if hadron h2 carries the momentum

fraction z2. Integrating the extDiFF over ζ leads to DiFFs that depend upon (z,M2
h).

These are the objects that have been frequently used in the transversity-related phe-

nomenology of di-hadron production, and they will be referred to simply as DiFFs.
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We define the correlator for fragmentation into a di-hadron pair as

∆
h1h2/q
ij (z, k⃗T ;P1, P2) =

1

16π3z2(1− ζ2)
1

Nc

∑
X

∫ ∫
dξ+d2ξ⃗T

(2π)3
ei(k

−ξ+−k⃗T ·ξ⃗T )

× ⟨0|W1(∞, ξ)ψq,i(ξ
+, 0−, ξ⃗T )|P1, P2;X⟩

× ⟨P1, P2;X|ψ̄q,j(0
+, 0−, 0⃗T )W2(0,∞)|0⟩ , (5.4)

where
∑

X

∫
≡
∑

X

∫
d3P⃗X/((2π)32P 0

X), ψq are quark fields, andW1,W2 are the Wilson

lines that ensure SU(3) color gauge invariance. They explicitly take the form

W1(∞, ξ) = [∞+, 0−, ∞⃗T ;∞+, 0−, ξ⃗T ]× [∞+, 0−, ξ⃗T ; ξ+, 0−, ξ⃗T ] , (5.5)

W2(0,∞) = [0+, 0−, 0⃗T ;∞+, 0−, 0⃗T ]× [∞+, 0−, 0⃗T ;∞+, 0−, ∞⃗T ] , (5.6)

where [a+, a−, a⃗T ; b+, b−, b⃗T ] ≡ P exp
[
−ig

∫ b

a
dsµA

µ(s)
]
, with Aµ a gluon field. The

two twist-2 Dirac traces that are relavent for this study can be parameterized in terms

of uDiFFs [309]:

Tr
[
∆h1h2/q(z, k⃗T ;P1, P2)γ

−
]

= D
h1h2/q
1 (z, ζ, R⃗ 2

T , k⃗T · R⃗T , k⃗
2
T ) , (5.7)

Tr
[
∆h1h2/q(z, k⃗T ;P1, P2)iσ

i−γ5

]
= −ϵ

ij
TR

j
T

Mh

H
∢′h1h2/q
1 (z, ζ, R⃗ 2

T , k⃗T · R⃗T , k⃗
2
T )

− ϵijT k
j
T

Mh

H
⊥h1h2/q
1 (z, ζ, R⃗ 2

T , k⃗T · R⃗T , k⃗
2
T ) . (5.8)

The tensor ϵijT ≡ ϵ−+ij is the “transverse” Levi-Civita tensor, and we use the

convention ϵ12T = +1. The extDiFFs are found by carrying out the z2
∫

d2k⃗T integral

on both sides of Eqs. (5.7)–(5.8), which leaves two structures:

z2
∫

d2k⃗TTr
[
∆h1h2/q(z, k⃗T ;P1, P2)γ

−
]

= D
h1h2/q
1 (z, ζ,M2

h) , (5.9)

z2
∫

d2k⃗TTr
[
∆h1h2/q(z, k⃗T ;P1, P2)iσ

i−γ5

]
= −ϵ

ij
TR

j
T

Mh

H
∢h1h2/q
1 (z, ζ,M2

h) , (5.10)

where, due to Eq. (5.3), we have chosen to write the extDiFFs as depending on M2
h
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instead of R⃗ 2
T . Further integration over R⃗T leads to a single unpolarized cDiFF:

D
h1h2/q
1 (z1, z2) =

1

16π3(1− ζ2)
1

Nc

∑
X

∫ ∫
d2R⃗T

∫
dξ+

2π
eik

−ξ+

× Tr
[
⟨0|W(∞+, ξ+)ψq(ξ

+, 0−, 0⃗T )|P1, P2;X⟩

× ⟨P1, P2;X|ψ̄q(0
+, 0−, 0⃗T )W(0+,∞+)|0⟩γ−

]
, (5.11)

where W(a+, b+) = [a+, 0−, 0⃗T ; b+, 0−, 0⃗T ]. We again emphasize that D
h1h2/q
1 (z1, z2)

has the aforementioned definition of a (conditional) probability density. An analogous

derivation for the gluon leads to

D
h1h2/g
1 (z1, z2) =

z

4π3(1− ζ2)
1

2P−
h

1

N2
c − 1

∑
X

∫ ∫
d2R⃗T

∫
dξ+

2π
eik

−ξ+

× ⟨0|Wba(∞+, ξ+)F−i
a (ξ+, 0−, 0⃗T )|P1, P2;X⟩

× ⟨P1, P2;X|F−i
c (0+, 0−, 0⃗T )Wcb(0

+,∞+)|0⟩ , (5.12)

where the gluons are represented by components of the field strength tensor F µν
a , and

the Wilson lines are the same as Eqs. (5.5)–(5.6) but in the adjoint representation.

In order to define the DiFFs D
h1h2/q
1 (z,M2

h), we consider the expression for the

cross section dσ
dz dMh

for the process e+e− → (h1h2)X, given by

dσ

dz dMh

=
4πNcα

2
em

3Q2

∑
q

e2q

∫ 1

−1

dζ
[π

4
z Mh (1− ζ2)Dh1h2/q

1 (z, ζ,M2
h)
]
, (5.13)

where the sum q runs over all quark flavors and Q =
√
s, the COM energy of the

collision. We then define

D
h1h2/q
1 (z,M2

h) ≡ π

4
z Mh

∫ 1

−1

dζ (1− ζ2)Dh1h2/q
1 (z, ζ,M2

h) , (5.14)

so that

dσ

dz dMh

=
4πα2

emNc

3Q2

∑
q

e2q D
h1h2/q
1 (z,M2

h) . (5.15)
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Analogously, we define

H
∢,h1h2/q
1 (z,M2

h) ≡ π

4
z Mh

∫ 1

−1

dζ
|R⃗T |
Mh

(1− ζ2)H∢,h1h2/q
1 (z, ζ,M2

h), (5.16)

with the extra factor |R⃗T |
Mh

coming from the
ϵijT Rj

T

Mh
in Eq. (5.10).

5.1.2 Evolution

In this section we discuss evolution equations for the extDiFFs. Perturbative correc-

tions to the quark DiFF correlator (Eq. (5.4)) generate two pieces: a “homogeneous

term” involving only DiFFs and a “mixing term” involving single-hadron FFs. The

same is true for the gluon DiFF correlator. In Ref. [310] it was argued that, for extD-

iFFs, the mixing term is not divergent in the ultraviolet region and therefore does

not contribute to the evolution of these functions. We have confirmed this point [59].

The evolution of D
h1h2/q
1 (z, ζ,M2

h) can be computed at the level of the correlator, with

the calculation proceeding exactly as that for the single-hadron FF D
h/q
1 (z) except

for the prefactor in Eq. (5.4). The final result reads

∂D
h1h2/q
1 (z, ζ,M2

h ;µR)

∂ lnµ2
R

=

∫ 1

z

dw

w2

[
D

h1h2/q
1

(z
w
, ζ,M2

h ;µR

)
Pq→q(w)

+D
h1h2/g
1

(z
w
, ζ,M2

h ;µR

)
Pq→g(w)

]
, (5.17)

where Pq→q(w) and Pq→g are the standard unpolarized time-like splitting functions.

An analogous expression exists for H
∢,h1h2/q
1 (z, ζ,M2

h), with the splitting functions

adjusted to those of the transversity distribution. We call the reader’s attention

to the 1/w2 factor that enters the integrand, whereas for the single-hadron case this

factor is just 1/w. The 1/w2 for the di-hadron case can be traced back to the prefactor

in the definition Eq. (5.4), as it eventually leads to the first factor in brackets in the

first line of Eq. (5.17). That factor is simply 1, whereas for the D
h/q
1 (z) case it is

z/(z/w) = w.

For the phenomenology we need the evolution equation forD
h1h2/q
1 (z,Mh). Switch-

ing out the variables z1 and z2 for z and ζ, and defining D
h1h2/q
1 (z,M2

h) as in Eq. (5.14),
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we find

∂D
h1h2/q
1 (z,M2

h ;µR)

∂ lnµ2
R

=

∫ 1

z

dw

w

[
D

h1h2/q
1

(
z

w
,M2

h ;µR

)
Pq→q(w)

+D
h1h2/g
1

(z
w
,M2

h ;µR

)
Pq→g(w)

]
, (5.18)

with an analogous expression for H
∢,h1h2/q
1 (z,M2

h). We also mention that after inte-

grating Eq. (5.17) over R⃗T , our result for the evolution of the homogeneous term of

D
h1h2/q
1 (z1, z2) fully agrees with previous results derived in the literature [311–313].

An analogous evolution equation holds for the gluon extDiFF D
h1h2/g
1 (z,M2

h ;µR).

5.2 Processes

In this analysis we include di-hadron production in SIA, SIDIS, and proton-proton

collisions. In the subsections below we summarize each of these processes and the

relevant equations.

5.2.1 Di-Hadron Production in SIA

The basics of the SIA process were summarized in Subsection 2.2.5, with the LO

diagram shown in Fig. 2.6. We consider two observables, the first where a single

di-hadron pair, with invariant mass Mh and combined fractional energy z, is detected

and the observable is sensitive to D1(z,M
2
h). At LO in αs, the cross section for this

process is given by Eq. (5.15). The factorization scale of the process is Q =
√
s. Due

to the symmetry of π+π− pairs (see 5.3.1) there are 5 free DiFFs (Du
1 , D

s
1, D

c
1, D

b
1, and

Dg
1) with this observable only capable of constraining one of them (which we choose

to be Du
1 ). Thus we have supplemented this data with data gathered from an event

generator such as PYTHIA, which will be discussed in Subsection 5.4.1.

The second observable involves the detection of two di-hadron pairs, with the

second having invariant mass Mh and combined fractional energy z̄. By measuring

an azimuthal correlation of two hadron pairs detected in opposite hemispheres, one

obtains an observable that is sensitive to the IFF H∢
1 (z,M2

h). At LO in αs, this
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modulation (known as the Artru-Collins asymmetry [314]) is given by [315]:

a12R(z,Mh, z̄,Mh) =
sin2 θ

∑
q e

2
q H

∢,q
1 (z,M2

h)H∢,q̄
1 (z̄,M

2

h)

(1 + cos2 θ)
∑

q e
2
q D

q
1(z,M

2
h)Dq̄

1(z̄,M
2

h)
, (5.19)

where the sum q runs over all quark flavors and θ is defined as the polar angle

between the beam axis and the reference axis in the COM system. As discussed in

the introduction to this chapter, there is only one free IFF, which we choose to be

H∢,u
1 . Thus only one observable is needed for the IFFs. However, one can see from

Eq. (5.36) that a12R is proportional to [H∢,u
1 ]2. Thus the asymmetry cannot uniquely

determine the sign of H∢,u
1 , and one must be applied by hand. Knowing the sign

of the SIDIS data (see the following section) and assuming that the transversity up

quark distribution must be positive (as is found in all phenomenological, model, and

lattice QCD studies) leads to the conclusion that H∢,u
1 must be negative. This is also

supported by model calculations for H∢
1 [316], and so in the analysis we choose H∢,u

1

to be negative.

5.2.2 Di-Hadron Production in SIDIS

The basics of the SIDIS process were summarized in Section 2.2.4, with the LO

diagram shown in Fig. 2.5. In this case, the target is transversely polarized and the

outgoing hadrons are a π+π− pair with invariant mass Mh. We denote the incoming

lepton momentum, virtual-photon momentum, and relative hadron momentum by l,

q, and R, respectively. With these variables, experimentalists define the azimuthal

angle ϕR by [317]:

ϕR =
(q× l) ·R
|(q× l) ·R|

arccos
(q× l) · (q×R)

|(q× l)||(q×R)|
. (5.20)

They also define ϕS, the azimuthal angle of the initial nucleon spin. COMPASS [318]

defines the angle ϕRS as ϕRS ≡ ϕR + ϕS − π, while HERMES [319] defines it as

ϕRS ≡ ϕR + ϕS.

At leading twist and LO in αs, the asymmetry can be written as [320,321]:

ACOMPASS
UT =

∑
q e

2
q h

q
1(x)H∢,q

1 (z,M2
h)∑

q e
2
q f

q
1 (x)Dq

1(z,M
2
h)

, (5.21)
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for COMPASS and

AHERMES
UT = −Dnn(y)

∑
q e

2
q h

q
1(x)H∢,q

1 (z,M2
h)∑

q e
2
q f

q
1 (x)Dq

1(z,M
2
h)

, (5.22)

for HERMES. The DiFFs and transversity PDFs depend on the factorization scale,

which is taken to be µF = Q for the SIDIS process. For HERMES, the transverse-

spin-transfer coefficient Dnn(y) is given by

Dnn(y) =
1− y

1− y + y2

2

. (5.23)

The opposite signs between the asymmetries for COMPASS and HERMES come from

the different definitions for the angle ϕRS, which differ by a phase π as discussed above.

The extra factor Dnn for HERMES comes from the fact that HERMES calculated

the asymmetries in the lepton-nucleon system, while COMPASS calculated them in

the photon-nucleon system. Ultimately these different definitions do not impede the

possibility of fitting both measurements simultaneously and simply require the extra

factors for the HERMES asymmetry.

Both COMPASS and HERMES provide the asymmetry for proton targets, while

COMPASS also provides it for a deuteron target. The neutron PDFs are calculated

using the proton PDFs with the switch u↔ d that is derived from isospin symmetry.

Nuclear effects are neglected, and the deuterium PDFs are simply taken as the sum

of the proton and neutron PDFs. Due to the symmetry of the π+π− IFFs (see

Eq. (5.36)), one has in the numerator for a proton target

∑
q

e2q h
q
1H

∢,q
1 =

1

9
H∢,u

1 [4(hu1 − hū1)− (hd1 − hd̄1)] =
1

9
H∢,u

1 [4huv
1 − hdv1 ], (5.24)

while for the deuteron one has∑
q

e2q h
q,D
1 H∢,q

1 =
1

3
H∢,u

1 [hu1 − hū1 + (hd1 − hd̄1)] =
1

3
H∢,u

1 [huv
1 + hdv1 ], (5.25)

where hq,D1 are the deuteron transversity PDFs. From this one immediately sees

that the SIDIS data is sensitive only to the valence distributions, with the proton

asymmetry more sensitive to uv than dv and the deuteron asymmetry equally sensitive

to both.
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5.2.3 Di-Hadron Production in Proton-Proton Collisions

For di-hadron production in proton-proton collisions, the process is similar to the jet

production process shown in Fig. 2.4, with the outgoing jet replaced by a di-hadron

pair with invariant mass Mh. The cross sections are written as differential in η, the

pseudo-rapidity of the di-hadron pair, PhT , the transverse momentum of the di-hadron

pair, and Mh. The asymmetry is defined as

A
sin(ϕR−ϕS)
UT ≡

dσUT

dηdMhdPhT

dσUU

dηdMhdPhT

, (5.26)

where σUT is the cross section with one proton transversely polarized and σUU the

cross section with both protons unpolarized. They are given by [322]

dσUT

dηdMhdPhT

= 2PhT

∑
abcd

∫ 1

xmin
a

dxa

∫ 1

xmin
b

dxb
z

(5.27)

× fa
1 (xa, µF )hb1(xb, µF )

d∆σ̂ab↑→c↑d

dt̂
(xa, xb, s, η, PhT , µR, µF )H∢,c

1 (z,M2
h , µF ) ,

dσUU

dηdMhdPhT

= 2PhT

∑
abcd

∫ 1

xmin
a

dxa

∫ 1

xmin
b

dxb
z

(5.28)

× fa
1 (xa, µF ) f b

1(xb, µF )
dσ̂ab→cd

dt̂
(xa, xb, s, η, PhT , µR, µF )Dc

1(z,M
2
h , µF ) ,

where xa (xb) is the momentum fraction of the parton coming from hA (hB) with

momentum PA (PB). The sum over the parton flavors abcd runs over all partonic

channels that can contribute to the process. The limits on the integration are given

by

xmin
a =

PhT e
η

√
s− PhT e−η

, xmin
b =

xaPhT e
−η

xa
√
s− PhT eη

, (5.29)

and one also has the relation

z =
PhT√
s

(
xae

−η + xbe
η

xaxb

)
. (5.30)

The hard (perturbative) partonic cross sections
d∆σ̂

ab↑→c↑d
dt̂

and dσ̂ab→cd

dt̂
are written

as differential in t̂, where t̂ = txa/z and t is given by t = (PA − PB)2. They are

taken from the appendix of Ref. [322]. (We note that there is an error there on all of
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the quark channels, which should have the opposite sign.) The renormalization and

factorization scales µR and µF are taken to be equal to PhT . The STAR collaboration

defines hA to be the transversely polarized proton rather than hB as we do here. This

difference in the definition of the asymmetry is taken care of by taking η → −η when

evaluating the asymmetries provided by STAR. For later use, we define the x value

that the transversity PDFs are approximately evaluated at as

x ≈ PhT√
s
eη. (5.31)

5.3 Parametrizations

In this section we discuss the parameterization of the DiFFs, IFFs, and transversity

PDFs. All functions are evolved using the DGLAP evolution equation (see Subsec-

tion 5.1.2) with the appropriate splitting functions, as detailed in Section 2.3.

5.3.1 DiFF Parametrization

The π+π− DiFFs have the advantage of being highly symmetric and thus reducing

the number of free functions that need to be parameterized. For D1, one has the

symmetry relations [323]

Du
1 = Dd

1 = Dū
1 = Dd̄

1,

Ds
1 = Ds̄

1, Dc
1 = Dc̄

1, Db
1 = Db̄

1. (5.32)

Thus, including also the gluon, there are 5 free functions to be fitted. Du
1 , Ds

1, and Dg
1

are parametrized at the input scale µ0 = 1 GeV, while Dc
1 and Db

1 are parametrized

at µR = mc and µR = mb, respectively. It is computationally efficient to choose a

parametrization for Dq
1 that can be converted into Mellin space. As such, we choose

to parametrize the z dependence with a functional form on a grid of Mh, choosing for

the up quark:

Mu
h = [2mπ, 0.40, 0.50, 0.70, 0.75, 0.80, 0.90, 1.00, 1.20, 1.30, 1.40, 1.60, 1.80, 2.00] GeV.

We note that the grid is not uniform and is instead chosen in a way to best describe

the detailed structure of the e+e− cross section. For s, c, b and g we choose grids that
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are less dense:

Ms
h = Mc

h = Mb
h = [2mπ, 0.50, 0.75, 1.00, 1.20, 1.60, 2.00] GeV,

Mg
h = [2mπ, 0.70, 1.00, 1.40, 2.00] GeV.

We find that these grids are sufficient to describe the Belle and PYTHIA data while

keeping the number of parameters to a minimum. At each value of Mh on the grid,

denoted by Mq,i
h , the z dependence is parametrized as:

Dq
1(z,M

q,i
h ) =

∑
j=1,2,3

N q
ij

Mq
ij

zα
q
ij(1− z)β

q
ij , (5.33)

where a = {N q
ij, α

q
ij, β

q
ij} is the set of parameters to be inferred, and Mq

ij = B[αq
ij +

1, βq
ij +1] normalizes the function to the first moment to decorrelate the normalization

and shape parameters. For the up quark, it is necessary to include the j = 2 and

j = 3 parameters as it will be constrained by the Belle cross section data. The other

functions will be constrained by PYTHIA-generated data (see Subsection 5.4.1) with

larger errors, and so less flexibility is needed and we set all of the j = 2, 3 parameters

to zero. This leads to 14 × 9 = 126 parameters for Du
1 , 7 × 3 = 21 parameters

each for Ds
1, D

c
1, and Db

1, and 5 × 3 = 15 parameters for Dg
1, for a total of 204 free

parameters. This functional form is easily converted into Mellin space at each Mq,i
h ,

and interpolation is used to retrieve the Mellin space representation at any value of

Mh.

In this analysis, we also enforce the positivity bound [320]

Dq
1(z,Mh;µ2

R) > 0, (5.34)

with q = u, s, c, b, g. As was done with the positivity constraints in Chapter 4, we

enforce this bound approximately on each Monte Carlo replica by imposing a penalty

on the χ2 function when the bounds are violated [269]. For each replica and at each

step of the χ2 minimization we first calculate Dq
1 at the input scale µ2

0 = 1 GeV2 at

300 points in the z,Mh plane, with 0.2 < z < 1 and 2mπ < Mh < 2.0, noting that if

positivity is enforced at the input scale it will automatically hold at larger scales for

any function that evolves through the DGLAP equation [270, 271]. We repeat this

process for u, s, c, b, and g. Any DiFFs that are negative contribute to the overall χ2
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through

χ2
D1<0 = N2

(∑
z,Mh

∑
q

Θ
[
−Dq

1(z,Mh;µ2
0)
]
|Dq

1(z,Mh;µ2
0)|
)2
. (5.35)

The normalization N is chosen to be 3 so that the initial contribution to the χ2 is

generally O(1000), although the size of the initial contribution can vary significantly

depending on the starting parameters. This ensures that the contribution is non-

negligible but that it also does not dominate the entire χ2 function which is otherwise

O(1000).

5.3.2 IFF Parametrization

For H∢
1 , the symmetry relations for π+π− are [323]

H∢,u
1 = −H∢,d

1 = −H∢,ū
1 = H∢,d̄

1 ,

H∢,s
1 = −H∢,s̄

1 = H∢,c
1 = −H∢,c̄

1 = 0. (5.36)

The (quark) transversity cannot couple to a FF for gluons. We therefore need just a

single free IFF, which we choose to be H∢,u
1 . The IFF H∢,u

1 is parameterized similarly

to Dq
1. Since the relevant data for H∢,u

1 is comparatively sparse and has larger errors,

far fewer parameters are needed. Thus we are able to choose a less dense Mh grid:

Mu
h = [2mπ, 0.50, 0.70, 0.85, 1.00, 1.60, 2.00] GeV,

and at each value of Mu,i
h , the z dependence:

H∢,u
1 (z,Mu,i

h ) =
∑
j=1,2

N q
ij

Mq
ij

zα
q
ij(1− z)β

q
ij , (5.37)

at the input scale µ0 = 1 GeV. This leads to a total of 8× 6 = 48 free parameters for

the IFF. As with Dq
1, this form is easily converted into Mellin space.

We enforce the bound [320]:

|Hq
1(z,Mh;µ2

R)| < Dq
1(z,Mh;µ2

R), (5.38)

which, in practice, only needs to be applied to q = u. This is enforced similarly to
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the positivity constraint on D1 in Eq. (5.34), with a χ2 penalty equal to:

χ2
|H1|>D1

= N2
(∑

±

∑
z,Mh

Θ
[
Hu

1 (z,Mh;µ2
0)±Du

1 (z,Mh;µ2
0)
]

×
[
|Hu

1 (z,Mh;µ2
0)±Du

1 (z,Mh;µ2
0)|
])2

, (5.39)

with N chosen to be 3.

5.3.3 Transversity PDF Parametrization

Our parameterization for the transversity PDFs follows that of the spin-averaged

PDFs in Section 2.3 and the helicity PDFs in Section 4.2. The transversity PDFs are

parameterized at the input scale µ0 = 1 GeV using the template Eq. (2.40) normalized

to the first moment M = B[α + 1, β + 1] + γB[α + 3
2
, β + 1] + ηB[α + 2, β + 1]. We

choose to parameterize the valence distributions huv
1 and hdv1 , as well as the antiquark

distributions hū1 = −hd̄1. Since we only have three unique observables to constrain

the PDFs (proton SIDIS, deuteron SIDIS, and pp collisions), we choose the relation

between the antiquarks based on predictions from the large-NC limit [324]. We note

that previous phenomenological analyses found small or negligible contributions from

antiquarks [34, 298, 325–328]. We have a total of 3 × 5 = 15 parameters for the

transversity PDFs. Combined with the 204 parameters for D1, the 48 parameters for

H∢
1 , and 7 normalization parameters, we end up with a total of 274 fitted parameters.

As the first moment of the transversity PDFs is of great interest (see Section 5.6),

we also place a limit on our parameterization to constrain the small-x behavior where

no experimental data is available. The behavior of the PDFs at small-x is governed

by the α parameter in Eq. (2.40). Recent theoretical works using an operator-based

approach [329] have placed limits on this parameter as x→ 0 [330]. They find:

α −−→
x→0

1− 2

√
αsNc

2π
. (5.40)

This limit applies for both the valence quarks and antiquarks, and there is a roughly

50% uncertainty on this value from 1/Nc corrections and NLO corrections [331]. At

the input scale, we calculate α → 0.17, and so limit the α parameter to the range

0.17 ± 50% for all quark flavors. Technically, this limit only applies as x → 0, while

our approach places a limit on the entire range of x. We find, however, that limiting
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α as such has no impact on the resulting PDFs in the measured region or on our

ability to describe the experimental data. Thus this simplified approach is sufficient

to capture the x→ 0 behavior while not affecting results at moderate or high-x.

We also enforce the Soffer Bound [332] on the transversity PDFs:

∣∣hq1(x,Q2)
∣∣ ≤ 1

2

[
f q
1 (x, µ2

R) + gq1(x, µ
2
R)

]
, (5.41)

where f q
1 (x, µ2

R) and gq1(x, µ
2
R) are the spin-averaged and helicity PDFs, respectively,

taken from the analysis of Chapter 4 [58]. This is again enforced through a χ2 penalty

similar to Eq. (5.35) and Eq. (5.39)

χ2
SB = N2

(∑
±

∑
x

∑
q

Θ
[
− F±(x, µ2

0)
]
|F±(x, µ2

0)|
)2
, (5.42)

where q = u, d, ū, d̄ and F±(x, µ2
0) ≡ 1

2

[
f q
1 (x, µ2

0) + gq1(x, µ
2
0)
]
±hq1(x, µ2

0). The normal-

ization N is chosen to be 10.

5.4 Data and Quality of Fit

In this section we discuss the experimental and lattice data that enters the analysis

as well as the PYTHIA generated data. This analysis must be supplemented by the

PYTHIA data due to the fact that there are 5 free D1 functions (see Subsection 5.3.1),

but only one experimental observable currently available to constrain them (although

D1 appears in the denominators of the SIDIS and pp asymmetries, those observ-

ables must also constrain the transversity PDFs and so do not have the ability to

significantly constrain any D1 functions). Thus we will discuss how we generate the

PYTHIA data and how it is used to constrain these functions.

5.4.1 PYTHIA Data

Our goal with the PYTHIA generated data is to be able to provide reasonable con-

straints on the D1 functions for the strange, charm, bottom, and gluon in the absence

of experimental data. To do this, we first generate data at the Belle energy
√
s = 10.58

GeV for the ratio σq/σtot with q = s, c, b, where σtot ≡
∑

q σ
q with the sum over all

quark flavors. This generated data is capable of constraining the strange, charm,
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and bottom distributions. In order to get some constraint on the gluon distribution,

we repeat this process at five energy scales, evenly spaced between Belle and LEP

energies,

√
s = [10.58, 30.73, 50.88, 71.04, 91.19] GeV.

This strategy allows us to get some estimate of the gluon DiFF through evolution. We

do not include the bottom quark contribution at the lowest Belle energy
√
s = 10.58

GeV but include it at all energies above this, due to the fact that our massless quark

formalism would be highly inadequate at such low energies comparable to 2mb.

This leads to a total of 5 × 3 = 15 generated datasets from PYTHIA, with each

one covering the same (z,Mh) region as the Belle data. The same cuts used on the

real Belle data are used on the PYTHIA data. The cut in Eq. (5.43) is used with
√
s = 10.58 GeV regardless of the value of

√
s, as there is no benefit within our

analysis of going beyond the kinematic region of the Belle data.

The PYTHIA data can be generated with arbitrarily high statistics, so we neglect

the tiny statistical error. In order to have a quantifiable, non-negligible error, we

generate each (
√
s, q) dataset using four different tunes: “PYTHIA 6 def.”, “PYTHIA

6 Aleph”, “PYTHIA 6 LEP/Tev.”, and “PYTHIA 8.” The tunes are summarized in

Table 5.1. The data that we fit are the mean values of the four tunes, and we take

the variance of the tunes as an uncorrelated systematic error. We do not apply any

correlated or normalization errors. We choose to fit the ratio σq/σtot as it leads to

smaller variance between the different tunes compared to taking the absolute cross

sections σq. Taking such a ratio should also lead to cancellations of NLO thrust effects.

The quality of fit to the PYTHIA data is shown in Table 5.2. The comparison between

the PYTHIA generated data and the theory is shown in Appendix A.
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Par PYTHIA 6 def. PYTHIA 6 Aleph PYTHIA 6 LEP/Tev.
PARJ(1) 0.1 0.106 0.073
PARJ(2) 0.3 0.285 0.2
PARJ(3) 0.4 0.71 0.94
PARJ(4) 0.05 0.05 0.032
PARJ(11) 0.5 0.55 0.31
PARJ(12) 0.6 0.47 0.4
PARJ(13) 0.75 0.65 0.54
PARJ(14) 0 0.02
PARJ(15) 0 0.04
PARJ(16) 0 0.02
PARJ(17) 0 0.2
PARJ(19) 1 0.57
PARJ(21) 0.36 0.37 0.325
PARJ(25) 1 0.63
PARJ(26) 0.4 0.27 0.12
PARJ(33) 0.8 0.8 0.8
PARJ(41) 0.3 0.4 0.5
PARJ(42) 0.58 0.796 0.6
PARJ(45) 0.5
PARJ(46) 1
PARJ(47) 1
PARJ(54) -0.05 -0.04 -0.05
PARJ(55) -0.005 -0.0035 -0.005
PARJ(81) 0.29 0.292 0.29
PARJ(82) 1 1.57 1.65
MSTJ(11) 4 3 5
MSTJ(12) 2 3
MSTJ(26) 2 2 2
MSTJ(45) 5
MSTJ(107) 0 0 0

Table 5.1: Summary of PYTHIA tunes. Summary of the different PYTHIA 6 tunes
used to generate the PYTHIA data. The “PYTHIA 6 def.” tune uses the corresponding
default parameters shown above. The “PYTHIA 6 Aleph” and “PYTHIA 6 LEP/Tev.”
tunes modify those parameters as shown in their respective columns (if the row is blank
then the default value is used). For the “PYTHIA 8” tune we use all default parameters.
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√
s q Ndat χ2

red

10.58 s 206 4.43
10.58 c 204 1.41
30.73 s 235 0.32
30.73 c 231 0.62
30.73 b 205 0.89
50.88 s 229 0.39
50.88 c 228 0.65
50.88 b 209 0.74
71.04 s 229 0.46
71.04 c 223 0.44
71.04 b 207 0.66
91.19 s 231 0.56
91.19 c 215 0.65
91.19 b 210 0.93
Total 3062 0.91

Table 5.2: χ2 table: Di-hadron PYTHIA generated data. Summary of χ2 values per
number of points Ndat for the PYTHIA datasets where the observable is σq/σtot.
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5.4.2 Experimental and Lattice Data

To constrain D1, we use the π+π− production in SIA cross section data from the Belle

collaboration [333] at
√
s = 10.58 GeV. Since we can only extract information on the

IFF up to Mh = 2.0 GeV (see below), we place a cut of Mh < 2.0 GeV on the cross

section data. The data are provided in bins of Mh, with width ∆Mh = 0.02 GeV,

and bins of z, with width ∆z = 0.05. We average over each z bin, and evaluate the

cross-section at ⟨Mh⟩. In order to avoid the sharp kaon and D0 resonances, we also

cut out all data points with ⟨Mh⟩ = 0.49 GeV and ⟨Mh⟩ = 1.87 GeV. The kinematic

limit of the Belle data is given by Mh <
√
s
2
z, and this limit is reached in the bins of

z below z = 0.45. We place a cut of

Mh < αcut

√
s

2
z, (5.43)

with αcut = 0.7, in order to avoid the region near the kinematic limit. We also cut

out the lowest z bin 0.20 < z < 0.25 where the applicability of the leading power

formalism is questionable [116]. In total, with these cuts we include 1,121 of the

1,468 data points provided by Belle, and the kinematic ranges are 0.25 < z < 1.0 and

0.3 < Mh < 2.0 GeV.

To constrain H∢
1 , we include the SIA asymmetry data provided by Belle [334].

The same cuts on Mh and z discussed above are applied to both hadron pairs here.

The data is available in three binnings: (z,Mh), (Mh,Mh), and (z, z̄), with the non-

binned variables integrated over 2mπ < Mh,Mh < 2 GeV and 0.2 < z, z̄ < 1.0.

We include all three binnings in our analysis. When integrating over Mh or Mh, we

apply the kinematic constraints Mh <
√
s
2
z and Mh <

√
s
2
z̄. For each binning we also

average over the two variables that are not integrated over. We note that in all Belle

measurements in this analysis, a cut is placed on the thrust T [335] of T > 0.8. In

our LO formalism, there is no way to take this thrust cut into account. We expect

that the errors from this omission cancel out in the ratio of H∢
1 /D1 which appears in

all of the asymmetries, thus reducing the impact on the extraction of the transversity

PDFs.

The transversity PDFs are constrained by SIDIS and pp data, with the SIDIS data

coming from HERMES [319] and COMPASS [318]. This data is again available in

three binnings (xbj, z, and Mh) and we use all three. For HERMES, the non-binned

variables are averaged over 0.023 < xbj < 0.4, 0.2 < z < 1.0 and 0.5 < Mh < 1.0
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GeV. COMPASS has the same range in z, but a larger range in x and Mh with

0.003 < xbj < 1 and 0.29 < Mh < 1.29 GeV. We integrate over all four variables:

xbj, y, z, and Mh. We denote the integration ranges on xbj and y provided by the

experiment as xexpmin < x < xexpmax and yexpmin < y < yexpmax. But in order to respect the

additional phase space cuts on Q2 > Q2
min and W 2 > W 2

min, these limits must be

adjusted appropriately. We choose to integrate over xbj before y, and adjust the

lower and upper limits through [336]

xmin(y) = MAX
(
xexpmin,

Q2
min

(s−M2)y

)
, (5.44)

xmax(y) = MIN
(
xexpmax,

y(s−M2)−W 2
min +M2

y(s−M2)

)
. (5.45)

Then the lower limit on y is adjusted through

ymin = MAX
(
yexpmin,

Q2
min

xexpmax(s−M2)
,

W 2
min −M2

(1− xexpmin)(s−M2)

)
. (5.46)

While integrating over z and Mh, one must also respect the limit

Mh <
√
zys−M2, (5.47)

which is required so that u ≡ (Ph − P )2 < 0. We choose to integrate over Mh before

y and z, and adjust the upper limit as

Mmax
h (y, z) = MIN

(
M exp

h,max,
√
zys−M2

)
, (5.48)

where M exp
h,max is the upper limit provided by the experiment.

The pp collision data is provided by STAR, at both
√
s = 200 GeV [337,338] (the

latter being preliminary) and
√
s = 500 GeV [339]. The published

√
s = 200 GeV

data is provided with three different upper cuts (0.2, 0.3, 0.4) on the opening angle

R of the pion pair, with 0.3 treated as the default. This cut is used to filter out pion

pairs that do not originate from a single parton. We use the data corresponding to

R < 0.3 and have tested that this choice does not significantly impact our results.

For the preliminary
√
s = 200 GeV data we also use the data corresponding to the

cut R < 0.3. The
√
s = 500 GeV data is provided with an opening angle of R < 0.7.

A larger opening angle cut is acceptable here as the increased energy means that a
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experiment ref. observable reaction non-perturbative function(s)
√
s/Elab (GeV)

Belle [333] d2σ
dzdMh

e+e− → π+π− D1 10.58

Belle [334] a12R e+e− → (π+π−)(π+π−) D1, H
∢
1 10.58

HERMES [319] AHERMES
UT ep↑ → e′π+π− D1, H

∢
1 , f1, h1 52

COMPASS [318] ACOMPASS
UT ep↑ → e′π+π− D1, H

∢
1 , f1, h1 301

STAR [337–339] App
UT pp↑ → π+π− D1, H

∢
1 , f1, h1 200, 500

Total

Table 5.3: Summary of di-hadron production data. Available data for the DiFFs D1

and H∢
1 and the transversity PDF h1.

pion pair produced from a single initial parton is more likely to be spread out. The

data is provided binned in PhT , Mh, and η, with the results (often) provided for both

η > 0 and η < 0 when binned in PhT or Mh. We include the data binned in all three

variables. In contrast to the SIDIS data, we do not integrate over the non-binned

variables here. This is due to the fact that the phase space is dependent upon the

choice of the opening angle, which cannot be written in terms of PhT , Mh, and η

alone. Instead of integrating over the non-binned variables, we take the provided

central values which depend upon the opening angle. All of the data is summarized

in Table 5.3, which details the reactions and the relevant non-perturbative functions,

and the kinematic coverage of the data is shown in Fig. 5.1.

We also consider the inclusion of lattice data in our analysis, in particular from

the ETMC collaboration [37] which provides results for the tensor charges δu and

δd as well as the isovector tensor charge gT . One can consider including gT alone or

both δu and δd. We choose the latter, as fitting gT alone leads to large correlations

between δu and δd, which can result in values for δu and δd that are significantly

different than the ETMC results.

We discuss now the analysis of the transversity PDFs, where we consider five

different scenarios. The “Baseline” fit uses all of the experimental data, including the

preliminary STAR data, but no lattice data. The “Lattice” fit includes, in addition,

the ETMC results for δu and δd. The “Published” fit excludes the preliminary STAR

data. The “RB18-like” fit attempts to replicate the analysis of RB18 [32] as closely

as possible within our framework. The “SIDIS only” excludes all of the STAR pp

collision data. The details of these fits are summarized in Table 5.4. Unless otherwise

specified, results shown are for the “Baseline” fit, which will also be referred to as

JAM.

The χ2 for the “Baseline” fit is summarized in Table 5.5. We are able to describe

the Belle cross section, SIDIS, and STAR
√
s = 500 GeV data well. We note that
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fit name SIA SIDIS data pp data pp data lattice antiquarks H∢
1 Dg

1

asymmetry data (
√
s = 200 GeV) (

√
s = 500 GeV) data bound

Lattice All 3 binnings All 3 binnings Published + Prelim. Published Yes ū = −d̄ Yes Fitted
Baseline All 3 binnings All 3 binnings Published + Prelim. Published No ū = −d̄ Yes Fitted
Published only All 3 binnings All 3 binnings Published Published No ū = −d̄ Yes Fitted
RB18-like (z,Mh) binning only x binning only Published — No — No Zero
SIDIS only All 3 binnings All 3 binnings — — No — Yes Fitted

Table 5.4: Summary of transversity PDF fits. The fits differ based on their inclusion
of datasets, antiquark transversity PDFs, and the bound on H∢

1 (Eq. (5.38)). All fits
include the same SIA cross section data from Belle and the same treatment for D1. All
fits include the Soffer Bound. For the RB18-like fit, we do not perform a simultaneous
fit of DiFFs and transversity PDFs, rather leaving the DiFFs fixed from the SIA data
alone.

there is some difficulty in describing the Belle a12R data, particularly the Mh,Mh

binning, with a total χ2
red of 1.78. This could be attributed to our LO analysis and

inability to take the thrust cut into account. For the
√
s = 200 GeV data, we struggle

the most in describing the data binned in η, for both the published and preliminary

data. This may be due to the fact that this binning is integrated over the entire range

of both Mh and PhT , while in our analysis we are only taking the central values due

to our inability to take the opening angle into account. Removing this data from the

fit does not improve the description of the other data nor significantly change the

extracted PDFs, so we keep it in the fit.

A simplified χ2 table is shown for all of the fits in Table 5.6. We start with

discussing the “Lattice” fit, where we find it easy to describe δd but more difficult to

describe δu. From comparison to the “Baseline” fit, it is clear to see that HERMES is

the primary source of tension with the lattice data. Upon its removal, the χ2
red for δu

decreases to 2.56. Regardless, this relatively minor tension between the experimental

and lattice data can be attributed to (presently unknown) systematic uncertainties

in both our LO analysis and the lattice results for the tensor charges.

Comparison of the “Baseline” and “Published” fits shows that the preliminary

data is largely compatible with the rest of the data. Furthermore, comparisons to the

“SIDIS only” fit show that the SIDIS data are compatible with the pp data. Finally,

we note that our χ2
red from the “RB18-like” analysis is significantly lower than the

value of 2.08 ± 0.09 that was found in Ref. [32]. This difference could be due to the

differences in our extractions for the DiFFs and IFFs.

The data vs. theory for the Belle cross section data is shown in Fig. 5.2, while the

asymmetry data is shown in Figs. (5.3)–(5.5). The SIDIS data is shown in Fig. 5.6.
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experiment observable binning Ndat χ2
red fitted norm.

Belle [333] d2σ
dzdMh

z,Mh 1121 1.24 0.992(20)

z,Mh 55 0.53
Belle [334] a12R Mh,Mh 64 3.43 —

z, z̄ 64 1.54
xbj 4 1.84

HERMES [319] AHERMES
UT Mh 4 1.27 1.101(43)

z 4 1.74
xbj 9 0.88

COMPASS (p) [318] ACOMPASS
UT Mh 10 1.12 0.994(4)

z 7 1.58
xbj 9 1.20

COMPASS (D) [318] ACOMPASS
UT Mh 10 0.39 1.002(5)

z 7 0.47
Mh, η < 0 5 2.54

STAR [337] Mh, η > 0 5 1.52√
s = 200 GeV App

UT PhT , η < 0 5 0.92 0.982(17)
R < 0.3 PhT , η > 0 5 1.05

η 4 1.72
Mh, η < 0 32 0.78

STAR [339] App
UT Mh, η > 0 32 1.16 1.078(27)√

s = 500 GeV PhT , η > 0 35 1.09
R < 0.7 η 7 1.57

Mh, η < 0 31 0.94
STAR [338] Mh, η > 0 31 1.25√
s = 200 GeV App

UT PhT , η < 0 29 0.85 0.955(16)
R < 0.3 PhT , η > 0 29 1.05
PRELIMINARY η 9 2.06
Total 1627 1.29

Table 5.5: χ2 table: Di-hadron production data. Summary of χ2
red values for the

various datasets used in the “Baseline” fit. The number of points corresponds to the
cuts discussed in Section 5.4.
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χ2
red

experiment Ndat Lattice Baseline Published only RB18-like SIDIS only
HERMES [319] 12 1.92 1.62 1.54 1.97 1.46
COMPASS (p) [318] 26 1.28 1.16 1.13 0.56 1.08
COMPASS (D) [318] 26 0.71 0.69 0.74 1.46 0.71
STAR (2015) [337] 24 1.62 1.54 1.92 1.21 —
STAR (2018) [339] 106 1.09 1.05 1.04 — —
STAR (PRELIM) [338] 129 1.09 1.10 — — —
ETMC δu [37] 1 4.04 — — — —
ETMC δd [37] 1 0.15 — — — —
Total 325 1.15 1.11 1.15 1.20 1.00

Table 5.6: χ2 table: Di-hadron production data with different fits. Summary of χ2
red

values for the datasets involving the transversity PDFs for the different fit configurations
defined in Table 5.4. Note that Ndat for SIDIS is smaller for the RB18-like fit, as it
does not include all binnings.

The published
√
s = 200 GeV STAR data is shown in Fig. 5.7, while the

√
s = 500

GeV data is shown in Figs. (5.8)–(5.10). As discussed previously, we struggle the

most to describe the Belle a12R data binned in Mh,Mh and the STAR
√
s = 200 GeV

data binned in η. From the plots, we see that we are generally underestimating the

a12R data. We also underestimate the STAR data at
√
s = 200 GeV data binned in

η, which may be due to our inability to properly integrate over Mh and PhT .

Finally, we mention that performing a simultaneous fit of the DiFFs and PDFs (as

opposed to keeping the DiFFs fixed from the SIA data alone) significantly improves

the description of the STAR data, particularly at
√
s = 200 GeV. The χ2

red for the

published
√
s = 200 GeV data improves from 1.86 to 1.54, while it improves from

1.49 to 1.10 for the preliminary data. For the
√
s = 500 GeV data there is a small

improvement from 1.13 to 1.05. For all of the STAR data, the χ2
red improves from

1.38 to 1.12. The improvements are the largest for the data that is binned in η. These

changes emphasize the potential importance of performing simultaneous analyses of

the different functions that enter a global QCD analysis.
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Figure 5.1: Kinematics of di-hadron production datasets. Kinematic coverage of the
datasets included in this analysis. The top panel shows the data as a function of z and
Mh. The kinematic limit of the Belle data (Eq. (5.43)) is also shown. The bottom panel
shows the data as a function of x and Q2. The variable x represents xbj (Eq. (2.7)) for
SIDIS and Eq. (5.31) for pp collisions, while the scale Q2 represents the four-momentum
transfer squared for SIDIS and the transverse momentum squared of the di-hadron pair
for pp collisions.
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Figure 5.2: Data vs. Theory: Di-hadron SIA cross section. The Belle cross section
data [333] at

√
s = 10.58 GeV (red points) plotted as a function of Mh against the

mean JAM result (black line) with 1σ uncertainty bands in gold. The different panels
show different bins of z.

Figure 5.3: Data vs. Theory: Di-hadron SIA asymmetry binned in (z,Mh). The Belle
a12R data [334] binned in (z,Mh) at

√
s = 10.58 GeV (red points) plotted as a function

of z against the mean JAM result (black line) with 1σ uncertainty bands in gold. The
different panels show different bins of Mh, while z̄ is integrated over 0.2 < z̄ < 1.0 and
Mh over 2mπ < Mh < 2 GeV.
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Figure 5.4: Data vs. Theory: Di-hadron SIA asymmetry binned in (Mh,Mh). The
Belle a12R data [334] binned in (Mh,Mh) at

√
s = 10.58 GeV (red points) plotted as a

function of Mh against the mean JAM result (black line) with 1σ uncertainty bands in
gold. The different panels show different bins of Mh, while z and z̄ are integrated over
0.2 < z, z̄ < 1.0.

Figure 5.5: Data vs. Theory: Di-hadron SIA asymmetry binned in (z, z̄). The Belle
a12R data [334] binned in (z, z̄) at

√
s = 10.58 GeV (red points) plotted as a function

of z̄ against the mean JAM result (black line) with 1σ uncertainty bands in gold.
The different panels show different bins of z, while Mh and Mh are integrated over
2mπ < Mh,Mh < 2 GeV.
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Figure 5.6: Data vs. Theory: Di-hadron SIDIS. The SIDIS AUT data from HER-
MES [319] (green points) and COMPASS [318] (red points for proton, blue points
for deuteron) plotted against the mean JAM result (colored lines and 1σ uncertainty
bands). Results are shown for the data binned in xbj in the top row, Mh in the
middle row, and z in the bottom row. The non-binned variables are integrated over
0.023 < xbj < 0.4, 0.5 < Mh < 1 GeV, and 0.2 < z < 1.0 for HERMES and
0.003 < xbj < 1, 0.29 < Mh < 1.29 GeV, and 0.2 < z < 1.0 for COMPASS.
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Figure 5.7: Data vs. Theory: Di-hadron production from pp at
√
s = 200 GeV. The

STAR data [337] with opening angle cut R < 0.3 (colored points) are plotted against
the mean JAM result (colored lines and 1σ uncertainty bands). The left panel shows
the results as a function of Mh, the middle panel as a function of PhT , and the right
panel as a function of η. In the left and middle panel, the results are shown in red for
0 < η < 1 and blue for −1 < η < 0.

Figure 5.8: Data vs. Theory: Di-hadron production from pp at
√
s = 500 GeV binned

in Mh. The STAR data [339] with opening angle cut R < 0.7 (red points for 0 < η < 1,
blue points for −1 < η < 0) are plotted as a function of Mh against the mean JAM
result (colored lines and 1σ uncertainty bands). The different panels show different bins
of PhT .
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Figure 5.9: Data vs. Theory: Di-hadron production from pp at
√
s = 500 GeV binned

in PhT . The STAR data [339] with opening angle cut R < 0.7 (red points for 0 < η < 1)
are plotted as a function of PhT against the mean JAM result (colored lines and 1σ
uncertainty bands). The different panels show different bins of Mh.

Figure 5.10: Data vs. Theory: Di-hadron production from pp at
√
s = 500 GeV

binned in η. The STAR data [339] with opening angle cut R < 0.7 (red points) are
plotted as a function of η against the mean JAM result (red line and 1σ uncertainty
band). The results are plotted at the mean values ⟨PhT ⟩ = 13 GeV and ⟨Mh⟩ = 1 GeV.
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Figure 5.11: Extracted di-Hadron fragmentation functions. DiFFs Dq
1 plotted as a

function of Mh with z = 0.25, 0.45, 0.65 (top row) and as a function of z with Mh =
0.4, 1.0, 1.6 (bottom row) at the scale Q2 = 100 GeV2. The up, strange, charm, bottom,
and gluon are shown in purple, green, orange, pink, and blue respectively. The vertical
dashed lines on the top row show where the DiFFs are parametrized (see Section 5.3.1).

5.5 Extracted Di-Hadron Fragmentation Functions

As noted in Subsection 5.4.2, the cut on the thrust used in the Belle measurements

cannot be accounted for in our LO formalism and may have a significant impact on

the extractions of D1 and H∢
1 that is expected to partially cancel in the ratio H∢

1 /D1.

Nevertheless, we show here our results for both DiFFs with the caveat that there may

be significant changes in an NLO extraction that is able to take the thrust cut into

account.

In Fig. 5.11 we show all of the unpolarized DiFFs at the scale Q2 = 100 GeV2 (ap-

proximately the scale of the Belle experiment). We generally find strong constraints

on all of the quark DiFFs, but very weak constraints on the gluon DiFFs. This is

to be expected, as we have no observables sensitive to the gluon distribution at LO

and instead depend entirely on evolution to constrain it (as discussed previously, the

pp asymmetry cannot help significantly here). Measurements on the unpolarized pp

cross section will provide stronger constraints on Dg
1 in the future. In the RB18 anal-
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Figure 5.12: Extracted interference fragmentation functions. IFF H∢,u
1 plotted as a

function of Mh with z = 0.25, 0.45, 0.65 (top row) and as a function of z with Mh =
0.4, 1.0, 1.6 (bottom row) at the scale Q2 = 100 GeV2. The vertical dashed lines on the
top row show where the DiFFs are parametrized (see Section 5.3.2). The dashed blue
line represents the |H∢,u

1 | < Du
1 bound.

ysis [32], they considered three scenarios for the gluon distribution at the input scale:

Dg
1 = 0, Dg

1 = Du
1/4, and Dg

1 = Du
1 . The continuous distribution of gluon solutions

shown here should provide a more realistic estimate of the errors on the extracted

transversity PDFs.

In Fig. 5.12 we show the IFF at the scale Q2 = 100 GeV2. As mentioned in

Subsection 5.2.1, the sign of H∢,u
1 cannot be fixed by the experimental data alone,

and we have thus forced H∢,u
1 to be negative. We generally find that it does not

struggle to satisfy the bound |H∢,u
1 | < Du

1 , except at larger Mh and z where it begins

to be limited by it.
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5.6 Extracted Transversity PDFs and Tensor

Charges

As discussed in Subsection 5.4.2, we perform five different analyses for the transversity

PDFs, summarized in Table 5.4, to assess the impact of experimental datasets and

the inclusion of lattice QCD in the fit. In the following we will frequently compare

our results to the analyses of JAM3D [34] and RB18 [32]. The former extracts the

transversity distributions alongside TMDs using the Collins and Sivers effects, while

the latter uses the collinear DiFF approach as in this analysis. The two approaches

have led to results for the transversity PDFs and tensor charges that seemingly dis-

agree rather strongly, especially for the up quark. The JAM3D analysis included

lattice QCD results into their fit and found good agreement between lattice and ex-

periment. On the other hand, the RB18 results seem to be in strong disagreement

with lattice. This situation has led to a “transverse spin puzzle” in trying to recon-

cile the results from the DiFF approach, TMD approach, and lattice QCD. Below we

will show our own results for the transversity PDFs and tensor charges and provide

evidence that the three approaches are in fact reconcilable.

In this context it is imperative to first discuss the fact that lattice QCD calcula-

tions are for the full tensor charge, while experimental data is only available down to

x ≈ 0.005 in both the DiFF and TMD approaches. Thus, unless there are restrictions

on the behavior of the PDFs at small-x (either explicitly or through an inflexible pa-

rameterization), the full moments extracted from experimental data alone are subject

to extrapolation errors which are entirely dependent upon the choice of parameter-

ization. In this scenario, our results cannot give a realistic estimate of the errors.

Furthermore, with no restrictions on the small-x behavior, it is always possible to

find compatibility between experiment and lattice QCD by using both in the fit, as

the fit is free to adjust the small-x behavior as necessary to match the lattice results.

As a relevant example, even if δu from lattice QCD is greatly underestimated by the

result from experiment alone, the result from lattice QCD can still be accommodated

in the fit by making the u PDF very large below x ≈ 0.005.

Thus, after including the lattice QCD data into the fit, is it necessary to check if

the small-x behavior is meaningful. For this analysis we are in the fortunate situation

to have a theoretical prediction for the small-x behavior. As discussed in Section 5.3.3,

we use theoretical predictions [330] to constrain the small-x behavior by restricting
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the α parameter of Eq. (2.40) to be 0.17 ± 50%. We assume that this restriction

on the small-x behavior ensures that the behavior of the PDFs is physical, and find

that the contribution to the moments below x ≈ 0.005 is small. Thus the fit no

longer has the freedom to manipulate the PDFs at small-x in order to accommodate

the lattice data, and a fit of both experimental and lattice data is a meaningful test

of their agreement. An analogous discussion also applies to the high-x region, since

experimental data only goes as high as x ≈ 0.3. The Soffer Bound, which is included

in all three phenomenological analyses discussed here, solves the issue by providing

strong theoretical constraints at high-x that prevent the fit from seeking non-physical

solutions to accommodate the lattice data.

In Fig. 5.13 we show our results for valence PDFs from the “Baseline,” “Pub-

lished,” and “SIDIS only” scenarios. For the up quark, we see a consistent trend

of the pp data pushing the up quarks towards slightly larger values in the valence

region, with the “Published” result being larger than the “SIDIS only” result and

the “Baseline” result being even larger. For the down quark, there seems to be less

of a consistent trend. The SIDIS and preliminary STAR data seem to prefer a nega-

tive and (relatively) large down quark, while the published STAR data prefer a down

quark that is closer to zero. For x ≲ 0.1, we see agreement between all three scenarios.

In Fig. 5.14 we compare our “Baseline” results for the valence distributions to

those from JAM3D without lattice QCD [34] and RB18 [32] (whose analysis did not

consider the inclusion of lattice data). Antiquarks were not considered in these other

analyses, so one has qv = q. The two analyses find significantly different results for uv,

with RB18 finding a result less than half as large as the JAM3D result near the peak

of the distribution. Our result ends up in the middle of the two analyses. This can be

largely attributed to the data that was not available at the time of the RB18 analysis:

the published
√
s = 500 GeV and preliminary

√
s = 200 GeV data from STAR. Both

datasets push the up quark to be larger, the
√
s = 200 GeV data more so than

the
√
s = 500 GeV. This upward push helps significantly when it comes to finding

agreement with the lattice QCD data. For dv, JAM3D and RB18 are in agreement,

while our result is larger (but still within errors). As mentioned previously, both the

SIDIS data and preliminary
√
s = 200 GeV STAR data push the fit towards a clearly

negative down quark.

In Fig. 5.15 we show the “Baseline” result for the antiquark distributions, where

we assume hū1 = −hd̄1. As expected, the Soffer Bound forces the antiquarks to be very
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small above x ≳ 0.2. Below where the Soffer Bound restricts the distributions, they

still remain small and consistent with zero. ū (d̄) has a very slight preference to be

negative (positive) around x ≈ 0.1. Interestingly, this is where the sea asymmetry

peaks in the case of helicity PDFs (see Chapter 4). More precise data is needed to

determine if a “transversity sea asymmetry” also exists.

In Fig. 5.16 we show the valence distributions for both the “Baseline” and “Lat-

tice” fits. We see a clear increase in the uv distribution in the valence region when

including the lattice data, which is a consequence of the lattice result for δu being

significantly larger than the result of the “Baseline” (the tensor charge results will

be discussed below). For dv the “Baseline” result already agrees well with the tensor

charge for lattice, and so the decrease around x ≈ 0.1 is compensated by an increase

around x ≈ 0.01. This change in shape but not overall magnitude is likely a result

of the changes seen in uv, which dv must compensate for in order to retain a good

description of the experimental data.

We now move on to discussing the tensor charges, defined in Eqs. (5.1)–(5.2).

Note that, as discussed previously, we use theoretical constraints at small x ≲ 0.005

(α parameter within 0.17 ± 50%) and high x ≳ 0.3 (the Soffer Bound) so that our

result for the full moment is not subject to uncontrolled extrapolation errors. In

Fig. 5.17 we show the tensor charges extracted from the “Baseline,” “Published,”

“SIDIS only,” and “RB18-like” fits and compare to JAM3D [34] and RB18 [32]. For

δu and δd, we find a value that’s in between RB18 and JAM3D for the former and

a value that’s lower than both for the latter, as expected from Fig. 5.14. We find

agreement within errors with RB18 but not JAM3D, confirming the finding that the

DiFF and TMD approaches to extracting transversity lead to different results for the

tensor charges. For gT we find agreement with all other phenomenological extractions

due to large error bands on most extractions. Comparing the four fits from our own

analysis, we see that the SIDIS only result is in very good agreement with the RB18

result. All of the STAR data prefer a larger δu, however the published and preliminary

data pull δd in opposite directions, as was seen in Fig. 5.13. The “RB18-like” fit has

much larger errors than the others, due to the missing bins for the SIA and SIDIS

asymmetries (the lack of the bound Eq. (5.38) on H∢
1 does not significantly impact

the errors). The resulting errors are similar to those from the RB18 analysis. The

results for δd and gT match extremely well, while our result for δu is larger but agrees

within errors.
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In Fig. 5.18 we show our results with the lattice data of Ref. [37] included and

compare to other lattice QCD results [35, 36, 297]. Our fit has no issue in accommo-

dating the lattice result for δd. This is not surprising given that the “Baseline” result

for δd was already in good agreement. Our result for δu is slightly too small, but it

has moved much closer to the lattice result after its inclusion in the fit. For gT (which

is not directly included in this fit) we find a result that is slightly smaller than the

lattice results, which is an expected consequence of δu also being slightly smaller.

Although the “Baseline” result for δu is much lower than the value from Ref [37],

we find that the fit is able to include it while only affecting the description of the

experimental data marginally. The shift from the “Baseline” result to the “Lattice”

result (particularly for δu) seems shocking at first. We argue the following: the “Base-

line” result is the best solution given the experimental data. We find (upon including

the lattice data) that there is another solution that describes the experimental data

slightly worse, but that can also accommodate the lattice data. This shows that

while the experimental data has a preferred solution for the tensor charge, this is

a weak preference as the experimental data is not directly sensitive to the full mo-

ment. Before coming to a conclusion about the compatibility between lattice QCD

and experimental data, one needs first to include both in the fit. One should only be

concerned if the description of the lattice data remains poor even after including it in

the fit. Both this analysis and the JAM3D analysis find that it is possible to include

the lattice QCD data, and the resulting x-dependence of the transversity PDFs (from

Fig. 5.14 and Fig. 5.16) is similar. Thus we conclude that there is no “transverse

spin puzzle,” and that the collinear DiFF, TMD, and lattice QCD approaches are all

compatible. In the future, a simultaneous analysis of all three approaches can prove

this definitively.
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Figure 5.13: Extracted transversity valence PDFs. Transversity PDFs huv
1 and hdv1

plotted as a function of x at the scale Q2 = 4 GeV2. The “Baseline” result is shown in
red, while the “Published only” and “SIDIS only” results are shown in blue and green,
respectively (see Table 5.4). The Soffer Bound is indicated by the dashed pink lines.
Note that the PDFs are multiplied by a factor of x.

159



Figure 5.14: Extracted transversity valence PDFs compared to other groups.
Transversity PDFs huv

1 and hdv1 plotted as a function of x at the scale Q2 = 4 GeV2. The
“Baseline” result is shown in red, and is compared to the result from JAM3D (without
lattice QCD) [34] (green bands) and the result of RB18 [32] (dashed blue lines). The
Soffer Bound is indicated by the dashed pink lines. Note that the PDFs are multiplied
by a factor of x.
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Figure 5.15: Extracted transversity antiquark PDFs. Transversity PDF hū1 = −hd̄1
plotted as a function of x at the scale Q2 = 4 GeV2. In our analysis we assume this
relationship between the antiquark PDFs (see Subsection 5.3.3). The “Baseline” result
is shown in red, while the Soffer Bound is indicated by the dashed pink lines. Note that
the PDFs are multiplied by a factor of x.
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Figure 5.16: Extracted transversity valence PDFs with lattice QCD. Transversity
PDFs huv

1 and hdv1 plotted as a function of x at the scale Q2 = 4 GeV2. The “Baseline”
result is shown in red, while the “Lattice” result is shown in blue (see Table 5.4). The
Soffer Bound is indicated by the dashed pink lines. Note that the PDFs are multiplied
by a factor of x.
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Figure 5.17: Extracted tensor charges compared to phenomenology. The tensor
charges δu, δd, and gT at the scale Q2 = 4 GeV2. The “Baseline” result is shown
in red, while the “Published,” “SIDIS only,” and “RB18-like” results are shown in blue,
green, and gray respectively. δu and δd are compared to the JAM3D [34] result without
Lattice QCD (magenta) and the result of RB18 [32] (black point). gT is also compared
to other phenomenological extractions [31, 298–302] (black points) and the result from
Dyson-Schwinger [340] (cyan).

Figure 5.18: Extracted tensor charges compared to lattice QCD. The tensor charges
δu, δd, and gT at the scale Q2 = 4 GeV2. The “Lattice” result with δu and δd
from Ref. [37] included in the fit is shown in red and is compared to lattice QCD
results [35–37,297] (magenta).
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5.7 Summary

In this chapter we have presented the results of a simultaneous global QCD anal-

ysis of DiFFs, IFFs, and transversity PDFs [60]. We have also proposed a new

definition for the unintegrated DiFFs that is compatible with the probability inter-

pretation of collinear DiFFs and derive the LO evolution equations with this new

definition [59]. We include, for the first time, the BELLE measurement on the e+e−

cross section [333], the STAR measurement at
√
s = 500 GeV [339], and prelimi-

nary data from STAR at
√
s = 200 GeV [338]. The data from BELLE provide the

first direct experimental information on the unpolarized DiFFs, and allow for global

analyses to reduce (but not eliminate) dependence on event generators to constrain

these functions. The new data from STAR cause the up (down) transversity PDF to

increase (decrease), moving our phenomenological results closer to those from lattice

QCD. Even though several aspects of our analysis differ from the approach used by

the Pavia group, our extracted tensor charges from experiment are in good agreement

with RB18 [32] which also used the DiFF channel to extract the transversity PDFs.

Upon including the lattice QCD measurements of δu and δd from ETMC [37], we

find good agreement between the lattice QCD results and experiment. The remaining

tension could be attributed to approximations in our analysis, particularly the fact

that it is only LO in the strong coupling, or to underestimated systematic uncertain-

ties on the lattice QCD results. We note that JAM3D [34] also found agreement with

lattice QCD. This fact combined with our analysis strongly indicates that the three

approaches (DiFF extraction used here and in RB18 [32], TMD extraction used by

JAM3D, and lattice QCD) are in fact reconcilable, and that there is no “transverse

spin puzzle.” A simultaneous analysis of both the DiFF and TMD channels, with

lattice QCD included, would provide a definitive test of this hypothesis.
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CHAPTER 6

GENERALIZED PARTON

DISTRIBUTION FUNCTIONS

First-principles calculations of PDFs using lattice QCD have remained challenging

due to their explicit time-dependence. As a result, in the past almost all related

studies in lattice QCD have focused on moments of PDFs which are defined through

time-independent local operators. Meanwhile, the full dependence of PDFs on the

parton momentum fraction x has remained elusive.

The recently proposed quasi parton distributions (quasi-PDFs) offer a way to di-

rectly access the x-dependence of the PDFs in lattice QCD [82, 341]. Quasi-PDFs

are defined through spatial equal-time operators that can be computed on four-

dimensional Euclidean lattices. They reduce to their corresponding light-cone PDFs

if the hadron momentum P 3 = |P⃗ | → ∞, prior to renormalization. However, for lat-

tice calculations one first renormalizes, and P 3 is finite. This leads to two sources of

discrepancies between quasi-PDFs and light-cone PDFs: higher twist corrections that

are suppressed by powers of 1
P 3 , and different ultraviolet (UV) behavior for these two

types of PDFs. The UV disparities can be cured order by order in perturbative QCD

through a so-called matching procedure — see for instance Refs. [342–344]. Other

approaches for computing the x-dependence of PDFs and related quantities have also

been suggested [83, 84, 345–354]. Some of them are closely related to the concept of

quasi-PDFs.

By now there has been important progress in understanding the renormalization

of quasi-PDFs [85,355–366]. A variety of other aspects of quasi-PDFs and, generally,

Euclidean correlators have also been extensively studied [367–394]. In particular,
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the first lattice QCD results for quasi-PDFs and related quantities can be considered

milestones in this field [37,84,85,359,362,395–433], with results on higher twists [434–

437], parton distribution amplitudes [399, 403, 409, 438–442], and TMDs [443–448].

Additionally, the convergence of quasi-PDFs to the corresponding light-cone PDFs

has been explored in several models [61, 449–455]. The progress in this field was

recently reviewed in Refs. [456–460].

As already pointed out in Ref. [82], the concept of quasi-distributions is not limited

to forward PDFs. For example, generalized parton distributions (GPDs) [461–465]

could also be addressed in this approach. A number of compelling motivations to

study GPDs exist, with many details to be found in various review articles [26–28,

466–469]. These reasons include the facts that GPDs provide 3D images of hadrons

[470–473], provide access to the angular momenta of partons [462], and are related

to pressure and shear forces inside hadrons [474–476]. While information on GPDs

can be extracted from processes such as deep virtual Compton scattering [461–464,

477] and hard exclusive meson production [465,478,479], such an extraction presents

complicated issues [480].

In this situation, reliable information from lattice QCD on GPDs using quasi dis-

tributions is very helpful. Previous lattice QCD calculations provided information

only on the lowest moments of GPDs [481–485], but in recent years simulations at

the physical point have become available [486–499]. The quasi-GPD approach can be

used to gain information on the x dependence of GPDs. In Refs. [500–506] the per-

turbative matching for quasi-GPDs was studied, while model studies were performed

in Refs. [61,62,507,508]. The first lattice QCD studies have also been performed for

the pion [509] and the nucleon [510–516].

In this chapter, which is based on Refs. [61, 62], we present the results for quasi-

distributions in the Scalar Diquark Model (SDM), including the quasi-GPDs corre-

sponding to the eight leading twist light-cone GPDs as well as their forward limits

which, for specific quasi-GPDs, reduce to the quasi-PDFs. We present analytical

and numerical results for the quasi-GPDs and quasi-PDFs. The convergence of the

quasi-GPDs to their corresponding GPDs in the large momentum limit is tested, as

well as the dependence of the results on the input parameters of the model. Finally,

we compare the moments of the quasi-GPDs to predictions based on spin sum rules

and momentum dependence.
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6.1 Definition of GPDs

The definition for twist-2 light-cone GPDs of quarks within a spin-1
2

hadron is given

by a Fourier transform of off-forward matrix elements of bi-local quark operators (see

for instance Ref. [27])1,

F [Γ](x,∆;λ, λ′) =
1

2

∫
dz−

2π
eik·z⟨p′, λ′|ψ̄(− z

2
) ΓW(− z

2
, z
2
)ψ( z

2
)|p, λ⟩

∣∣∣∣
z+=0,z⃗⊥=0⃗⊥

. (6.1)

In Eq. (6.1), Γ denotes a generic gamma matrix, and the Wilson line

W(− z
2
, z
2
)

∣∣∣∣
z+=0,z⃗⊥=0⃗⊥

= P exp

(
− igs

∫ z−

2

− z−

2

dy−A+(0+, y−, 0⃗⊥)

)
, (6.2)

ensures the color gauge invariance of the operator, where P indicates path-ordering

and gs the strong coupling constant. The incoming (outgoing) hadron state in

Eq. (6.1) is characterized by the 4-momentum p (p′) and the helicity λ (λ′). In this

context, common kinematic variables are defined as

P ≡ 1

2
(p+ p′) , ∆ ≡ p′ − p , t ≡ ∆2 , ξ ≡ p′+ − p+

p′+ + p+
= − ∆+

2P+
. (6.3)

We limit our discussion of the skewness ξ to ξ ≥ 0, as ξ is non-negative for all known

physical processes that allow access to GPDs. We work in a symmetric frame of

reference where P⃗⊥ = 0 and take P 3 to be positive and large. The variable t is

related to ξ and ∆⃗⊥ through

t = − 1

1− ξ2
(4ξ2M2 + ∆⃗2

⊥) , (6.4)

where M is the nucleon mass. Eq. (6.1) represents a leading-twist matrix element

if Γ contains one plus-index. The eight corresponding quark GPDs are then defined

via (see for instance Refs. [27,517])

F [γ+](x,∆;λ, λ′) =
1

2P+
ū(p′, λ′)

[
γ+H(x, ξ, t) +

iσ+µ∆µ

2M
E(x, ξ, t)

]
u(p, λ), (6.5)

1For a generic four-vector v we denote the Minkowski components by (v0, v1, v2, v3) and the
light-cone components by (v+, v−, v⃗⊥), with v+ = 1√

2
(v0+ v3), v− = 1√

2
(v0− v3) and v⃗⊥ = (v1, v2).
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F [γ+γ5](x,∆;λ, λ′) =
1

2P+
ū(p′, λ′)

[
γ+γ5H̃(x, ξ, t) +

∆+γ5
2M

Ẽ(x, ξ, t)

]
u(p, λ), (6.6)

F [iσj+γ5](x,∆;λ, λ′) = −iε
−+ij

2P+
ū(p′, λ′)

[
iσ+iHT (x, ξ, t) +

P+∆i
⊥

M2
H̃T (x, ξ, t)

+
γ+∆i

⊥ −∆+γi⊥
2M

ET (x, ξ, t) (6.7)

−P
+γi⊥
M

ẼT (x, ξ, t)

]
u(p, λ) ,

where u(p, λ) (ū(p′, λ′)) is the helicity spinor for the incoming (outgoing) hadron and

σµν = i
2
(γµγν − γνγµ). We adopt the convention of ε0123 = 1. The quarks are

unpolarized in the case of the vector GPDs H and E, longitudinally polarized for H̃

and Ẽ, and transversely polarized for HT , ET , H̃T and ẼT . In Eq. (6.7), because of

the relation iσµνγ5 = −1
2
ϵµναβσαβ, one may also work with the matrix iσj+ (instead of

iσj+γ5) to define chiral-odd quark GPDs. A generic GPD depends upon the average

longitudinal momentum fraction x = k+

P+ , as well as ξ and t. By means of Eq. (6.4) one

can instead consider light-cone GPDs as function of x, ξ and ∆⃗⊥, and these variables

are chosen for the numerical evaluations of the GPDs in Section 6.3. It is noted that

in general the support region in x for the light-cone GPDs is −1 ≤ x ≤ 1.

Quasi-GPDs, on the other hand, are defined through an equal-time spatial corre-

lation function [82],

F
[Γ]
Q (x,∆;λ, λ′;P 3) =

1

2

∫
dz3

2π
eik·z

× ⟨p′, λ′|ψ̄(− z
2
) ΓWQ(− z

2
, z
2
)ψ( z

2
)|p, λ⟩

∣∣∣∣
z0=0,z⃗⊥=0⃗⊥

, (6.8)

where the Wilson line is given by,

WQ(− z
2
, z
2
)

∣∣∣∣
z0=0,z⃗⊥=0⃗⊥

= P exp

(
− igs

∫ z3

2

− z3

2

dy3A3(0, 0⃗⊥, y
3)

)
. (6.9)

For a given light-cone GPD, we consider two distinct definitions of its corresponding

quasi-GPD. The counterparts of Eqs. (6.5), (6.6) and (6.7) are

F [γ0](x,∆;λ, λ′;P 3) =
1

2P 0
ū(p′, λ′)

[
γ0HQ(0)(x, ξ, t;P

3)
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+
iσ0µ∆µ

2M
EQ(0)(x, ξ, t;P

3)

]
u(p, λ), (6.10)

F [γ3γ5](x,∆;λ, λ′;P 3) =
1

2P 0
ū(p′, λ′)

[
γ3γ5H̃Q(3)(x, ξ, t;P

3)

+
∆3γ5
2M

ẼQ(3)(x, ξ, t;P
3)

]
u(p, λ), (6.11)

F [iσj0γ5](x,∆;λ, λ′;P 3) = −iε
03ij

2P 0
ū(p′, λ′)

[
iσ3iHT,Q(0)(x, ξ, t;P

3)

+
γ3∆i

⊥ −∆3γi⊥
2M

ET,Q(0)(x, ξ, t;P
3)

+
P 3∆i

⊥
M2

H̃T,Q(0)(x, ξ, t;P
3) (6.12)

−P
3γi⊥
M

ẼT,Q(0)(x, ξ, t;P
3)

]
u(p, λ) .

One can define HQ(3) and EQ(3) through Eq. (6.10) using the replacement 0→ 3 (see

also Ref. [61]), while H̃Q(0) and ẼQ(0) are defined through Eq. (6.11) with 0 ↔ 3.

The chiral-odd quasi-GPDs HT,Q(3), ET,Q(3), H̃T,Q(3), and ẼT,Q(3) are defined through

Eq. (6.12) with 0→ 3, with the exception that ε03ij should be left as is. The factor 1
P 0

on the r.h.s. of Eq. (6.11) (which appears counterintuitive due to the γ3γ5 projection)

is necessary to be consistent with the definition of the corresponding helicity quasi-

PDF, such that the definitions of all (sixteen) quasi-GPDs are consistent with the

corresponding forward limits. It has been argued that the gamma matrices used

in Eq. (6.10), Eq. (6.11) and Eq. (6.12) provide optimal behavior of the associated

operators under renormalization [358,378]. By taking the forward limit of Eqs. (6.10)–

(6.12) one recovers the most frequently used definitions (as of the writing of Ref. [62])

of the quasi-PDFs f1,Q(0), g1,Q(3) and h1,Q(0). We will return to this point in Section 6.5.

We now briefly discuss the behavior of GPDs under the replacement ξ → −ξ.
Hermiticity implies that all light-cone GPDs but ẼT are even functions of ξ, while

ẼT is an odd function of ξ [27, 517]. We find the exact same (model-independent)

behavior for the corresponding quasi-GPDs. Exploiting the symmetry of quasi-GPDs

under ξ → −ξ provides more statistics for lattice calculations [512].

Apart from the dependence on ξ and t, quasi-GPDs are functions of x = k3

P 3 .

The latter variable is of course different from the average plus-momentum k+

P+ that
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appears for light-cone GPDs, and it is not possible to relate these two momentum

fractions in a model-independent manner. In Section 6.3.2 we study the impact of

their difference in the cut-graph approach in the diquark spectator model. Note that

the support region for the quasi-GPDs is given by −∞ < x <∞. For the calculations

we also utilize the relation P 0 = δP 3 where the variable

δ ≡

√
1 +

M2 − t/4
(P 3)2

. (6.13)

is frequently used below. Moreover, one has P · ∆ = 0, from which one can obtain

∆0 = −2ξP 3.

6.2 Analytical Results in Scalar Diquark Model

In this section we present the analytical results in the SDM. The SDM for a relativistic

spin-1
2

particle is specified through the Lagrange density

LSDM = Ψ̄
(
i /∂−M

)
Ψ+ψ̄

(
i /∂−mq

)
ψ+

1

2

(
∂µφ∂

µφ−m2
s

)
+g
(
Ψ̄ψ φ+ψ̄Ψφ

)
, (6.14)

with /∂ = ∂µγ
µ. In Eq. (6.14), Ψ denotes the (fermionic) hadron field, ψ the quark

field, and φ the scalar diquark field, while mq and ms are the quark and diquark

masses, respectively. For the hadron to be stable the masses need to satisfy the

relation M < ms+mq. The main ingredient of the model is the hadron-quark-diquark

vertex with the coupling constant g. In this framework one can carry out perturbative

calculations. All the model results for PDFs discussed below are of O(g2), which is

the lowest nontrivial order. We do not consider virtual diagrams which contribute

for x = 1 only. Diquark spectator models have been used frequently to study various

aspects of the nucleon structure — see for instance Refs. [517–521]. Often, scalar and

vector diquarks have been involved simultaneously in order to obtain distributions

of both up quarks and down quarks in the nucleon. In addition, the nucleon-quark-

diquark vertices have frequently been multiplied by form factors. By so doing one

can eliminate UV divergences of parton correlation functions, and the model becomes

more flexible due to additional parameters. On the other hand, the model then no

longer follows from a Lagrange density. The first model calculation of quasi-PDFs was

carried out in such a type of diquark model [449] (see also Ref. [450]). We ultimately
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find that the results of our study are largely insensitive to the type of the diquark. The

following sections will focus on the scalar diquarks, while the axial vector diquarks

will be discussed in Section 6.4. We take the model as defined through Eq. (6.14) and

use a cutoff for the transverse quark momenta.

6.2.1 Results for light-cone GPDs

We begin with the results for the light-cone GPDs. To the lowest nontrivial order in

the SDM, the correlator in Eq. (6.1) takes the form

F [Γ](x,∆;λ, λ′) =
i g2

2(2π)4

∫
dk− d2k⃗⊥

×
ū(p′, λ′)

(
/k + /∆

2
+mq

)
Γ
(
/k − /∆

2
+mq

)
u(p, λ)

DGPD

, (6.15)

where g denotes the strength of the nucleon-quark-diquark vertex, and

DGPD =

[(
k+

∆

2

)2
−m2

q + iε

] [(
k− ∆

2

)2
−m2

q + iε

] [
(P − k)2−m2

s + iε
]
. (6.16)

The light-cone GPDs are derived through Gordon identities and the k− integral is

performed via contour integration. The result for the GPD H can be cast in the form

H(x, ξ, t) =



0 (−1 ≤ x ≤ −ξ) ,

g2(x+ ξ)(1 + ξ)(1− ξ2)
4(2π)3

∫
d2k⃗⊥

NH

D1D
−ξ≤x≤ξ
2

(−ξ ≤ x ≤ ξ) ,

g2(1− x)(1− ξ2)
2(2π)3

∫
d2k⃗⊥

NH

D1D
x≥ξ
2

(ξ ≤ x ≤ 1) ,

(6.17)

and corresponding expressions hold for the other GPDs. The following is a compila-

tion of the numerators of all the leading-twist light-cone GPDs in the SDM:

NH = k⃗2⊥ + (mq + xM)2 + (1− x)2
t

4
− (1− x)ξt

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

, (6.18)

NE = 2(1− x)M

[
mq +

(
x+ 2ξ

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

)
M

]
, (6.19)
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NH̃ = − k⃗2⊥ + (mq + xM)2 − (1− x)2
t

4

+ ξ
[
4M(mq + xM) + (1− x)t

] k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

, (6.20)

ξNẼ = 2M

[
(1− x)ξ(mq +M)

+ 2
[
(1− ξ2)mq + (x− ξ2)M

] k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

]
, (6.21)

NHT
= k⃗2⊥ − 2

(k⃗⊥ · ∆⃗⊥)2

∆⃗2
⊥

+ (mq + xM)2 − (1− x)2
t

4

+ ξ
[
4M(mq + xM) + (1− x)t

] k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

, (6.22)

NET
= 2M

[
4M

k⃗2⊥∆⃗2
⊥ − 2 (k⃗⊥ · ∆⃗⊥)2

(∆⃗2
⊥)2

+

(
1− x− 2ξ

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

)
(mq +M)

]
, (6.23)

NH̃T
= −M2

[
4(1− ξ2) k⃗

2
⊥∆⃗2

⊥ − 2 (k⃗⊥ · ∆⃗⊥)2

(∆⃗2
⊥)2

+ (1− x)

(
1− x− 4ξ

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

)]
, (6.24)

NẼT
= 4M

[
2ξM

k⃗2⊥∆⃗2
⊥ − 2 (k⃗⊥ · ∆⃗⊥)2

(∆⃗2
⊥)2

− (mq + xM)
k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

]
. (6.25)

The denominators in Eq. (6.17) are given by

D1 = (1 + ξ)2k⃗2⊥ +
1

4
(1− x)2∆⃗2

⊥ − (1− x)(1 + ξ)k⃗⊥ · ∆⃗⊥

+ (1− x)(1 + ξ)m2
q + (x+ ξ)(1 + ξ)m2

s − (1− x)(x+ ξ)M2 ,

D−ξ≤x≤ξ
2 = ξ(1− ξ2)k⃗2⊥ +

1

4
(1− x2)ξ∆⃗2

⊥ + x(1− ξ2)k⃗⊥ · ∆⃗⊥ (6.26)

+ ξ(1− ξ2)m2
q − ξ(x2 − ξ2)M2 ,

Dx≥ξ
2 = (1− ξ)2k⃗2⊥ +

1

4
(1− x)2∆⃗2

⊥ + (1− x)(1− ξ)k⃗⊥ · ∆⃗⊥

172



+ (1− x)(1− ξ)m2
q + (x− ξ)(1− ξ)m2

s − (1− x)(x− ξ)M2 .

The light-cone GPDs in the SDM can also be extracted from the results for the

generalized transverse momentum dependent parton distributions listed in Ref. [29],

which are consistent with the results above. The light-cone GPDs vanish for −1 ≤
x ≤ −ξ due to the absence of antiquarks to O(g2) in the SDM. We emphasize that

the positions of the k− poles in Eq. (6.16) depend on x. This leads to different

analytical expressions for the light-cone GPDs in the ERBL and DGLAP regions.

The GPDs remain continuous at the boundaries x = ± ξ between these regions (see

also Ref. [61]), though their derivatives are discontinuous. Note also that spectator

models typically lead to discontinuous higher twist GPDs [522, 523]. The GPD Ẽ

exhibits a singularity as ξ → 0 which is why we show ξẼ in Eq. (6.21) and later on

for the numerics.

Our model results must satisfy the symmetry behavior under the replacement

ξ → −ξ discussed in Section 6.1 above. In order to verify that the results pass this

test, it is necessary to replace the integration variable k⃗⊥ with −k⃗⊥. One then finds

that the numerators in Eqs. (6.18)–(6.25) are indeed even under ξ → −ξ except the

one for ẼT , which is odd under this transformation. The analysis of the denominators

requires more care. In order to locate the position of the poles in the complex k−-

plane, and hence to arrive at the above expressions of the light-cone GPDs, we have

considered ξ > 0. Keeping this in mind, one can verify that ξ → −ξ switches the

position of the poles of the quark propagators only such that the denominators in the

ERBL and DGLAP regions are even in ξ. We also note that our analytical results for

the quasi-GPDs below show the exact same behavior under ξ → −ξ as the respective

light-cone GPDs.

In the SDM to O(g2), all the leading-twist light-cone GPDs are UV-finite, except

H and H̃. We consider the fact that the chiral-odd GPD HT is UV-finite to be an

artifact of the SDM. In the quark-target model in perturbative QCD this function

shows the well-known UV-divergence [501,517]. For the numerics we impose a cut-off

on the transverse quark momenta on all the light-cone GPDs as well as the (UV-finite)

quasi-GPDs.
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6.2.2 Results for quasi-GPDs

The quasi-GPD correlator in Eq. (6.8) in the SDM reads

F
[Γ]
Q (x,∆;λ, λ′;P 3) =

i g2

2(2π)4

∫
dk0 d2k⃗⊥ (6.27)

×
ū(p′, λ′)

(
/k + /∆

2
+mq

)
Γ
(
/k − /∆

2
+mq

)
u(p, λ)

DGPD

.

We again use Gordon identities to obtain the quasi-GPDs. Before carrying out the

k0 integral one has

HQ(0/3)(x, ξ, t;P
3) =

i g2P 3

(2π)4

∫
dk0 d2k⃗⊥

NH(0/3)

DGPD

, (6.28)

and corresponding expressions for the other quasi-GPDs. The numerators for the

unpolarized quasi-GPDs HQ(0/3) and EQ(0/3), derived in [61], are given by:

NH(0) = δ(k0)2 − 2

P 3

[
x(P 3)2 −mqM − x

t

4
− 1

2
δξt

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

]
k0

+ δ

[
x2(P 3)2 + k⃗ 2

⊥ +m2
q + (1− 2x)

t

4
− δξt k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

]
, (6.29)

NH(3) = − (k0)2 +
2

δP 3

[
x
(
(P 3)2 +M2

)
− t

4

]
k0 − x2(P 3)2 + k⃗ 2

⊥

+ mq

(
mq + 2xM

)
+
t

4
− (1− x)

ξt

δ

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

, (6.30)

NE(0) = −2Mδ

(
mq + xM + 2Mδξ

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

)(
k0

δP 3
− 1

)
, (6.31)

NE(3) = 2(1− x)M

(
M

δP 3
k0 +mq + 2

Mξ

δ

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

)
. (6.32)

The numerators for the case of longitudinal quark polarization, corresponding to the

quasi-GPDs H̃Q(0/3) and ẼQ(0/3) and derived in [62], are given by:

NH̃(0) = −(k0)2 + 2k0
[
xδP 3 − 2ξ

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

(1− δ2)P 3

]
− k⃗2⊥ −

t

4

174



− x2(P 3)2 + 2x(1− δ2)(P 3)2 + 2xM(mq +M) +m2
q

+ 4δξ
k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

[
(1− δ2)(P 3)2 +M(mq +M)

]
, (6.33)

NH̃(3) = δ(k0)2 + 2
k0

P 3

[
(1− x− δ2)(P 3)2 +M(mq +M)

]
+ δ

[
− k⃗2⊥ −

t

4
+ x2(P 3)2 +m2

q

]
+ 4ξ

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

[
(1− x)(1− δ2)(P 3)2 +M(mq +M)

]
, (6.34)

ξNẼ(0) = 4k0M2 1

P 3

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

+ 2Mξ(1− x)(mq +M)

− 4δM
k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

[
Mξ2 −mq(1− ξ2)

]
, (6.35)

ξNẼ(3) = −2k0
ξ

P 3
M(mq +M) + 2δξM(mq +M)

− 4M
k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

[
M(ξ2 − x)−mq(1− ξ2)

]
. (6.36)

Note that the quasi-GPDs ẼQ(0/3) have a pole at ξ = 0, just like their light-cone coun-

terpart. We next list the numerators of the quasi-GPDs that appear for transverse

quark polarization derived in [62]:

NHT (0) = δ(k0)2 − k0

P 3

[
∆⃗2

⊥
2
− 2mqM +

(
2x− 2ξ2(1− δ2)

)
(P 3)2

]
+ δ

[
k⃗2⊥ − 2

(k⃗⊥ · ∆⃗⊥)2

∆⃗2
⊥

+
∆⃗2

⊥
4

+m2
q

]
+ δ

[
x2 − ξ2(1− δ2)

]
(P 3)2

− 4ξ
k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

[
(x− ξ2)(1− δ2)(P 3)2 −mqM +

∆⃗2
⊥

4

]
, (6.37)

NHT (3) = −(k0)2 − 2k0
[
2ξ(1− δ2)P 3 k⃗⊥ · ∆⃗⊥

∆2
⊥
− xδP 3

]
k⃗2⊥ − 2

(k⃗⊥ · ∆⃗⊥)2

∆⃗2
⊥

+ (1− 2x)
∆⃗2

⊥
4

+m2
q + 2xmqM − (P 3)2

[
x2 + (1− 2x)ξ2(1− δ2)

]
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− 4δξ
k⃗⊥ · ∆⃗⊥

∆2
⊥

[
∆⃗2

⊥
4
−mqM − ξ2(1− δ2)(P 3)2

]
, (6.38)

NH̃T (0) = δNH̃T (3) , (6.39)

NH̃T (3) = −4M2(1− ξ2) k⃗
2
⊥∆⃗2

⊥ − 2 (k⃗⊥ · ∆⃗⊥)2

(∆⃗2
⊥)2

− k0

δP 3

[
2δξ

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥
− (1− x)

]
M2

+ 2
ξ

δ

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

[
(1− x) + δ2

]
M2 − (1− x)M2 , (6.40)

NET (0) = 8δM2 k⃗
2
⊥∆⃗2

⊥ − 2 (k⃗⊥ · ∆⃗⊥)2

(∆⃗2
⊥)2

− 2δM(mq +M)

[
k0

δP 3
− 1

]

− 4ξM(mq +M)
k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

, (6.41)

NET (3) = 8M2 k⃗
2
⊥∆⃗2

⊥ − 2 (k⃗⊥ · ∆⃗⊥)2

(∆⃗2
⊥)2

+ 2(1− x)M(mq +M)

− 4δξM(mq +M)
k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

, (6.42)

NẼT (0) = 8δ2ξM2 k⃗
2
⊥∆⃗2

⊥ − 2 (k⃗⊥ · ∆⃗⊥)2

(∆⃗2
⊥)2

− 4δM(mq + xM)
k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

, (6.43)

NẼT (3) = 8
ξ

δ
M2 k⃗

2
⊥∆⃗2

⊥ − 2 (k⃗⊥ · ∆⃗⊥)2

(∆⃗2
⊥)2

− 4M(mq +
k0

δP 3
M)

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

. (6.44)

The quasi-GPDs H̃T,Q(0) and H̃T,Q(3) corresponding to two different Dirac structures

are related through Eq. (6.39). This is the only quasi-GPD whose two different

projections have such a simple relation. We repeat that all quasi-GPDs have support

in the range −∞ < x < ∞. However, for large P 3 they are all power-suppressed

outside the region −ξ ≤ x ≤ 1. We also observe that the numerators of the quasi-

GPDs ET,Q(3) and ẼT,Q(0) are the only ones that do not depend on k0.

The denominator DGPD can be written as

DGPD = (k0 − k01+)(k0 − k01−)(k0 − k02+)(k0 − k02−)(k0 − k03+)(k0 − k03−) , (6.45)

where the poles from the quark propagators, with 4-momenta (k − ∆
2

) and (k + ∆
2

),
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and from the spectator propagator are given by

k01± = −ξP 3 ±

√
(x+ δξ)2(P 3)2 +

(
k⃗⊥ −

∆⃗⊥

2

)2

+m2
q − iε , (6.46)

k02± = ξP 3 ±

√
(x− δξ)2(P 3)2 +

(
k⃗⊥ +

∆⃗⊥

2

)2

+m2
q − iε , (6.47)

k03± = δP 3 ±
√

(1− x)2(P 3)2 + k⃗2⊥ +m2
s − iε . (6.48)

It is important to realize that while the positions of the poles depend on x, they

never switch half planes. Specifically, k01−, k02− and k03− always lie in the upper half

plane, while the other three poles lie in the lower half plane. After performing the

k0 integral, one therefore has the same functional form for the quasi-GPDs for any

x, which implies that all quasi-GPDs are continuous as a function of x — in this

context, see also Ref. [61]. We have checked that for P 3 → ∞ the analytical results

of all quasi-GPDs reduce to the ones of the respective light-cone GPDs, the details

of which can be found in Appendix B.

6.2.3 Results for quasi-PDFs

Starting from the expressions of the light-cone GPDs and taking ∆ = 0 (which implies

ξ = t = 0), one obtains the following expressions for the light-cone PDFs:

f1(x) = H(x, 0, 0) =
g2(1− x)

2(2π)3

∫
d2k⃗⊥

× k⃗2⊥ + (mq + xM)2

[⃗k2⊥ + xm2
s + (1− x)m2

q − x(1− x)M2]2
, (6.49)

g1(x) = H̃(x, 0, 0) =
g2(1− x)

2(2π)3

∫
d2k⃗⊥

× −k⃗2⊥ + (mq + xM)2

[⃗k2⊥ + xm2
s + (1− x)m2

q − x(1− x)M2]2
, (6.50)

h1(x) = HT (x, 0, 0) =
g2(1− x)

2(2π)3

∫
d2k⃗⊥
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× (mq + xM)2

[⃗k2⊥ + xm2
s + (1− x)m2

q − x(1− x)M2]2
. (6.51)

Only three GPDs survive in this limit — E, Ẽ, ET and H̃T vanish because ∆ ap-

pears in their prefactor in the parameterizations in Eqs. (6.5), (6.6) and (6.7), while

ẼT drops out since ū′γiTu vanishes in the forward limit. The GPD H reduces to

the unpolarized PDF f1, whereas H̃ reduces to the helicity PDF g1 and HT to the

transversity PDF h1. Our results for the forward PDFs agree with the ones published

in Ref. [517]. In general, like for light-cone GPDs, the region of support for PDFs is

−1 ≤ x ≤ 1. In the SDM to O(g2), they also vanish for −1 ≤ x < 0. In [62] we give

a separate discussion for the point x = 0, where the forward PDFs in the SDM are

discontinuous.

For the quasi-PDFs one has

f1,Q(0/3)(x;P 3) =
ig2P 3

(2π)4

∫
dk0 d2k⃗⊥

Nf1(0/3)

DPDF

, (6.52)

and corresponding expressions for the other quasi-PDFs. The numerators are given

by

Nf1(0) = δ0(k
0)2 − 2k0

P 3

(
x(P 3)2 −mqM

)
+ δ0

(
k⃗2⊥ + x2(P 3)2 +m2

q

)
, (6.53)

Nf1(3) = −(k0)2 + k0
(

2xδ0P
3
)

+ k⃗2⊥ − x2(P 3)2 +mq

(
mq + 2xM

)
, (6.54)

Ng1(0) = −(k0)2 + k0
(

2xδ0P
3
)
− k⃗2⊥ − x2(P 3)2 +mq

(
mq + 2xM

)
, (6.55)

Ng1(3) = δ0(k
0)2 − 2k0

P 3

(
x(P 3)2 −mqM

)
+ δ0

(
− k⃗2⊥ + x2(P 3)2 +m2

q

)
, (6.56)

Nh1(0) = δ0(k
0)2 − 2k0

P 3

(
x(P 3)2 −mqM

)
+ δ0

(
x2(P 3)2 +m2

q

)
, (6.57)

Nh1(3) = −(k0)2 + k0
(

2xδ0P
3
)
− x2(P 3)2 +mq

(
mq + 2xM

)
, (6.58)

and the denominator reads

DPDF =
[
k2 −m2

q + iε
]2 [

(P − k)2 −m2
s + iε

]
. (6.59)

In Eqs. (6.53)–(6.58) we have used δ0 ≡ δ(t = 0). Like for quasi-GPDs, the support

range of quasi-PDFs is −∞ < x < ∞. Results for the quasi-PDFs associated with
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the gamma matrices γ3, γ3γ5, and iσj3γ5 were already presented in [449], but in the

so-called cut-graph approximation. The full calculation with all contributions will

be compared to the cut-graph approximation below. Note that we have calculated

all the forward distributions independently using a trace technique, and have found

complete agreement with the results obtained from the quasi-GPDs.

We now explicitly carry out some of the details of the contour integration for

the k0 integral in Eq. (6.52), where the poles are given by Eqs. (6.46) – (6.48) with

ξ = t = 0. In the forward limit one has double poles at k01± = k02±. Closing the

integration contour in the upper half plane gives contributions from the pole at k03−

and the double pole at k01− = k02−. In the case of f1,Q(0) the result of the k0 integration

reads

f1,Q(0)(x, P
3) = − g

2P 3

(2π)3

∫
d2k⃗⊥

[
Nf1(0)(k

0
3−)

(k03− − k01+)2(k03− − k01−)2(k03− − k03+)

+
N ′

f1(0)(k
0
1−)

(k01− − k01+)2(k01− − k03+)(k01− − k03−)

−
2Nf1(0)(k

0
1−)

(k01− − k01+)3(k01− − k03+)(k01− − k03−)

−
Nf1(0)(k

0
1−)

(k01− − k01+)2(k01− − k03+)2(k01− − k03−)

−
Nf1(0)(k

0
1−)

(k01− − k01+)2(k01− − k03+)(k01− − k03−)2

]
, (6.60)

where in one of the terms the derivative N ′
f1(0) ≡

d
dk0
Nf1(0) enters. For P 3 →∞ one

can recover the light-cone PDF f1 in Eq. (6.49) by using the expression in Eq. (6.60).

In this limit, in the region 0 ≤ x ≤ 1 only the first term in the square brackets of

Eq. (6.60) is leading. For x > 1 all terms are power-suppressed, while for x < 0 the

first and last term are leading but the leading powers of the two terms cancel each

other.

6.2.4 Cut-diagram Approach

In order to compute light-cone PDFs (and GPDs for ξ = 0) in diquark spectator

models one can use a cut-diagram approach with a single on-shell particle (diquark)

[517–521]. In this framework, one inserts in the PDF operator a sum over a complete

set of states between the quark fields and, for the calculation of real graphs to O(g2),
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restricts this sum to a single diquark. One can verify that this technique provides the

same result one finds by computing the correlator without inserting a complete set

of states right from the start and then performing the k− integration. On the other

hand, care has to be taken for quasi-PDFs. To illustrate this point we consider as an

example f1,Q(0) in the cut-diagram approach. One finds2

f1,Q(0),cut(x, P
3) =

g2

2(2π)4

∫
dk0d2k⃗⊥(2π)δ((P − k)2 −m2

s)Θ(P 0 − k0)

× ū(P )(/k +mq)γ
0(/k +mq)u(P )

[k2 −m2
q + iϵ][k2 −m2

q − iϵ]
, (6.61)

where the delta function and theta function ensure the on-shell diquark with positive

energy. Working out the numerator in Eq. (6.61) and using

δ((P − k)2 −m2
s)Θ(P 0 − k0) =

1

k03+ − k03−
δ(k0 − k03−), (6.62)

provides the result

f1,Q(0),cut(x, P
3) =

g2P 3

(2π)3

∫
d2k⃗⊥

1

k03+ − k03−
Nf1(0)(k

0)

[k2 −m2
q + iϵ][k2 −m2

q − iϵ]

∣∣∣∣
k0=k03−

= − g
2P 3

(2π)3

∫
d2k⃗⊥

Nf1(0)(k
0
3−)

(k03− − k01+)2(k03− − k01−)2(k03− − k03+)
. (6.63)

Obvious modifications to Eq. (6.63) give the results for the other quasi-PDFs. This

expression exactly agrees with the first term on the r.h.s. of Eq. (6.60), while the

other four terms are missing. The discussion in the paragraph after Eq. (6.60) also

implies that, for P 3 → ∞, one can recover the light-cone PDF for x ≥ 0, but not

for x < 0, from the result in Eq. (6.63). In the case of quasi-PDFs, the cut-diagram

approach [449,450] is therefore a purely phenomenological model that could be used

for x ≥ 0.

2In the cut-diagram approach the sign of the iϵ term in one of the quark propagators is different
from Eq. (6.59). But the difference does not matter as the point k2 = m2

q is not reached in this
method.
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6.3 Numerical Results in Scalar Diquark Model

In order to generate numerical results we must first specify the values of the input

parameters to the SDM. We use g = 1 for the strength of the nucleon-quark-diquark

coupling, with none of the general conclusions depending on the precise value of g.

Our “standard values” for the mass parameters are M = 0.939 GeV, ms = 0.7 GeV

and mq = 0.35 GeV. Elaborating on our choice of parameters, we mention that our

starting point comes from Ref. [521] where the value mq = 0.3 GeV was chosen and the

value ms = 0.822 GeV was found from the phenomenological fits of Refs. [524, 525].

We have therefore chosen values similar to these, but have adjusted so that the

convergence of the quasi distributions to the light-cone distributions is maximal. From

Fig. 4 in [61], one can see that the relative difference between the quasi and light-

cone f1 is quite sensitive to adjustments in ms. Thus it was important to reduce

the value of ms to ms = 0.7 GeV to achieve the best convergence. One can also see

that the convergence is barely affected by changes in mq, so we increase the value

of mq to mq = 0.35 GeV to satisfy ms + mq > M . In short, after exploring the

sensitivity of our results to variations in ms and mq, we maintain that such a choice

of the parameters, as discussed at length in Ref. [61], is “optimal” with regard to the

question of convergence of the quasi-distributions to their light-cone counterparts.

For most of our plots, the cut-off for the |⃗k⊥| integration is Λ = 1 GeV, and the

transverse momentum transfer is |∆⃗⊥| = 0. We also shall show some plots and

comment extensively on the dependence of the various distributions on Λ and |∆⃗⊥|.
We begin with discussing the PDFs.

6.3.1 Results for quasi-PDFs

Results for the quasi-PDFs f1,Q(0/3), g1,Q(0/3), and h1,Q(0/3) are shown in Fig. 6.1,

Fig. 6.2, and Fig. 6.3, respectively. Comparing the three plots, one qualitatively

observes the following features between them. First, for P 3 = 2 GeV and above, there

is not much difference between the two quasi-PDF definitions. Second, considerable

differences appear between quasi-PDFs and light-cone PDFs as x → 0 and x → 1.

As discussed in detail in Ref. [61], the discrepancy at small x is to be expected since

the light-cone PDFs are discontinuous at x = 0. The quasi-PDFs are continuous, but

for large P 3 must approach the corresponding light-cone PDF, which automatically

results in large deviations in the region around x = 0. To better illustrate the
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Figure 6.1: Quasi-PDF f1,Q. It is shown as a function of x for different values of P 3

and with ms = 0.70 GeV and mq = 0.35 GeV. The top row shows the absolute values
of f1,Q(0) (left) and f1,Q(3) (right) with the light-cone PDF f1 shown for comparison.
The bottom row shows the relative difference of the quasi-PDFs to the light-cone PDF.

discrepancy at large x we consider the relative difference, which in the case of f1 we

define as [61]

Rf1(0/3)(x;P 3) =
f1(x)− f1,Q(0/3)(x;P 3)

f1(x)
, (6.64)

and analogously for all other quasi-PDFs and quasi-GPDs. This quantity is also

shown in Figs. (6.1)–(6.3). For all three quasi-PDFs at P 3 = 2 GeV one can hardly

go above x = 0.8 for the relative difference to stay below 50%. We shed some more

light on the origin of the large-x discrepancy in Section 6.3.2.

In Fig. 6.4 we show, as an example, the dependence of f1 on the mass parameters

ms and mq. Our general findings in this context can be summarized as follows. The

impact of changing ms is typically larger. Specifically, discrepancies get somewhat

larger when increasing ms, especially in the large-x region. This feature is partly

related to the fact that increasing ms increases the difference between the momentum

fractions that enter the light-cone PDFs and quasi-PDFs. We refer to Section 6.3.2

for further discussion of this point.

Within the range mq ∈ [0.01, 0.35] GeV which we have explored, we find only
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Figure 6.2: Quasi-PDF g1,Q. Same as Fig. 6.1, except for the quasi-PDF g1(Q). Note
that in the bottom row the relative difference is only shown down to x = 0.1 due to the
pole in g1.

a mild dependence on mq. Analytically, this is caused by the fact that mq is small

compared to the other scales in the problem such as M , ms, P
3, and Λ. Transversity

is the only exception with regard to the mq dependence especially in the small-x

region. This can be understood from the analytical result in Eq. (6.51). For small

x, the quark mass term in the numerator dominates resulting in a larger sensitivity

to mq of this distribution compared to f1 and g1. The latter distributions have a k⃗ 2
⊥

in the numerator — in addition to the (mq + xM)2 term — which gives rise to the

(standard) logarithmic UV-divergence and, in particular, a very mild dependence on

mq. As already discussed above, the absence of the UV divergence for the transversity

is an artifact of the model, and therefore so is the stronger dependence of h1 on mq

at small x. For the GPDs we find a very similar overall pattern upon variation of ms

and mq. In the ERBL region there can be some deviations from this pattern. But

the effects are not very significant, and we therefore refrain from further elaborating

on them.

In Fig. 6.5, we show the relative difference for f1 for two values (1 GeV and 4 GeV)

of the cut-off Λ for the k⊥-integration. For x ≲ 0.5 the relative difference increases
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Figure 6.3: Quasi-PDF h1,Q. Same as Fig. 6.1, except for the quasi-PDF h1(Q).

with an increase of Λ. But at least for f1,Q(3) this effect is mild, given that the two

values of Λ are very different. We find very similar results for the transversity distri-

bution. On the other hand, for g1 the impact (on the relative difference) of changing Λ

is larger. This applies in particular in the region around the point at which g1 changes

sign — see Fig. 6.2. It is obvious from the definition in Eq. (6.64) that in such a case

the relative difference is not a very good measure. A very similar situation occurs

for GPDs if they switch sign. Overall, our choice Λ = 1 GeV typically minimizes the

difference between the quasi distributions and the light-cone distributions.

Also, the fact that some of the light-cone distributions have a logarithmic diver-

gence does not necessarily lead to a much poorer convergence as Λ increases, unless

one considers cut-off values much larger than 4 GeV. Thus our model can give a

faithful description of these distributions with 1 GeV < Λ < 4 GeV.

6.3.2 A particular higher twist contribution in the

cut-diagram approximation

We repeat that the two momentum fractions k+

P+ and k3

P 3 are different and that they

cannot be related in a model-independent way. In this section we denote the latter by
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Figure 6.4: Quasi-PDF f1,Q dependence on ms and mq. It is shown as a function
of x at P 3 = 2 GeV. On the left, mq = 0.35 GeV is held constant while ms is varied
with values 0.70, 1.00, 1.50 GeV. On the right, ms = 1 GeV is held constant while mq is
varied with values 0.01, 0.10, 0.35 GeV. The light-cone PDF f1 is shown for comparison.
The bottom row shows the relative difference of the quasi-PDF to the light-cone PDF
with the various combinations of ms and mq.

x̃, and study the impact of the difference between x and x̃ in the (model-dependent)

cut-graph approach in the SDM. In Fig. 6.6 we compare the full results for the quasi-

PDF f1,Q with those obtained in the cut-diagram approach — see the discussion in

Subsection 6.2.4. In the case of f1,Q(0) the analytical expressions are listed in Eq. (6.61)

and Eq. (6.63). For positive and not too small x, making the approximation of keeping

the spectator pole only does not have much influence. But more deviations occur as

x→ 0, and the quasi-PDFs computed in the cut-diagram approach actually get closer

to f1. On the other hand, this method cannot be used for x < 0. We repeat that,

even for large P 3, in the negative x region f spec.pole
1,Q(0/3) does not tend to zero.

In the cut-graph model one puts the di-quark spectator on-shell, that is, (P−k)2 =

m2
s (see Eq. (6.16)). One can then derive the relation

x̃ =
x

2
(1 + δ0) +

k⃗ 2
⊥ +m2

s − (1− x)M2

2(1− x)(1 + δ0)(P 3)2
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Figure 6.5: Quasi-PDF f1,Q dependence on Λ. Relative difference of the quasi-PDF
f1,Q to the light-cone PDF f1 as a function of x for different values of the cut-off Λ for
the k⊥-integration. The results are shown at P 3 = 2 GeV and with ms = 0.70 GeV
and mq = 0.35 GeV, with f1,Q(0) on the left and f1,Q(3) on the right.

Figure 6.6: Quasi-PDF f1,Q in cut-diagram approach. Comparison between the full

quasi-PDF f1,Q and the quasi-PDF in the cut-diagram approach f spec.pole
1,Q at P 3 = 2

GeV and with ms = 0.70 GeV and mq = 0.35 GeV. The quasi-PDF f1,Q(0) is shown
on the left while f1,Q(3) is shown on the right. The light-cone PDF f1 is shown for
comparison.

= x+
1

4(P 3)2

(
k⃗ 2
⊥ +m2

s

1− x
− (1− x)M2

)
+O

(
1

(P 3)4

)
. (6.65)

Obviously, the difference between x̃ and x is of order O(1/(P 3)2) and is therefore

power-suppressed. A numerical comparison of the two variables can be found in

Fig. 6.7. Their difference gets larger as ms increases, as can also be expected based on

Eq. (6.65). Most importantly, due to the 1/(1−x) factor, one finds x̃→∞ as x→ 1,

which implies very large differences between the two momentum fractions at large x

— see also Ref. [449]. One can therefore speculate that the considerable discrepancies

between the quasi-distributions and the corresponding light-cone distributions at large

x are mostly caused by the (huge) discrepancy between x̃ and x. In Fig. 6.8 we
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explore this point for f1. The quasi-PDF f1,Q(0) indeed provides, at large x, a better

agreement with the light-cone PDF, while this is not true for f1,Q(3), unless one goes

to extremely large x. In the case of g1 and h1 (not shown) we find that the “recipe” of

distinguishing between x̃ and x works better for g1,Q(3) and h1,Q(0), respectively. The

fact that, overall, this “recipe” does not lead to a much better agreement between

quasi-PDFs and light-cone PDFs (at large x) can be traced back to other higher twist

contributions in the cut-graph approach that also diverge for x→ 1.

Figure 6.7: Momentum fraction x̃ as a function of x. x̃ is given by Eq. (6.65) in the
cut-graph approach and is shown for different values of ms and at P 3 = 2 GeV and
k⊥ = 0.5 GeV.

Figure 6.8: Quasi-PDF f1,Q in cut-diagram approach with x and x̃. Comparison

between the quasi-PDF in the cut-diagram approach f spec.pole
1,Q evaluated at x and at

x̃ as defined in Eq. (6.65) at P 3 = 2 GeV and with ms = 0.70 GeV and mq = 0.35
GeV. The quasi-PDF f1,Q(0) is shown on the left while f1,Q(3) is shown on the right.
The light-cone PDF f1 is shown for comparison. Note that the curves for x̃ go to 0 as
x→ 1, as the light-cone distributions do.
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6.3.3 Results for quasi-GPDs

The results for the quasi-GPDs HQ and EQ are shown in Fig. 6.9 and Fig. 6.10,

respectively. As mentioned above, for P 3 ≳ 2 GeV it does not matter very much

whether one uses the definition involving γ0 or γ3. One finds that EQ(3) better matches

the light-cone GPD E in the large-x region, while EQ(0) matches more closely for

moderate x. Like for the quasi-PDFs, at very large x the quasi-GPDs do not converge

well to the respective light-cone GPDs. One could have anticipated this outcome for

HQ (due to its relation to f1,Q) but not necessarily for EQ. To better visualize,

especially for large x, how the quasi-GPDs and light-cone GPDs compare we show

their relative difference at ξ = 0.1 in Fig. 6.11. At large x, the results for the

relative difference are overall very similar to the PDF case. Moreover, the convergence

behavior ofHQ and EQ are mostly similar. (We do not read too much into the outcome

that EQ(0) behaves poorer in the large x region than the other quasi-GPDs.)

The remaining six quasi-GPDs are shown in Figs. 6.12 – 6.17 at ξ = 0.1. For

the skewness variable we have explored the range 0.01 ≤ ξ ≤ 0.4 and below briefly

comment on the ξ-dependence. Like in the case of quasi-PDFs, for P 3 ≳ 2 GeV there

is no clear indication as to which of the two definitions (for each quasi-GPD) one

should prefer. The convergence problem at large x persists for these quasi-GPDs as

well. We emphasize that this outcome is a robust feature of our model calculation. In

lattice calculations, the matching procedure could potentially improve the situation

at large x, as was observed for the quasi-PDFs [404, 405]. Whether this is a robust

feature of the lattice results after matching remains to be seen. We also note that,

in general, there is a tendency of the discrepancies at large x to increase when ξ gets

larger. The significance of this feature depends on the GPD under consideration, and

it is most pronounced for the quasi-GPDs ẼQ and ẼT,Q. This aspect is illustrated

via Fig. 6.18 which clearly shows an increase in the relative difference at large x for

larger values of ξ for the GPD Ẽ compared to the GPD H.

The plots in the Figs. 6.19 – 6.26 show the quasi-GPDs in the ERBL region for

ξ = 0.01 and ξ = 0.4. Generally, for small ξ one finds significant deviations between

the quasi-GPDs and the corresponding light-cone GPDs. This situation is the GPD

counterpart of the problem for quasi-PDFs around x = 0. For small ξ, the light-cone

GPDs rapidly approach zero at x = − ξ in a very narrow x-range, whereas the quasi-

GPDs are much smoother in that range. Once ξ is increased, we observe a (much)

better agreement between quasi-GPDs and the light-cone GPDs for a large fraction
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Figure 6.9: Quasi-GPD HQ. It is shown as a function of x for different values of
P 3 and ξ with ms = 0.70 GeV and mq = 0.35 GeV. The quasi-GPD HQ(0) is plotted
on the left, while HQ(3) is plotted on the right. The light-cone GPD H is shown for
comparison and the limits of the ERBL region (±ξ) are indicated by vertical dashed
lines.

of the ERBL region. To be more quantitative, we look at H̃Q(3) as an example, with

ξ = 0.01 at the point x = 0.01. From Fig. 6.21 we can see that the agreement is

extremely poor for P 3 = 4 GeV. For decent agreement (relative difference less than

20 %), one must go to P 3 values as high as 18 GeV, which is well beyond the present

reach of lattice QCD. On the other hand, if we instead choose ξ = 0.4 and focus on

the point x = 0.4, one finds decent agreement (as defined above) with P 3 values as

low as 1 GeV which are currently accessible in lattice QCD. This outcome suggests

that lattice calculations could provide very valuable information in the ERBL region,
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Figure 6.10: Quasi-GPD EQ. Same as Fig. 6.9, except for the quasi-GPD EQ.

provided that the skewness is not too small.

We have also studied the dependence of our results on the transverse momentum

transfer to the hadron |∆⃗⊥| or t, where Fig. 6.27 shows results for HQ(0) and EQ(0).

Apparently, at least at large x, the discrepancies get somewhat larger as |∆⃗⊥| is

increased. However, we also find that the relative difference as defined in Eq. (6.64)

is hardly affected at all when |∆⃗⊥| gets larger. This statement holds true for all

the other quasi-GPDs. In fact none of the general conclusions discussed above are

affected if |∆⃗⊥| is varied, where we have explored the range 0 GeV ≤ |∆⃗⊥| ≤ 2 GeV

or 0 GeV2 ≤ |t| ≤ 4 GeV2.
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Figure 6.11: Quasi-GPDs HQ and EQ relative to light-cone GPDs H and E. Relative
difference for the quasi-GPDs HQ and EQ to the light-cone GPDs H and E as a
function of x at P 3 = 2 GeV and ξ = 0.1 with ms = 0.70 GeV and mq = 0.35 GeV.
The differences for HQ(0) and EQ(0) are shown on the left, while the differences for
HQ(3) and EQ(3) are shown on the right.

6.3.4 Exploring different skewness variables

So far we have used the same skewness variable ξ for both the light-cone GPDs

and the quasi-GPDs. However, in the case of quasi-GPDs one could in principle

consider different variables to describe the longitudinal momentum transfer to the

hadron. Actually, in the matching calculations for quasi-GPDs the quantity ξ̃3 ≡
− ∆3

2P 3 was used [500–502]. The two variables are related via ξ̃3 = δξ, with δ from

Eq. (6.13). We emphasize that this relation is model-independent, which is in contrast

to the situation for the parton momentum fractions k+

P+ and k3

P 3 for which no model-

independent relation exists. Another possible skewness variable is ξ̃0 ≡ − ∆0

2P 0 = ξ
δ
,

though admittedly ξ̃0 is somewhat less natural than ξ̃3 due to the dependence of

quasi-GPDs on k3

P 3 . In any case, the difference between the three variables is a higher

twist effect that vanishes for P 3 → ∞. For finite P 3, however, the differences can

be substantial as illustrated in Fig. 6.28, and they are largest for large ξ. Note that

as ξ → 1 one has |t| → ∞, and therefore also δ → ∞. Here we want to explore the

impact of the difference between ξ, ξ̃3, and ξ̃0 on the quasi-GPDs.

In order to calculate quasi-GPDs using ξ̃0/3 one can no longer use Eq. (6.4), but

rather needs

t(ξ̃0) = − 2

ξ̃20

[
(1− ξ̃20)(P 3)2 − 2ξ̃20M

2

−
√

(1− ξ̃20)2(P 3)4 − ξ̃20(4M2 + ∆⃗2
⊥)(P 3)2

]
, (6.66)
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Figure 6.12: Quasi-GPD H̃Q. It is shown as a function of x for different values of P 3

with ξ = 0.1, ms = 0.70 GeV and mq = 0.35 GeV. The quasi-GPD H̃Q(0) is plotted

on the left, while H̃Q(3) is plotted on the right. The light-cone GPD H̃ is shown for
comparison and the limits of the ERBL region (±ξ) are indicated by vertical dashed
lines.

Figure 6.13: Quasi-GPD ξẼQ. Same as Fig. 6.12, except for the quasi-GPD ξẼQ.

t(ξ̃3) = 2

[
(1− ξ̃23)(P 3)2 +M2 − ∆⃗2

⊥
4

]
(6.67)

− 2

√
(1− ξ̃23)2(P 3)4 + 2(1 + ξ̃23)

(
M2 +

∆⃗2
⊥

4

)
(P 3)2 +

(
M2 +

∆⃗2
⊥

4

)2

,

to compute the Mandelstam variable t. For P 3 →∞, both Eq. (6.66) and Eq. (6.67)

reduce to Eq. (6.4), while non-negligible numerical differences exist when P 3 is finite.

From Fig. 6.28 one finds that the allowed range for ξ̃0 is smaller than [0, 1]. As a

consequence, t(ξ̃0) would become imaginary if in Eq. (6.66) one uses a value for ξ̃0

that is too large.

In Fig. 6.29 we examine the impact of choosing the different skewness variables

as follows. The light-cone GPDs, which enter the relative difference R in Eq. (6.64),
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Figure 6.14: Quasi-GPD HT,Q. Same as Fig. 6.12, except for the quasi-GPD HT,Q.

Figure 6.15: Quasi-GPD ET,Q. Same as Fig. 6.12, except for the quasi-GPD ET,Q.

are all evaluated for ξ = 0.4, while the quasi-GPDs are calculated using the three

different skewness variables ξ, ξ̃0 and ξ̃3 all at the value 0.4. One observes considerable

differences between the three cases, especially once P 3 is relatively low. Interestingly,

in the case of HQ(0) the relative difference is smaller for most of the DGLAP region (in

particular, in the range where the GPDs have their maximum) if one uses ξ̃3 instead

of ξ. We find this pattern for most of the quasi-GPDs, while in the ERBL region no

general pattern exists. The only outliers in that regard are EQ(0), ẼQ(0/3) and ET,Q(0),

where EQ(0) is shown in Fig. 6.29 as a representative case. We also observe that using

the variable ξ̃0 typically gives poorer convergence for the quasi-GPDs. This feature

is again most pronounced in the range where the GPDs are largest. Our conclusions

also hold for even larger values of ξ, where the numerical discrepancy between the

three skewness variables increases further — see Fig. 6.28.

We take a moment to briefly discuss the nature of two distinct higher twist effects

that we encounter in our model study. The higher twist effect associated with the

longitudinal momentum transfer to the target (relating ξ̃0/3 to ξ) is kinematical.

Such an effect, expressed through the parameter δ, is model-independent and simply
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Figure 6.16: Quasi-GPD H̃T,Q. Same as Fig. 6.12, except for the quasi-GPD H̃T,Q.

Figure 6.17: Quasi-GPD ẼT,Q. Same as Fig. 6.12, except for the quasi-GPD ẼT,Q.

describes the relationship between the variables P 0 and P 3. The impact of this effect,

however, on the individual GPDs is model-dependent. On the other hand, the higher

twist effect associated with the longitudinal parton momenta (relating x̃ to x) is a

dynamical one which stems from modeling the spectator as an onshell diquark. We

note that these effects are entirely separate from the higher twist effects associated

with QCD higher twist operators.

6.4 Axial-vector Diquark Results

It is well known that both a scalar diquark and an axial-vector diquark are needed

to describe the phenomenology of up quarks and down quarks in the nucleon — see,

for instance, Refs. [526–528]. In this section, we therefore explore contributions from

the axial-vector diquark. We repeat that we do not aim at a fine-tuned quantitative

description of the standard GPDs, but rather just focus on how well the quasi-GPDs

compare with their corresponding light-cone GPDs.
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Figure 6.18: Quasi-GPDs as a function of ξ at x = 0.8. Relative difference between
quasi-GPDs and light-cone GPDs as a function of ξ for different values of P 3 at x = 0.8
and with ∆⊥ = 0, ms = 0.7 GeV, and mq = 0.35 GeV. The difference for HQ(0) is

shown on the left, while ẼQ(3) is shown on the right. The relative difference at P 3 = 1
GeV is much larger than for P 3 ≥ 2 GeV and is not shown.

Figure 6.19: Quasi-GPD HQ in ERBL region. It is shown as a function of x for
different values of P 3 and with ms = 0.70 GeV and mq = 0.35 GeV. The results on the
left are at ξ = 0.01, while the results on the right are at ξ = 0.4. The light-cone GPD
H is shown for comparison.

In order to study the impact of the axial-vector diquark, we examine in detail the

effects on the GPD H. For the scalar diquark, the vertex factor is given by igs , where

gs is the scalar coupling constant, and the propagator is given by i
(P−k)2−m2

s+iε
. In

contrast, for the axial-vector diquark the vertex factor is given by iga√
2
γµγ5, where ga

is the axial vector coupling constant, and the propagator by idµν

(P−k)2−m2
a+iε

, where dµν

and ma are, respectively, the polarization tensor and mass of the axial-vector diquark.

There are several possible choices for the polarization tensor (see Ref. [521]), but we

choose the definition

dµν = −gµν +
P µP ν

m2
a

, (6.68)

which was analyzed in Ref. [518]. The other choices for the polarization tensor are
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Figure 6.20: Quasi-GPD EQ in ERBL region. Same as Fig. 6.19, except for the
quasi-GPD EQ(0).

Figure 6.21: Quasi-GPD H̃Q in ERBL region. Same as Fig. 6.19, except for the
quasi-GPD H̃Q(3).

explored in Refs. [520, 521, 529, 530]. We now replace the scalar diquark vertex and

propagator in the light-cone correlation function with the axial vector diquark vertex

and propagator. Note that with this replacement the light-cone correlation function

no longer follows from a Lagrange density, and thus this direct replacement is also a

part of our model for the axial vector diquark. The result is

F a[Γ](x,∆) =
ig2a

4(2π)4

∫
dk−d2k⃗⊥dµν

×
ū(p′, λ′)γµγ5(/k + /∆

2
+mq)Γ(/k + /∆

2
−mq)γ

νγ5u(p, λ)

Da
GPD

, (6.69)

where Da
GPD is the same as DGPD in Eq. (6.16) with the replacement ms → ma. For

the figures below we always choose ga = gs = 1 and ∆⃗⊥ = 0 GeV. We also use ma = 1

GeV as our standard value, as when quarks couple to a higher spin-state, the resulting

state tends to have a larger mass [521].
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Figure 6.22: Quasi-GPD ξẼQ in ERBL region. Same as Fig. 6.19, except for the
quasi-GPD ξẼQ(3).

Figure 6.23: Quasi-GPD HT,Q in ERBL region. Same as Fig. 6.19, except for the
quasi-GPD HT,Q(0).

For the light-cone GPD H, one again uses Γ = γ+. The result for the axial-vector

diquark is given by Eq. (6.17) with the replacement NH → Na
H , where

2Na
H =

(
2 +

M2

m2
a

+
t

4m2
a

)(
k⃗2⊥ +m2

q + x2M2
)

+ 2

[
4x− xM

2

m2
a

+ (2 + x)
t

4m2
a

]
mqM

+ (1 + x)

[
2(1 + x) + (1− 3x)

M2

m2
a

+ (1 + x)
t

4m2
a

]
t

4

+ (1 + x)

[
2− M2

m2
a

+
t

4m2
a

]
ξt
k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

. (6.70)

The quasi–GPD correlator for the axial-vector diquark is given by

F a[Γ](x,∆;P 3) =
ig2a

4(2π)4

∫
dk0d2k⃗⊥dµν (6.71)
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Figure 6.24: Quasi-GPD ET,Q in ERBL region. Same as Fig. 6.19, except for the
quasi-GPD ET,Q(0).

Figure 6.25: Quasi-GPD H̃T,Q in ERBL region. Same as Fig. 6.19, except for the
quasi-GPD H̃T,Q(0).

×
ū(p′, λ′)γµγ5(/k +

/∆

2
+mq)Γ(/k +

/∆

2
−mq)γ

νγ5u(p, λ)

Da
GPD

,

and the results for the axial-vector diquark are given by Eq. (6.28) with the replace-

ment NH(0/3) → Na
H(0/3), where

2

δ
Na

H(0) =

(
2 +

M2

m2
a

+
t

4m2
a

)
(k0)2

+
2

δP 3

[
− x
(

2 +
M2

m2
a

+
t

4m2
a

)
(P 3)2 +

(
4− M2

m2
a

+
t

4m2
a

)
mqM

+

(
2− M2

m2
a

+
t

4m2
a

)(
x
t

4
+
δ

2
ξt
k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

)]
k0

+

(
2 +

M2

m2
a

+
t

4m2
a

)(
k⃗2⊥ +

t

4
+m2

q + x2(P 3)2
)

+
mqM

m2
a

t
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Figure 6.26: Quasi-GPD ẼT,Q in ERBL region. Same as Fig. 6.19, except for the
quasi-GPD ẼT,Q(0).

+ 2

(
2− M2

m2
a

+
t

4m2
a

)(
x
t

4
+
δ

2
ξt
k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

)
, (6.72)

2Na
H(3) = −

(
2 +

M2

m2
a

+
t

4m2
a

)
(k0)2

+ 2δP 3

[(
2 +

M2

m2
a

+
t

4m2
a

)
x+

(
2− M2

m2
a

+
t

4m2
a

)
1 + x

δ2(P 3)2
t

4

]
k0

+

(
2 +

M2

m2
a

+
t

4m2
a

)(
k⃗2⊥ +

t

4
+m2

q − x2(P 3)2
)

+ 2

[
4x− xM

2

m2
a

+ (2 + x)
t

4m2
a

]
mqM

+

(
2− M2

m2
a

+
t

4m2
a

)
1 + x

δ
ξt
k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

. (6.73)

In Figs. 6.30 and 6.31 we show the results obtained for the quasi-GPD HQ.

Comparison with Figs. 6.9 and 6.19 above shows that the qualitative features of the

GPD H remain the same regardless of the type of diquark. Fig. 6.31 shows that

while convergence in the ERBL region is poor at extremely small values of ξ, it is

reasonable at larger values.

Based on this, we conclude that with the polarization tensor chosen as in Eq. (6.68),

there are non-negligible contributions to the GPDs and PDFs from the axial vector di-

quark. However, these contributions have the exact same qualitative features as those

of the scalar diquark contributions, and thus our conclusions based on the scalar di-

quark contributions alone are robust. Our general findings therefore also apply for

faithful GPDs for up and down quarks in a spectator model.
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Figure 6.27: Quasi-GPDs HQ and EQ dependence on ∆⊥. They are shown as a
function of x for different values of P 3 with ξ = 0.1, ms = 0.70 GeV and mq = 0.35

GeV. The quasi-GPD HQ(0) is plotted on the top, with ∆⊥ = |∆⃗⊥| = 0 GeV on the left
and ∆⊥ = 2 GeV on the right. Similarly, EQ(0) is plotted on the bottom. Note that
in the right column the GPDs are multiplied by a factor of 5. The light-cone GPDs H
and E are shown for comparison and the limits of the ERBL region (±ξ) are indicated
by vertical dashed lines.

6.5 Moments of Quasi Distributions

Recently, moments of quasi-PDFs have attracted some attention [375, 386, 387, 389].

Specifically, in Refs [375,386] concerns have been raised over divergences of moments

of quasi-PDFs, while Ref. [387] argues that the two lowest moments are well defined.

While the whole point of exploring quasi-PDFs is to go beyond the calculation of

moments, it can still be instructive to look at them.

We first consider the lowest moments of quasi-GPDs and recall also the well-known

results for the lowest moments of the corresponding light-cone GPDs. Including a

flavor index ‘q’ one finds the model-independent relations

1∫
−1

dxHq(x, t) =

∞∫
−∞

dx
1

δ
Hq

Q(0)(x, t;P
3) =

∞∫
−∞

dxHq
Q(3)(x, t;P

3) = F q
1 (t), (6.74)
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Figure 6.28: Comparison of the skewness variables ξ, ξ̃0, and ξ̃3. They are shown for
P 3 = 2 GeV and ∆⊥ = |∆⃗⊥| = 0 GeV.

1∫
−1

dxEq(x, t) =

∞∫
−∞

dx
1

δ
Eq

Q(0)(x, t;P
3) =

∞∫
−∞

dxEq
Q(3)(x, t;P

3) = F q
2 (t), (6.75)

1∫
−1

dxH̃q(x, t) =

∞∫
−∞

dxH̃q
Q(0)(x, t;P

3) =

∞∫
−∞

dx
1

δ
H̃q

Q(3)(x, t;P
3) = Gq

A(t), (6.76)

1∫
−1

dxẼq(x, t) =

∞∫
−∞

dxẼq
Q(0)(x, t;P

3) =

∞∫
−∞

dx
1

δ
Ẽq

Q(3)(x, t;P
3) = Gq

P (t), (6.77)

1∫
−1

dxHq
T (x, t) =

∞∫
−∞

dx
1

δ
Hq

T,Q(0)(x, t;P
3) =

∞∫
−∞

dxHq
T,Q(3)(x, t;P

3) = F q
1,T (t), (6.78)

1∫
−1

dxEq
T (x, t) =

∞∫
−∞

dx
1

δ
Eq

T,Q(0)(x, t;P
3) =

∞∫
−∞

dxEq
T,Q(3)(x, t;P

3) = 2F q
2,T (t), (6.79)

1∫
−1

dxH̃q
T (x, t) =

∞∫
−∞

dx
1

δ
H̃q

T,Q(0)(x, t;P
3) =

∞∫
−∞

dxH̃q
T,Q(3)(x, t;P

3) = F q
3,T (t), (6.80)

where the dependence on ξ on the l.h.s. of the equations has been suppressed. In the

above equations, F1 is the Dirac form factor, F2 the Pauli form factor, GA the axial

form factor, GP the pseudo-scalar form factor, and F1,T , F2,T and F3,T are the form

factors of the local tensor current [531]. Note that time-reversal invariance leads to

a vanishing first moment for ẼT [27]. The results for the moments of the forward
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Figure 6.29: Quasi-GPDs HQ and EQ for different definitions of skewness. Relative
difference for the quasi-GPDs relative to the light-cone GPDs as a function of x with
ms = 0.70 GeV and mq = 0.35 GeV. The difference for HQ(0) is shown in the top row,
with P 3 = 1 GeV on the left and P 3 = 2 GeV on the right, evaluated for three different
definitions of the skewness variable (see text for more details) at 0.4. Similarly, the
quasi-GPD EQ(0) is shown in the bottom row.

PDFs f1, g1 and h1 can be extracted from Eqs. (6.74), (6.76) and (6.78), respectively.

The lowest moment of light-cone GPDs depends on t, but does not depend on ξ. The

quasi-GPDs depend in addition on P 3, but it is remarkable that also that dependence

drops out in the lowest moment. (A corresponding discussion for f1,Q can be found

in Ref. [387].) However, according to Eqs. (6.74)–(6.80) one must divide half of the

quasi-GPDs by the (simple) kinematical factor δ in order to arrive at this result.

(Our numerical results in the SDM comply with Eqs. (6.74)–(6.80).) For P 3 ≲ 2 GeV

inclusion of this factor leads to a visible difference for the numerics. Of course δ

describes a higher twist effect, and therefore including this factor is in principle a

matter of taste. But the moment analysis suggests that taking into account δ like

in Eqs. (6.74)–(6.80) appears natural. In the case of quasi-PDFs, such a definition

implies that f1,Q(0), g1,Q(3) and h1,Q(0) are to be divided by δ0 in comparison to what

so far has been used mostly in the literature (as of the writing of Ref. [62]).

We now turn our attention to the second moment of quasi-distributions, but con-
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Figure 6.30: Axial-vector quasi-GPD Ha
Q. It is shown as a function of x for different

values of P 3 at ξ = 0.1 and with ma = 1 GeV and mq = 0.35 GeV. The quasi-GPD
HQ(0) is plotted on the left, while HQ(3) is plotted on the right. The light-cone GPD
Ha is shown for comparison and the limits of the ERBL region (±ξ) are indicated by
vertical dashed lines.

Figure 6.31: Axial-vector quasi-GPD Ha
Q in ERBL region. It is shown as a function

of x for different values of P 3 and with ma = 1 GeV and mq = 0.35 GeV. The results
on the left are at ξ = 0.01, while the results on the right are at ξ = 0.4. The light-cone
GPD Ha is shown for comparison.

sider the vector operator ψ̄qγµψq only. It is well known that the corresponding local

operators are related to the form factors of the energy momentum tensor (EMT) T µν .

The EMT, when evaluated between different hadron states, has five independent

structures [532],

⟨p′, λ′|T µν,q(0)|p, λ⟩ = ū(p′, λ′)

[
P µP ν

M
Aq(t) +

∆µ∆ν − gµν∆2

M
Cq(t)

+ MgµνC̄q(t) +
P {µiσν}α∆α

4M

(
Aq(t) +Bq(t)

)
+

P [µiσν]α∆α

4M
Dq(t)

]
u(p, λ) , (6.81)
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where T µν,q(0) = ψ̄q(0)γµ i
2

←→
Dνψq(0) with Dµ the covariant derivative, a{µbν} = aµbν +

aνbµ and a[µbν] = aµbν − aνbµ. The connection between the quasi-GPDs and the form

factors of the EMT is established through the equation

(P 3)2
∞∫

−∞

dx x

∞∫
−∞

dz3

2π
eixP

3z3⟨p′, λ′|ψ̄q(− z3

2
)γµWQ(− z

2
, z
2
)ψq( z

3

2
)|p, λ⟩

∣∣∣∣
z0=0,z⃗⊥=0⃗⊥

= ⟨p′, λ′|T µ3,q(0)|p, λ⟩ , (6.82)

where the index µ can be 0 or 3. In close analogy to the celebrated expression for the

second moment of H + E, namely
1∫

−1

dx x
(
Hq(x, ξ, t) + Eq(x, ξ, t)

)
= Aq(t) + Bq(t)

where Aq(0)+Bq(0) = Jq is the total angular momentum for the quark flavor q [462],

one then finds for the quasi-GPDs

∞∫
−∞

dx x
1

δ

(
Hq

Q(0)(x, ξ, t;P
3) + Eq

Q(0)(x, ξ, t;P
3)
)

=
1

2
(δ2 + 1)

(
Aq(t) +Bq(t)

)
+

1

2
(δ2 − 1)Dq(t) , (6.83)

∞∫
−∞

dx x
(
Hq

Q(3)(x, ξ, t;P
3) + Eq

Q(3)(x, ξ, t;P
3)
)

= Aq(t) +Bq(t) . (6.84)

Note that in Eq. (6.83) the form factor Dq of the anti-symmetric part of the EMT

enters. One can conclude that the second moment of HQ(3) +EQ(3) is directly related

to the angular momentum of quarks, while for HQ(0) + EQ(0) this relation contains a

higher twist “contamination.” Our numerics are in accord with these two equations

in the sense that the l.h.s. of Eq. (6.84) is independent of P 3 and agrees with what we

find from the second moment of H +E, while the l.h.s. of Eq. (6.83) does depend on

P 3 and converges to Aq(t) + Bq(t) for large P 3. In Table 6.1, we show that the first

moments of HQ(3) and EQ(3) match with the first moments of H and E, respectively,

and are independent of P 3. We also show that Ji’s spin-sum rule holds for the γ3

projection regardless of the value of P 3. The conclusions remain the same if one uses

γ0 as the projection.

We now briefly take up the case of the second moment for f1. In that case one
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∫
dxHQ(3)

∫
dxEQ(3)

∫
dx x (HQ(3) + EQ(3))

P 3 = 1 GeV 0.0105746 0.0136164 0.00904580
P 3 = 2 GeV 0.0105743 0.0136165 0.00904583
P 3 = 3 GeV 0.0105744 0.0136164 0.00904580
P 3 = 4 GeV 0.0105743 0.0136163 0.00904584

Light-cone 0.0105741 0.0136164 0.00904572

Table 6.1: Moments of GPDs H and E. Left column: First moment of HQ(3) for
various values of P 3. Middle column: First moment of EQ(3) for various values of P

3.
Right column: Ji’s spin-sum rule for the γ3 projection. The bottom row shows the
corresponding moments of the standard GPDs. All moments have been obtained with
ξ = 0.1, t = −1 GeV2, ms = 0.70 GeV, and mq = 0.35 GeV.

has
1∫

−1

dx x f1(x) = Aq(0) , (6.85)

and the corresponding equations for the quasi-PDFs read

∞∫
−∞

dx x
1

δ0
f1,Q(0)(x;P 3) = Aq(0) , (6.86)

∞∫
−∞

dx x f1,Q(3)(x;P 3) = Aq(0)− (δ20 − 1)C̄q(0) . (6.87)

The second moment of the quasi-PDF f1,Q(0) is independent of P 3 only if the function

is divided by δ0, which agrees with the situation for the lowest moment. On the other

hand, the second moment of f1,Q(3) does depend on P 3. Once again, our numerical

results align with these analytical results. We also find that the third moments of the

quasi-PDFs f1,Q, g1,Q and h1,Q and their corresponding quasi-GPDs (HQ, H̃Q, and

HT,Q) diverge. On the other hand, the third moments of the quasi-GPDs without

forward counterparts do not diverge.

We emphasize again that these moments relations are model-independent. For

the regulated results, the moments are finite for both the light-cone and quasi-

distributions. Of course, renormalization of the quasi-distributions needs to be consid-

ered as well. However, this point is equally relevant for the moments of the light-cone

GPDs. The model-independent expressions for the moments of the quasi-distributions
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are potentially significant as they may be useful for studying the systematic uncer-

tainties of results from lattice QCD, especially due to the fact that the P 3-dependence

of the moments is either computable or nonexistent.

6.6 Summary

In this chapter we have presented the results for all of the quasi-GPDs correspond-

ing to the eight leading-twist light-cone GPDs in the Scalar Diquark Model. For

each light-cone GPD we have studied two quasi-GPDs. Taking the forward limit, we

have also obtained the quasi-PDFs f1,Q, g1,Q and h1,Q. In the limit P 3 → ∞, all

quasi-GPDs analytically reduce to the respective light-cone GPDs, as required. This

outcome further supports the idea of computing quasi-GPDs in lattice QCD to get

information on light-cone GPDs. Though the forward PDFs (in the SDM) are dis-

continuous at x = 0, for P 3 →∞ they are exactly reproduced by the corresponding

quasi-PDFs. For the PDFs we have found significant numerical discrepancies between

the quasi-distributions and the light-cone distributions near x = 0 and x = 1. It was

found that the differences near x = 1 are due to higher twist effects that grow as

x→ 1. For GPDs these disparities tend to increase with an increase of the skewness

ξ. On the other hand, for large ξ we have found quite good agreement between quasi-

GPDs and light-cone GPDs for a significant part of the ERBL region. Furthermore,

at least in the DGLAP region, we have observed for most quasi-GPDs a better agree-

ment with the light-cone GPDs if ξ is replaced by ξ̃3 = − ∆3

2P 3 . The difference between

ξ and ξ̃3 is a higher twist effect.

We have also identified the robustness of the results in the SDM by studying the

dependence on the free parameters of the model — the quark mass mq, the spectator

mass ms, the cut-off for the integration upon the transverse quark momentum Λ, and

the momentum transfer to the hadron. We have further found that the contributions

from the axial diquark are qualitatively similar to those of the scalar diquark. More-

over, we have derived model-independent results for the first and second moments of

quasi-distributions, finding that these moments either do not depend on P 3, or their

P 3-dependence can be computed. A particularly interesting case is the second mo-

ment of HQ+EQ, which is related to the total angular momentum of quarks, where the

results for the moments suggest a preferred definition of several quasi-distributions.
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Moments of quasi-distributions might allow one to explore systematic uncertainties

of results in lattice QCD.
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CHAPTER 7

SUMMARY AND OUTLOOK

A description of hadron structure is possible through the process of QCD factor-

ization, allowing one to separate a high energy scattering process into perturbatively

calculable hard coefficients and nonperturbative functions. Information on these non-

perturbative functions can be gleaned from experimental measurements serving as

high energy probes, and, since they are universal, a wide range of experimental mea-

surements can be used. Global QCD analyses combine the theory of factorization

with many experimental processes in order to extract these functions and thus pro-

vide information on the fundamental composition of hadrons.

Many questions still remain about the inner structure of hadrons; even when con-

sidering just the simplest 1D PDFs. The proton spin puzzle, which originated in 1988

from the EMC result [533] which found, against expectations, a small contribution to

the proton’s total spin from the spin of its valence quarks, to some extent still persists

to this day. Furthermore, there is still little information on the proton’s transverse

spin structure, and questions remain about the spin-averaged strange PDF. Moreover,

when it comes to the 3D parton distributions, TMDs and GPDs, many studies are

still in their early stages. These include model calculations, lattice QCD calculations,

and global QCD analyses. In this dissertation, we used a global QCD framework

developed in previous JAM analyses [112–116] and model calculations to gain new

insight into these mysteries.

In Chapter 2 we presented the results of a global QCD analysis of spin-averaged

PDFs including the SeaQuest measurement of pp and pD Drell-Yan cross sections [95]

and the latest STAR measurement of the W -lepton production process [96] and ex-

amined their impact on the d̄ − ū asymmetry. We found a large impact from the
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SeaQuest data and a modest impact from the STAR data, with the SeaQuest data

keeping the asymmetry positive up to x ≈ 0.4. We also found some tension between

the SeaQuest and NuSea measurements [93,94], and some difficulty in describing the

STAR data at extreme pseudorapidities. The shape and magnitude of d̄− ū from the

global analysis is consistent with expectations from nonperturbative models, such as

those based on chiral symmetry breaking in QCD. Finally, we compared our extracted

PDFs to those of other analyses and find some notable differences, particularly for

the strange quark PDF.

In the future, SIDIS data from the EIC could also provide constraints on the

spin-averaged strange and light sea quark distribution at low x [534]. With regards

to the strange PDF, there are several improvements that could be made to our anal-

ysis. The first is to parameterize the nonperturbative charm, and to improve the

heavy quark treatment using the ACOT renormalization scheme [535] rather than

the Zero Mass Variable Flavor Number Scheme [536]. The inclusion of W/Z bo-

son production data from ATLAS [170–176] may also provide important constraints

on the strange distribution. Data on neutrino DIS from heavy nuclei from CHO-

RUS [537] and NuTeV [538] are also available and are known to be relevant for the

strange distribution, however their calculation involves knowledge of final-state nu-

clear effects [539,540] which are unknown experimentally and thus are a large source of

systematic uncertainty [167]. Another improvement on our analysis of spin-averaged

PDFs includes the resummation of large logarithms at high x for DIS and DY [541].

In Chapter 3 we presented the results of a global QCD analysis of spin-averaged

PDFs and nuclear PDFs including the latest data from the MARATHON collabora-

tion on helium and tritium targets [129], finding the first indication of an isovector

effect in nuclear structure functions. We found that the MARATHON 3He/3H data

is particularly sensitive to off-shell corrections at high xbj, making it vital for their

extraction. Our extraction also shows disagreement with the KP model [194] when

it comes to the EMC ratios for deuterium, helium, and tritium as well as the F n
2 /F

p
2

ratio. We have also studied the impact of TMCs and higher twist contributions, and

found that our results for the PDFs and off-shell functions are stable regardless of

choices relating to TMCs and higher twists.

Additional information on the nuclear EMC effects in 3He and 3H separately will

come from 3He/D and 3H/D ratios measured by MARATHON, which are expected

to be analyzed in the near future. Constraints on the neutron structure, and the d/u
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PDF ratio at large x, will come from the BONuS experiment at Jefferson Lab, which

tags spectator protons in semi-inclusive DIS from the deuteron.

In Chapter 4 we performed the first simultaneous extraction of helicity PDFs, spin-

averaged PDFs, and pion, kaon, and unidentified hadron FFs. This analysis included

the latest polarized W -lepton production data from the STAR collaboration [96], and

led to a data-driven extraction of a nonzero polarized sea asymmetry at intermediate

x that was consistent with predictions from the statistical [252] and chiral soliton

models [251]. The truncated contributions to the proton’s spin were also extracted,

finding for the first time a nonzero contribution to the proton’s spin from ∆ū. It

was also found that there are two solutions for the gluon helicity, dependent on the

imposition of positivity constraints. Finally the extracted pion, kaon, and unidentified

hadron FFs were compared to those of other recent extractions.

More information on the helicity sea distribution may come soon from the JLab12

upgrade. In particular, the high-luminosity CLAS12 SIDIS experiment using K pro-

duction [542] will provide precise SIDIS data to complement the W -lepton production

data from RHIC. The puzzle of the two gluon solutions may be aided in the future

by SIDIS data from Jefferson Lab [285], jet production data from the EIC [286], and

information from lattice QCD [287–289]. Generally, the EIC [39,543] will allow global

QCD analyses to access new information on the spin structure of the proton [63,74].

The EIC can measure the DIS double longitudinal DIS asymmetry at higher values of

Q2 and lower values of x compared to what is currently available. Impact studies have

shown that this will provide significant constraints on the gluon’s helicity at x < 0.01,

where no information is currently available, due to the large scaling violations at low

x [38,544,545]. With its ability to obtain larger statistics, the EIC can also measure

new observables, such as parity-violating DIS (PVDIS) [546, 547]. With the nucleon

polarized and lepton unpolarized, PVDIS could provide information on the helicity

strange distribution [38], and with the lepton polarized and the nucleon unpolarized

it could provide information on the weak mixing angle [548]. Inclusive jet and di-jet

production from DIS could also be measured at the EIC, providing a new process ca-

pable of constraining both the quark and gluon helicity PDFs [549,550]. Heavy quark

production could also provide information on the gluon helicity [551]. Tagged DIS

with deuterons could also provide insight on the neutron spin structure [552]. The

increased precision and kinematic range at the EIC and in other future experiments

require that the global QCD formalism keep pace, and advancements continue in that
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arena. NNLO calculations have become available for jets [553] and W -boson produc-

tion [554] that will allow global QCD analyses to extend beyond NLO calculations.

A recent global analysis implemented a new formalism for helicity PDF evolution at

small x < 0.01, which puts constraints on the helicity PDFs below the lower x limit

of experimental data [555].

In Chapter 5 we have presented the results of a simultaneous global QCD anal-

ysis of DiFFs, IFFs, and transversity PDFs [60]. We have also proposed a new

definition for the unintegrated DiFFs that is compatible with the probability inter-

pretation of collinear DiFFs and derived the LO evolution equations with this new

definition [59]. We include, for the first time, the BELLE measurement on the e+e−

cross section [333], the STAR measurement at
√
s = 500 GeV [339], and preliminary

data from STAR at
√
s = 200 GeV [338]. Our extracted tensor charges are in good

agreement with the 2018 analysis of Radici and Bacchetta [32] which also used the

DiFF channel to extract the transversity PDFs. This is a remarkable result, given

that the two analyses differ in a number of aspects. Upon including lattice QCD

information, we find good agreement between the lattice QCD result and experi-

ment. The remaining tension could be attributed to approximations in our analysis,

particularly the fact that it is only LO in the strong coupling, or to underestimated

systematic uncertainties on the lattice QCD results. Our results indiciate that the

three approaches used to extract transversity PDFs (DiFF channel, TMD channel,

and lattice QCD) are in fact reconcilable.

In the future, this analysis could be improved by extending it to NLO in the

strong coupling. Currently, all of the relevant NLO formulas still need to be derived,

although the result for the SIA cross section differential in z1 and z2 is available al-

ready [312]. If SIA were extended to NLO, it would also allow the proper treatment

of the thrust cut on the data. New data could allow less dependence on PYTHIA

or other event generators for constraining D1. Multiplicity data from SIDIS from

COMPASS [556] on proton and deuteron targets as well as cross section data from pp

collisions [557] could be used to constrain the other D1 functions, including the gluon.

The current analysis only involves π+π− DiFFs, but could in principle be extended to

include others if the data were available. In fact, Belle already has SIA cross section

data available for π+π+, π+K+, π+K−, K+K−, and K+K+ production [333], while

COMPASS has SIDIS asymmetry data available for π+K−, π−K+, and K+K− pro-

duction [318]. Using these other channels could potentially provide new information
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on the transversity sea distributions. However, until data are available to constrain

the IFFs for these new channels, this data cannot be used to gain information on the

transversity PDFs. In the future, the EIC can provide crucial measurements to help

reduce uncertainties on the tensor charges [558]. Finally, a simultaneous analysis of

the DiFF and TMD channels will provide a definitive test of whether the two methods

of extracting transversity PDFs are compatible.

In Chapter 6 we have presented the results for all of the quasi-GPDs corresponding

to the eight leading-twist light-cone GPDs in the Scalar Diquark Model. For each

light-cone GPD we have studied two quasi-GPDs. Taking the forward limit, we have

also obtained the quasi-PDFs f1,Q, g1,Q and h1,Q. In the limit P 3 → ∞, all quasi-

GPDs (quasi-PDFs) analytically reduce to the respective light-cone GPDs (PDFs),

as required. We have studied in detail the agreement between the quasi and light-

cone distributions for finite P 3 and its dependence on x and ξ. We have further

found that the contributions from the axial diquark are qualitatively similar to those

of the scalar diquark. Moreover, we have derived model-independent results for the

first and second moments of quasi-distributions, finding that these moments either

do not depend on P 3, or their P 3-dependence can be computed. Moments of quasi-

distributions might allow one to explore systematic uncertainties of results in lattice

QCD. In the future, these model results could be extended to GPDs of sub-leading

twist, where lattice QCD results are beginning to be calculated [514].

Future experimental data, particularly from the JLab 12 program and the EIC,

are primed to provide valuable new input to global QCD analyses. In the meantime,

global analyses are also being expanded to extract higher dimensional objects such as

TMDs and GPDs. To mention just two examples, the JAM collaboration has recently

extracted transversity PDFs alongside the Collins and Sivers TMDs [33,34], and the

worm-gear TMD has also been extracted [559]. Advancements in lattice QCD are

also important for comparisons to and inclusion in global analyses.
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APPENDIX A

COMPARISON TO

PYTHIA-GENERATED DATA

Here we show the PYTHIA generated data used in the analysis of the DiFF D1 (see

Subsection 5.4.1). The plots below show the results for the five different energies

used.
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Figure A.1: PYTHIA data vs. Theory (
√
s = 10.58 GeV). Plotted are the strange

(green points) and charm (orange points) cross section ratios plotted as a function of
Mh against the mean JAM result (black line) with 1σ uncertainty bands in gold. The
different panels show different bins of z.
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Figure A.2: PYTHIA data vs. Theory (
√
s = 30.73 GeV). Plotted are the strange

(green points), charm (orange points), and bottom (pink points) cross section ratios
plotted as a function of Mh against the mean JAM result (black line) with 1σ uncer-
tainty bands in gold. The different panels show different bins of z.
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Figure A.3: PYTHIA data vs. Theory (
√
s = 50.88 GeV). Same as Fig. A.2 but for√

s = 50.88 GeV.

Figure A.4: PYTHIA data vs. Theory (
√
s = 71.04 GeV). Same as Fig. A.2 but for√

s = 71.04 GeV.
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Figure A.5: PYTHIA data vs. Theory (
√
s = 91.19 GeV). Same as Fig. A.2 but for√

s = 91.19 GeV.
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APPENDIX B

RECOVERING LIGHT-CONE

GPDS FROM QUASI-GPDS

Here we provide the most important steps involved for checking that the quasi-GPDs

reduce analytically to the respective light-cone GPDs in the P 3 → ∞ limit (see

Subsection 6.2.2). We start with the poles of the propagators, which can be expanded

as

k01+ =



xP 3 +
1

2(x+ ξ)P 3

×
[
k⃗2⊥ − k⃗⊥ · ∆⃗⊥ −

t

4
(x ξ + 1) +m2

q + x ξM2 − iε
]

+O
(

1

(P 3)2

)
x ≥ −ξ ,

−(x+ 2ξ)P 3 − 1

2(x+ ξ)P 3

×
[
k⃗2⊥ − k⃗⊥ · ∆⃗⊥ −

t

4
(x ξ + 1) +m2

q + x ξM2 − iε
]

+O
(

1

(P 3)2

)
x ≤ −ξ ,

k01− =



−(x+ 2ξ)P 3 − 1

2(x+ ξ)P 3

×
[
k⃗2⊥ − k⃗⊥ · ∆⃗⊥ −

t

4
(x ξ + 1) +m2

q + x ξM2 − iε
]

+O
(

1

(P 3)2

)
x ≥ −ξ ,

xP 3 +
1

2(x+ ξ)P 3

×
[
k⃗2⊥ − k⃗⊥ · ∆⃗⊥ −

t

4
(x ξ + 1) +m2

q + x ξM2 − iε
]

+O
(

1

(P 3)2

)
x ≤ −ξ ,
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k02+ =



xP 3 +
1

2(x− ξ)P 3

×
[
k⃗2⊥ + k⃗⊥ · ∆⃗⊥ +

t

4
(x ξ − 1) +m2

q − x ξM2 − iε
]

+O
(

1

(P 3)2

)
x ≥ ξ ,

−(x− 2ξ)P 3 +
1

2(ξ − x)P 3

×
[
k⃗2⊥ + k⃗⊥ · ∆⃗⊥ +

t

4
(x ξ − 1) +m2

q − x ξM2 − iε
]

+O
(

1

(P 3)2

)
x ≤ ξ ,

k02− =



−(x− 2ξ)P 3 − 1

2(x− ξ)P 3

×
[
k⃗2⊥ + k⃗⊥ · ∆⃗⊥ +

t

4
(x ξ − 1) +m2

q − x ξM2 − iε
]

+O
(

1

(P 3)2

)
x ≥ ξ ,

xP 3 − 1

2(ξ − x)P 3

×
[
k⃗2⊥ + k⃗⊥ · ∆⃗⊥ +

t

4
(x ξ − 1) +m2

q − x ξM2 − iε
]

+O
(

1

(P 3)2

)
x ≤ ξ ,

k03+ =



xP 3 +
1

2(x− 1)P 3

×
[
k⃗2⊥ +

t

4
(1− x)− (1− x)M2 +m2

s − iε
]

+O
(

1

(P 3)2

)
x ≥ 1 ,

−(x− 2)P 3 +
1

2(1− x)P 3

×
[
k⃗2⊥ −

t

4
(1− x) + (1− x)M2 +m2

s − iε
]

+O
(

1

(P 3)2

)
x ≤ 1 ,

k03− =



−(x− 2)P 3 +
1

2(x− 1)P 3

×
[
− k⃗2⊥ +

t

4
(1− x)− (1− x)M2 −m2

s + iε

]
+O

(
1

(P 3)2

)
x ≥ 1

xP 3 +
1

2(1− x)P 3

×
[
− k⃗2⊥ −

t

4
(1− x) + (1− x)M2 −m2

s + iε

]
+O

(
1

(P 3)2

)
x ≤ 1 ,

It is evident from these equations that the analytical expressions of the expansions of

the poles depend on x, but the poles always lie in the same half plane, as discussed

in Chapter 6.
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In the following we focus on the quasi-GPD HQ(0). We first note that the dom-

inant contribution is from those residues for which the leading order term is xP 3.

Specifically, for the other residues the numerator of HQ(0) has a leading contribution

of order (P 3)3, while the leading contribution of the denominator is of order (P 3)5,

resulting in an overall suppression like 1/(P 3)2. For x ≤ −ξ we close the integration

contour in the lower half plane. Then none of the poles have xP 3 as the leading term,

leading to a power-suppressed contribution. A corresponding discussion applies for

x ≥ 1 if one closes the integration contour in the upper half plane.

For the DGLAP region (x ≥ ξ), we close the integration contour in the upper

half plane. Then the dominant contribution comes from the residue at the pole k03−.

Therefore in that region

lim
P 3→∞

HQ(0) = − lim
P 3→∞

g2 P 3

(2π)3

∫
d2k⃗⊥

×
NH(0)(k

0
3−)

(k03− − k01+)(k03− − k01−)(k03− − k02+)(k03− − k02−)(k03− − k03+)
. (B.1)

The leading order term of the numerator is given by

NH(0)(k
0
3−) = δ (k03−)2 − 2

k03−
P 3

[
x(P 3)2 −mqM − x

t

4
− δξt

2

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

]

+δ

[
x2(P 3)2 + k⃗2⊥ +m2

q + (1− 2x)
t

4
− δξt k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

]
. (B.2)

Then using

δ(k03−)2 =

(
1 +

M2 − t

4
2(P 3)2

)
× x2(P 3)2

(
1−

k⃗2⊥ +
t

4
(1− x)− (1− x)M2 +m2

s

2x(1− x)(P 3)2

)2

+ . . .

= x2(P 3)2 +
1

2
x2
(
M2 − t

4

)
− x

(1− x)

(
k⃗2⊥ +

t

4
(1− x)− (1− x)M2 +m2

s

)
+ . . . , (B.3)

where . . . indicates suppressed terms, and

2
k03−
P 3
≈ 2x+

1

(1− x)(P 3)2

(
k⃗2⊥ +

t

4
(1− x)− (1− x)M2 +m2

s

)
+ . . . , (B.4)
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provides

NH(0)(k
0
3−) = x2(P 3)2 +

1

2
x2
(
M2 − t

4

)
− x

(1− x)

(
k⃗2⊥ +

t

4
(1− x)− (1− x)M2 +m2

s

)
−2x2(P 3)2 +

x

(1− x)

(
k⃗2⊥ +

t

4
(1− x)− (1− x)M2 +m2

s

)
+2x

(
mqM + x

t

4
) + xξt

k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

+ x2(P 3)2

+
1

2
x2
(
M2 − t

4

)
+ k⃗2⊥ +m2

q + (1− 2x)
t

4
− ξt k⃗⊥ · ∆⃗⊥

∆⃗2
⊥

+ . . .

= NH + . . . . (B.5)

Additionally, the denominator in Eq. (B.1) simplifies as

(k03− − k01+)(k03− − k01−)(k03− − k02+)(k03− − k02−)(k03− − k03+)

= −8(P 3)3(x2 − ξ2)(1− x)(k03− − k01+)(k03− − k02+) + . . .

= − 2P 3

(1− x)(1− ξ2)
D1D

x≥ξ
2 + . . . . (B.6)

Using Eqs. (B.5) and (B.6) in Eq. (B.1), one readily confirms

lim
P 3→∞

HQ(0) =
g2(1− x)(1− ξ2)

2(2π)3

∫
d2k⃗⊥

NH

D1D
x≥ξ
2

= H . (B.7)

The overall logic to analytically recover H in the ERBL region (−ξ ≤ x ≤ ξ) remains

the same as discussed above. In this case it is convenient to close the integration

contour in the lower half plane, so that the dominant contribution comes from the

residue at k01+ only. With a very similar analysis we have shown that all the quasi-

GPDs reduce to the corresponding light-cone GPDs in the large-P 3 limit.
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