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ABSTRACT

The ever-growing penetration of distributed energy resources in both the generation

and demand-side brings environmental benefits and technical challenges to electric power

distribution systems. Specifically, due to the inherently intermittent nature of renewable

energy resources and the invisible behaviors of customers in electricity use, there exists

a high level of uncertainty, which has significantly threatened the stable, secure, and

dedicated operation of distribution systems. The conventional operation strategies tend

to be model-driven based on offline studies or historical experiences, leading to an

over-conservative or risky operation solution especially when the system encounters

considerable uncertainty. That is, such a deterministic solution is highly difficult to adapt

to the various unknown system operating conditions. Therefore, it is imperative to find a

proper operation strategy for distribution systems under uncertainty. With the high volume

of the real-time measurement data available to the distribution system operator and the

huge success of Machine Learning (ML) technologies in the data-intensive industry, it

is promising to marriage the knowledge representation and reasoning power of ML to

analyze, understand and reveal the potential effects of uncertainty from data itself, finally

solving optimal operation problems under uncertainty more efficiently and accurately. This

dissertation aims at developing learning-based approaches for three representative and

challenging operation problems to have accurate situational awareness, optimal decision

making, and efficient flexibility aggregation under uncertainty. The problems are focused

on identifying the behind-the-meter Electric Vehicle charging load, scheduling energy

storage systems for voltage regulation, and estimating a feasible active-reactive power

flexibility region for capacity support.
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CHAPTER 1

INTRODUCTION

In this chapter, an overview of the research background is �rst provided, and then

the motivations and objectives are presented. After that, some literature reviews for three

representative and challenging research problems are conducted. Finally, the dissertation

organization is outlined.

1.1 Distribution System With Uncertainties

The main objective of electric power distribution systems is to deliver energy from

the transmission system to end-users at medium voltage and low voltage. In the

last two decades, some tremendous changes have been witnessed in the distribution

system. On one hand, unlike the conventional distribution system, there are various

Distributed Energy Resources (DERs), such as Wind Turbines (WTs), Photovoltaics (PVs),

Energy Storage Systems (ESSs), microgrids, Electric Vehicle (EV) charging stations, and

residential/commercial buildings, as shown in Figure 1.1.

Figure 1.1: Illustration of the distribution system with various distributed energy resources
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The future trend is that DERs will become the main part of energy producers and

consumers. For example, according to Annual Energy Outlook 2021 [1] released from

U.S. Energy Information Administration, renewable electric generating technologies will

account for almost 60 of the approximately 1,000 gigawatts of cumulative capacity

additions from 2020 to 2050, and the solar generation will be responsible for almost three-

quarters of the increase in renewable generation. On the other hand, a massive number of

smart meters are installed in the distribution system, which provides detailed data required

for accurate information and automated decision support.

With the changes in current distribution systems, there are many uncertainty sources.

On the side of generation, the uncertainty mainly comes from the renewable energy sources,

which in nature are stochastic and intermittent depending on the weather conditions. On the

side of demand, the uncertainty is the behaviours of customers in electricity use, especially

with more and more prosumers or active stakeholders, e.g., EVs and ESSs, emerging in

the distribution system. These two types of uncertainty result in great �uctuation and

unpredictability, and impose challenges to the operation of distribution systems. Moreover,

the insuf�cient real meter measurements and the measurement error may also create

uncertainty, which has a further negative impact on the grid operation. The uncertainty

has to be addressed in order to prevent the power quality from degrading and maintain the

reliability and stability of distribution systems.

1.2 Modern Arti�cial Intelligence Technologies

Arti�cial Intelligence (AI) is de�ned as intelligence demonstrated by machine, as

opposed to natural intelligence displayed by animals including humans. Modern AI

technologies tend to refer to learning based computational intelligence, such as ML, Deep

Learning (DL), and Reinforcement Learning (RL), which has gained the huge success in

multiple research �elds such as engineering, medicine and economics. ML is a branch of

AI, which refers to the automated detection of meaningful patterns in datasets. DL can be

2



considered as a sub-class of ML, which is focused on neural network based methods with

many nonlinear layers for pattern recognition. Unlike ML and DL, RL is a sub-�eld of ML

for decision making by trial and error.

1.3 Motivations and Objectives

As mentioned before, the high penetration of DERs as well as the inaccurate and

insuf�cient data measurement can introduce much uncertainty, which has an adverse

impact on the operation of distribution systems. The traditional operation strategies tend

to be model-driven based on of�ine studies or historical experiences, leading to a over-

conservative or risky operation solution especially when a high level of uncertainty exists

in the system. That is, they have the limited capabilities to adapt to various unknown

system operating conditions. Therefore, it is imperative to �nd a proper operation strategy

for distribution system with uncertainty.

Nowadays, with the high volume of the real-time measurement data available to the

Distribution System Operator (DSO) and the signi�cant success of modern AI technologies

in the data-intensive industry, it could be promising to utilize ML or other advanced

learning technologies to analyze, understand and reveal the potential effects of unknown

operating conditions from the data, �nally addressing optimal operation problems under

uncertainty in a more ef�cient and accurate way. As shown in Figure 1.2, a learning-in-

the-loop distribution system operation framework is proposed to respond to a high level

of uncertainty. At each operation interval (depending on the speci�c task), a closed-loop

procedure is implemented. First, the grid operation data is collected from the smart meters.

Second, the AI agent learns from the data and provides useful information and insights to

the DSO. Third, with the assistance or guidance of the AI agent, the DSO can properly

schedule the distribution assets (i.e., controllable DERs or other devices) to maintain the

reliability and ef�ciency of the distribution system while mitigating the adverse effect of

uncertainty sources.

3



Figure 1.2: Illustration of the proposed learning-in-the-loop distribution system operation
framework responding to a high level of uncertainty

In this dissertation, centered around the above-mentioned framework, the goal is

to develop learning-based methods for three representative and challenging operation

problems: situational awareness, decision making, and �exibility aggregation, speci�ed

as follows.

• Insuf�cient meter installment renders the distribution system less visible, leading

to inaccurate grid models and inadequate situational awareness. This dissertation

is concentrated on residential EV charging load pro�le identi�cation. For the

consideration of installment cost, normally each household has only one meter to

measure total energy consumption. The residential EV charging load as an important

uncertain source attracts more and more attention of the DSO for modeling the

accurate EV charging load pro�le. Therefore, the �rst task is to develop a learning-

based method to estimate the behind-the-meter EV charging load and enhance the

situational awareness under uncertainty. The relative literature reviews can be found

in Section 1.4.

• High PV penetration can degrade the power quality especially on voltage pro�les due

to its intermittent nature. Moreover, with its large-scale integration, it is dif�cult to

model uncertainty or capture the system dynamics and stochastic nature. Although

4



there exist many deterministic methods to schedule voltage regulation devices, it

seems challenging to make an optimal schedule decision in a similar way in an

environment with a high level of uncertainty. Therefore, the second task is to develop

a learning-based method to schedule ESSs for voltage regulation in Low Voltage (LV)

networks with high PV penetration and improve the computational performance of

decision making under uncertainty. The relative literature reviews can be found in

Section 1.5.

• Apart from the engagement in the problems of situational awareness and decision

making, it is essential for the DSO to interact with the Transmission System

Operator (TSO). The distribution system with controllable DERs can provide great

power �exibility to support transmission system operation, i.e., power �exibility

aggregation. This dissertation is focused on estimating an approximate and feasible

power �exibility region. However, the forecast error uncertainty of PV generation

and load has an adverse impact on the ahead-of-time �exibility region estimation,

which hinders the ef�cient and safe implementation of power �exibility aggregation.

Therefore, the third task is to develop a learning-based method to �nd a region that

can hedge against the forecast error uncertainty as much as possible. The relative

literature reviews can be found in Section 1.6.

1.4 Review of Residential EV Charging Load Pro�le Identi�cation

The worldwide electricity demand pro�le is experiencing a paradigm shift with

increasing penetration of electri�ed transportation. In the U.S., it is expected that

transportation electri�cation will drive domestic electricity demand rise through 2050 [2],

by when over 2.3 million new light-duty EVs will be sold annually [3]. Across the

globe, many major economies have announced their intentions to end the sale of internal

combustion engine vehicles [4] within several decades. The impact of high volume of
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EVs on power grids has been extensively studied in literature [5]. In general, EVs have

been considered as active loads which could provide �exibility in terms of grid services [6]

through Vehicle-to-Grid (V2G) modes [7] or transactive controls [8].

In the literature, aggregated EV charging demands are modeled as a stochastic part of

the overall load model. However, the uncertainty in individual EV charging pro�les (i.e.,

start charging time, initial State of Charge (SOC), charging power, and charging duration)

[9] and traf�c conditions [10] makes it dif�cult to accurately derive real-time EV charging

demand models under various scenarios. Therefore, probabilistic distributions are typically

assumed. In [11] and [12], the charging start time is represented by the normal distribution.

Similarly, a truncated normal distribution is suggested to represent the arriving time and

parking time at commercial buildings [13] for EV charging duration. Furthermore, in [14],

EV charging duration is assumed to be exponentially distributed. Moreover, the initial

SOC is modeled as a random variable under log-normal distribution [9]. However, it

is questionable whether these assumptions from locational models can be used in other

regions. For example, charging start times in rural residential, urban residential, and

commercial districts at different seasons are unlikely to be the same. Therefore, in recent

years, pilot projects have been carried out globally to collect and analyze EV charging

pro�les in the Netherlands [15], U.K. [16], Australia [17], and California [18].

However, most of the historical data is only small-scale and sampled at commercial

charging stations. For residential applications, it is costly to (intrusively) install additional

sampling devices into existing residential EV chargers and (more importantly) unrealistic

to sample and communicate EV charging information to system operators, another recent

research effort [19–23] focuses on utilizing widely-available smart meter data to non-

intrusively, locally, and reliably estimate EV charging pro�les in real-time to preserve

privacy and avoid unnecessary investment in additional infrastructure.

To conclude above discussions, it is of great interests for system operators and planners

to extract EV charging pro�les from smart meter data in a non-intrusive manner such that
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1) unrealistic and uncertain assumptions (as pointed out in the above discussions) can be

alleviated; and 2) EV charging pro�les can be accurately extracted in real-time to support

both short-term system operations and long-term planning.

To the best of our knowledge, reference [20] is probably the �rst to adopt Non-Intrusive

Load Monitoring (NILM) and apply benchmark algorithms such as the Hidden Markov

Models (HMMs) [24] to detect events and disaggregate EV charging pro�les from low-

frequency smart meter readings. HMM is a general modeling technique suited to represent

a sequence of hidden features in time or space, in which each hidden feature causes or

emits an observation. In the context of EV charging pro�le identi�cation, the aggregated

power consumption pro�le and EV charging pro�le can be treated as observation and

hidden feature, respectively. Obviously, the former is dependent on the latter, i.e., the

latter may take different proportions of the former. In addition, to more accurately model

the aggregated power consumption pro�le, pro�les of other loads can also be considered

by utilizing a variant of HMM called Factorial Hidden Markov Models (FHMMs) [25–

28]. Reference [25] proposed a Conditional Factorial Hidden Semi-Markov Model which

works well for appliances with simple or modestly complex power signatures, but suffers

from complex signatures. Reference [26] developed a Difference Additive Factorial

Approximate MAP, which can perform exact inference and is computationally ef�cient.

A convex formulation of approximate inference avoids susceptibility to local optima.

Reference [27] presented a solution by designing a hierarchical probabilistic model, which

has ef�cient and effective estimation of latent states. Reference [28] proposed a ensemble

methods named hierarchical FHMM, which handles the correlations between devices in

order to strengthen independence assumption of devices and preserve the one-at-a-time

condition.

Although the FHMM is a favorable model, which is relatively easy to train, it

has some drawbacks. Firstly, FHMMs work well for discrete-state (e.g., ON/OFF or

High/Medium/Low) loads but have dif�culty in determining optimal number of quantized
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states for continuous loads. Secondly, FHMMs require detaileda priori information such

as the number of loads in the aggregated signal and thus are unable to tackle unknown loads.

Finally, the computational complexity of an exact inference grows exponentially with the

number of sequence lengths and the number of appliances. Meanwhile, an approximate

inference may compromise the accuracy. Therefore, it is desired to design an algorithm to

mitigate the aforementioned issues. Apart from FHMM-based non-intrusive approaches,

reference [21] presents an unsupervised algorithm to extract EV charging loads from the

smart meter data using independent component analysis, and reference [23] proposes a

training-free algorithm based on bounding-box �tting and load signatures.

1.5 Review of Voltage Regulation with High PV Penetration

The global electricity industry is undertaking a signi�cant paradigm shift from

traditionally being centralized, passive, and rigid to potentially being distributed, active,

and autonomous. The accelerating proliferation of DERs, such as distributed generations,

ESSs, and electri�ed transportation, has been making positive technical, economic, and

environmental impacts. The inherently intermittent nature of DERs has brought many

challenges to distribution networks, especially on voltage pro�les [29–31]. For instance,

it has been shown that in the daytime, high solar generation can cause over-voltage issues

[32], while at night, excessive EV charging demands could also result in under-voltage

issues [33], especially for rural and remote areas. Conventional voltage regulation devices,

such as On-Load Tap Changers (OLTCs), Step Voltage Regulators (SVRs), and shunt

capacitors, are too slow or in�exible to accurately regulate voltage in distribution networks

with high DER penetrations [34, 35].

In general, voltage regulation methods are categorized into two groups: active power-

based and reactive power-based [36]. Contrast to high-voltage transmission lines, the R/X

ratio of LV distribution networks is inherently much higher, which implies that voltage

magnitudes in LV distribution networks are more sensitive to active power injections [29,
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35]. Therefore, this work will focus on active power control for autonomous voltage

regulation in LV Unbalanced Distribution Network (UDS).

Besides conventional strategies such as generation curtailment [37], many recent

works utilize distributed ESSs for voltage regulation. Reference [34] coordinates PV

inverters, ESSs, and SVRs every �ve seconds to follow volatile PV �uctuations. ESS

charging/discharging is adaptively tuned to avoid SOC exhaustion and implemented with

no real-time communication requirement. A similar problem is considered to dynamically

estimate SOC, adjust participating factors, and regulate ESS charging/discharging by

consensus algorithms [38], in which real-time information exchange among neighboring

ESS is required. Moreover, a Model Predictive Controller (MPC) is proposed to

autonomously coordinate ESSs and grid devices and alleviate voltage variation caused

by PV �uctuations [39]. A similar MPC-based coordination of ESSs and OLTCs for

voltage regulation is proposed in [40]. However, how the model accuracy might impact

those model-driven methods is not discussed. To address a common constraint of single

time-scale, a multi-time-step strategy is designed using back-and-forth communication to

optimally coordinate ESS by calculating global voltage violation sensitivities [41].

Compared to model-based methods, model-free control is more preferable to avoid

modeling challenges [42], such as RL [43]. In RL, autonomous agents can actively learn

(in a model-free manner) to perform a given task by trial and error without any guidance

from human operators. A batch RL algorithm is proposed in [44] to determine optimal tap

settings, in which a Markov Decision Process (MDP)-based policy is formulated to map

voltage magnitude measurements to tap ratio changes. Each OLTC is assigned an action-

value function, which is sequentially learned by the least-square policy iteration with the

distribution network modeled by theLinDistFlow [45, 46].

Moreover, RL is typically combined with deep neural networks, i.e., Deep

Reinforcement Learning (DRL), for enhanced representational capability in high-

dimensional spaces [47, 48]. A safe off-policy DRL algorithm is proposed in [49] to model
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Volt-VAR control as a constrained MDP with discrete action space. A popular value-based

DRL formulation, called the Deep Q-network (DQN), is constructed with designed rewards

in [50] to handle time-varying operating conditions, in which statuses/ratios of capacitors,

SVRs, and inverters are modeled as agents' actions. A two-time-scale DQN is proposed

in [51] to incorporate both on-off capacitor actions (hourly or daily) and smart inverter

injections (within milliseconds). It is shown that, for autonomous voltage control, the Deep

Deterministic Policy Gradient (DDPG) method requires less action corrections than DQN

[52].

To the authors' best knowledge, model-free voltage regulation with multiple ESSs

autonomously coordinated has not been well addressed. To �ll this gap, this work aims at

designing a DRL-based framework to autonomously schedule day-ahead ESS operations

for real-time voltage regulation in UDS. Note that although in literature UDS could refer

to that each bus can have one, two, or three nodes, most recent voltage regulators consider

three-phase distribution systems with signi�cant power or voltage imbalance across phases

due to unbalanced DER installation and �uctuations [35, 53–57]. Furthermore, although

some recent works have used three-phase balanced distribution system to reduce the

modeling complexity, three-phase UDS is more consistent with practice and is thus adopted

in this dissertation proposal. Speci�cally, the UDS considered in this dissertation proposal

models the placement of loads and DERs at different phases and the coupling effect

between different phases, which cannot be re�ected in the simpli�ed balanced distribution

systems.

1.6 Review of Power Flexibility Aggregation for TSO-DSO Interaction

The penetration of DERs such as solar generations, ESSs, and demand response has

considerably increased over the last years, which promotes a transformation of distribution

systems from passive to active state. Speci�cally, unlike the conventional distribution

system treated as a passive load on transmission side, the modern distribution system

10



with large-scale integration of DERs can not only meet energy demand of local loads, but

also actively release signi�cant power �exibility to support transmission system operation.

The power �exibility typically refers to the ability of a distribution system to modulate

its exchanged power with the transmission system at the substation interface. Through

coordinated transmission and distribution (T&D) dispatch (i.e., �exibility aggregation), the

potential power �exibility can be fully exploited to make power grids more ef�cient and

resilient [58, 59].

In practice, aggregating a large population of DERs and exploiting power �exibility for

system-wide operation and control are challenging due to computational complexity and

cybersecurity risks. Some existing works [58–60] are focused on applying disaggregation-

based methods (e.g., generalized Benders decomposition) to jointly dispatch all generators

in both the transmission and distribution networks in a formulation of economic dispatch.

However, these methods suffer from slow convergence issues especially when there

exists a large number of DERs. Meantime, it requires frequent boundary information

exchange, which aggravate communication burden issues. Other alternatives for �exibility

aggregation are to characterize a feasible time-varying power �exibility region on

distribution side, which can be integrated into mature transmission optimization programs

to mitigate the complexity from coupled transmission-distribution networks.

With massive DER devices, multiple time periods and a complex network environment

with multiple coupled factors (i.e., time-coupled, power-coupled, and phase-coupled

constraints), it is intractable to procure an exact and feasible power �exibility region.

Therefore, more research efforts are devoted to approximation methods. Reference

[61] models the power �exibility of an individual �exible load as a polytope, and then

their aggregate �exibility is represented by the Minkowski sum of all these polytopes.

Reference [62] models the aggregate P-Q feasible domain over time as a series of time-

moving ellipsoids, and their parameters are obtained by a data-driven system identi�cation

procedure. In [63], a box-shape active-power �exibility region is modeled, and a distributed
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model predictive control framework is developed to optimize the parameters of such an

approximated region. Reference [64] proposes a two-stage adaptive robust optimization

framework for power �exibility aggregation with a hyperbox approximation in [64] and an

ellipsoid approximation in [65].

From the perspective of control system, the power �exibility aggregation can be

regarded as a process of controlling the power output of DERs to track the power �exibility

command. The majority of existing works are focused on designing control rules of DERs.

However, the power output of DERs as control variables is redundant. That is, a power

�exibility command can be realized by multiple dispatch alternatives, which may hinder

ef�cient design of control rules and �exibility evaluation schemes. To our best knowledge,

[65] is probably the �rst to reconstruct the DER power region and design control rules

of converted control variables, which can regulate power �exibility as the DERs do while

providing a new insight into control law design of DERs. Through this reconstruction,

the redundancy issue can be avoided, and the feasibility of power �exibility can be easily

guaranteed in some case.

Apart from the above-mentioned redundancy issue, approximation results in the ahead-

of-time �exibility region evaluation may be compromised by the forecast error uncertainty.

That is, if the forecast model has low accuracy, there may exist some infeasible points

in the approximated region leading to the termination of the aggregation process. To

our best knowledge, few works address this issue. In [66], the forecast error uncertainty

is explicitly characterized by Gaussian Mixture Model and incorporated into a chance-

constrained optimization problem. The results show its higher aggregation ef�ciency

than the scenario-based methods such as the Monte-Carlo simulation. The [67] proposes

a data-driven probabilistic-based �exibility region estimation method by constructing a

distributionally robust optimization problem to handle unknown forecast error uncertainties

and �nd a conservative solution.
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1.7 Dissertation Organization

The main content of this dissertation consists of six chapters including this introduction.

The remainder of this dissertation is organized as follows.

Chapter Two provides a brief introduction to several background about neural network

and reinforcement learning. Additional background will be introduced in later chapters if

necessary.

Chapter Three proposes a Deep Generative Model (DGM)-driven inference framework

for non-intrusive, real-time identi�cation of EV charging pro�les. Firstly, the joint

probability distribution for available smart meter data (which can actually be considered as

time series) is modeled by DGMs. The posterior distributions are approximated by neural

networks whose parameters are obtained by variational inference and supervised learning.

Secondly, the EV charging status is inferred from DGMs via dynamic programming.

Finally, the target EV charging pro�le can be reconstructed according to the rated power of

EV models and inferred status.

Chapter Four proposes a DRL-based voltage regulation method for high PV penetrated

distribution systems. Firstly, an ESS-based voltage regulation problem is proposed, with

the objective of minimizing the expected total daily system-wide voltage regulation cost

subject to operational constraints. Secondly, this problem is converted to an MDP with

a partial objective (i.e., negative voltage regulation compensation at single time step) as

rewards, with constraints treated as an action space �exibly. Finally, the preceding problem

is further formulated as an entropy-constrained MDP problem to make agents explore their

action spaces more widely and wisely, which can be approximately solved by a state-of-the-

art DRL method called Soft Actor Critic (SAC), without the need of modeling uncertainties.

Chapter Five proposes an inner approximation framework for an ahead-of-time

�exibility region estimation considering the forecast error uncertainty. Firstly, the

distribution system including device, network, and uncertainty propagation is modeled
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as a polyhedral power region. After that, through a coordinate transformation, two

types of �exibility regions called non-feeder-level and feeder-level �exibility regions are

de�ned. The latter can be viewed as an aggregation of the former. Finally, a chance-

constrained Chebyshev centering optimization model is developed to approximate multiple

maximum inscribed balls, which can be solved by simultaneously and unsupervisedly

learning multiple hyperplanes.

Finally, Chapter Six summarizes the main contributions and lists outcomes of this

dissertation.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, a brief introduction to Deep Neural Networks (DNNs) and DRL is

provided. The DNNs are used to parameterize the probability distributions in Chapter

Three, and the control law and optimal value function in Chapter Four. DRL is involved in

Chapter Four. The additional background will be introduced if necessary in later chapters.

2.1 Deep Neural Networks

The �rst arti�cial neural network component “perceptron” developed in [68] can be

dated back to 1958, which is designed to mimic the way the human brain processes

visual data and identi�es recognizable objects. After that, it was extended to multilayer

perceptrons, also called deep feedforward networks, which are the basic deep neural

network architectures.

Given an inputx and an outputy , the goal of a deep feedforward network is to

approximate some functiony = f � (x). For example, for a classi�er,x is a vector of

features whiley is a probability distribution of categories. A feedforward network de�nes

a mappingy = f (x; � ) where parameters� can be learned by training data samples so that

f can become the best function approximation tof � . With the following representation

x|{z}
input layer

! f
|{z}

hidden layers

! y
|{z}

output layer

;

the models are called feedforward. The �rst layer of the models is called the input layer

and the �nal layer of the models is called the output layer. When the models have more

than two layers, the intermediate layers are called hidden layers.
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Take a three-layer feedforward network as an example

f (x; � ) = g(W > x + b)

where

• � = f W ; bg denotes neural network parameters,

• W is the weights of a linear transformation,

• b is the biases, and

• g is a nonlinear function called an activation function.

Note that in modern neural networks, the default recommendation [69] forg is to use the

recti�er linear unit, i.e.,

g(z) = max(0 ; z)

.

Given a training setf x (i ) ; y (i )gn
i =1 , the parameters� can be learned by solving the

following minimization problem

min
�

1
n

nX

i =1

L(f (x (i ) ; � ); y (i ))

where L(f (x; � ); y) is a loss function that can be used to evaluate how good the

approximated function is. This problem can be solved by using back-propagation and

variants of stochastic gradient decent algorithm such as theAdamoptimizer [70].

Based on this feedforward network, with some tricks casted on loss functions and

intermediate layer representation, some other types of neural network architecture such

as convolutional neural networks, recurrent neural networks etc. can be built. Refer to the

book [69] for more relative details.
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2.2 Deep Reinforcement Learning

RL is a representative bio-inspired learning approach. Through the trial-and-error

interaction in an unknown environment, RL can learn a decision or control policy. This

section starts with principles of RL problems and then moves to DRL.

2.2.1 Principles of RL Problems

Agent

The agent is a learner, or a decision maker, or a controller.

Environment

Most stochastic and discrete-time environments can be viewed as MDPs, or MDP

problems. For a MDP, the agent and environment interact at each of a sequence of discrete

time steps,t = 0; 1; 2; 3; : : : . At each time stept, the agent receives statest 2 S, and

on that basis selects an actionat 2 A . One time step later, the environment responds

to the received action, and sends the next statest+1 2 S as well as a numerical reward

r t 2 R � R to the agent.

The state can be seen as some representation of the environment which contains

suf�cient information used for decision making. The state evolves based on environment

dynamics:

Pa
ss0 := Prf st+1 = s0jst = s; at = ag (2.1)

wheres0, s anda are the values of random variablesst+1 , st andat , respectively. The

Equation 2.1 follows the Markov property, i.e., the state at current time step depends only

on the state and action of precedent steps.
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State-ActionSamples

In an unknown environment, it is dif�cult to obtain an exact representation of

environment dynamics like Equation 2.1. Therefore, the state-action samples(st ; at ; st+1 )

are considered as another representation of environmental dynamics, which can be

collected by interacting between agent and environment, either physically in the real world

or virtually in a computer.

Policy

The policy � is a function mapping state to action, which describes how the agent

responds to the environment. In a MDP problem, the policy is Markovian, i.e., the action

is only determined by the current state. This kind of policies can be categorized into

deterministic policy and stochastic policy. The deterministic policy� (s) selects the same

action at the same state, i.e.,

a = � (s); s 2 S (2.2)

while the stochastic policy� (ajs) selects action according to a learned probability

distribution where

X

a2A

� (ajs) = 1 ; s 2 S (2.3)

In general, stochastic policies are more ef�cient than their deterministic counterparts

because they allow the agent to explore better policies.

When both state space and action space are discrete, a policy can be represented

as the look-up table, i.e., an array that holds a set of pre-computed actions in all state

positions. For large-scale problems especially in an environment with continuous or high-

dimensional state and action space, such a tabular policy is not always computationally
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ef�cient. Alternatively, a parameterized function can be used to represent the policy to

reduce the computational burden:

� � (s) := � (s; � ) : deterministic policy

� � (ajs) := � (ajs; � ) : stochastic policy
(2.4)

where� is the parameter of the policy. The choice of parameterization is a good way of

injecting prior knowledge about the desired form of the policy.

RewardandReturn

In RL, a reward signalr t is determined by a functionr with reference to the current

statest , current actionat , and next statest+1 , de�ned as:

r a
ss0 := r (st = s; at = a; st+1 = s0) (2.5)

The returnGt is de�ned as some speci�c function of the reward sequence. The most

popular de�nition is the discounted return:

Gt =
+ 1X

i =0


 i r t+ i (2.6)

where
 2 [0; 1] is the discounting factor. If
 = 0, the agent is myopic and concerns only

immediate reward. As
 approaches 1, the agent becomes more farsighted. The purpose of

discounting returns is to provide a tractable measure, i.e.,Gt is �nite.

ValueFunction

To evaluate how good a policy is, there are two kinds of value functions: state-value

function and action-value function. The former is a function of the state only, de�ned as
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the expected return under a policy� starting froms:

v� (s) := E� [Gt js] (2.7)

The latter is a function of both state and action, de�ned as the expected return under a

policy � taking actiona in states:

q� (s; a) := E� [Gt js; a] (2.8)

When both state and action spaces are small, the tabular function can be used to

represent value functions. Otherwise, parameterized functions are better choices with less

computation and storage burden.

A fundamental property inherited in value functions is that it naturally holds a certain

recursive relationship, i.e., self-consistency condition. Looking ahead from a state to its

successor states, the recursive relationship betweenv� (s) andq� (s; a) can be easily found:

v� (s) =
X

a2A

� (ajs)q� (s; a) (2.9)

and

q� (s; a) =
X

s02S

Pa
ss0(r a

ss0 + 
v � (s0)) (2.10)

Combining Equation 2.9 and Equation 2.10, the self-consistency condition of state-

value function can be found:

v� (s) =
X

a2A

� (ajs)[
X

s02S

Pa
ss0(r a

ss0 + 
v � (s0))] (2.11)

Reusing Equation 2.9 and Equation 2.10 with next states0 and next actiona0, the self-

consistency condition of action-value function can be found:
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q� (s; a) =
X

s02S

Pa
ss0[r a

ss0 + 

X

a02A

� (a0js0)q� (s0; a0)] (2.12)

The self-consistency condition builds the connection between value function and

policy. Given a policy and environment dynamics, the so-called model-based evaluation

method is performed by solving the self-consistency condition, like dynamic programming,

approximate dynamic programming, etc.

Goal

The goal of MDP problems is to �nd an optimal solution that maximizes the expected

return

max
�

J (� ) = max
�

Es0 [v� (s0)] (2.13)

whereJ 2 R is called objective function,s0 2 S is initial state, and� is the policy to be

optimized. For problem Equation 2.13, its solution can be classi�ed as model-based and

model-free, depending on whether the environment dynamics is known or not.

Optimality

For any �nite MDPs, there at least exists an optimal policy, i.e.,� � , that is better than

or equal to any other policies. An optimal policy naturally results in corresponding optimal

state-value function,

v� (s) = max
�

v� (s); 8s 2 S (2.14)

and optimal action-value function

q� (s; a) = max
�

q� (s; a); 8s 2 S and 8a 2 A (2.15)
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The relation ofv� (s) andq� (s; a) is

v� (s) = max
a2A

q� (s; a) (2.16)

q� (s; a) =
X

s02S

Pa
ss0[r a

ss0 + 
v � (s0)] (2.17)

An optimal policy can be found by maximizing optimal action-value function:

� � = � � (ajs) =

8
>><

>>:

1 if a = a�

0 if a 6= a�

(2.18)

where

a� = arg max
a

q� (s; a)

By combining Equation 2.16 and Equation 2.17, the self-consistency condition ofv� (s)

can be found:

v� (s) = max
a2A

X

s02S

Pa
ss0[r a

ss0 + 
v � (s0)] (2.19)

Reusing Equation 2.16 and Equation 2.17 with next states0 and next actiona0, the

self-consistency condition ofq� (s; a) can be found:

q� (s; a) =
X

s02S

Pa
ss0[r a

ss0 + 
 max
a02A

q� (s0; a0)] (2.20)

The recursive relationship derived in Equation 2.19 and Equation 2.20 is also called

Bellman equation, which can be used to �nd the optimal action. Compared with

Equation 2.19 and Equation 2.20, using the latter is more ef�cient without need to use

environmental dynamics and know successor states and their values beforehand. There are

two methods to solve Bellman equation: policy iteration and value iteration. The former

involves alternating steps, i.e., policy evaluation and policy improvement. The policy is
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evaluated by its corresponding value function in the step of policy evaluation, and then its

new policy is searched in the step of policy improvement. Even though neither of them is

optimal, they together can gradually converge to the solution of Bellman equation as long

as the policy will become better and better in the phase of policy improvement. The latter

solves Bellman equation by using the �xed-point iteration technique. Speci�cally, the value

function is treated as the variable to be iterated. The optimal policy can be greedily searched

after an optimal value function is found. The convergence of value iteration depends on

whether the Bellman operator is contractive.

Solution

In this part, the connection of optimal policy� � and optimal solution� ? of the problem

de�ned by Equation 2.13 is explained.

According to the Jensen's inequality,

max
�

J (� ) = J (� ?) � Es0 [max
�

v� (s0)] = Es0 [v� (s0)] = J (� � ) (2.21)

Denote� 2 � as the policy set. When� � is inside the policy set, i.e.,� � 2 � ,

J (� � ) � J (� ?) (2.22)

By combining Equation 2.21 and Equation 2.22,J (� � ) = J (� ?), and � � is one of

optimal solutions. Therefore, the solution of Bellman equation is equivalent to that of the

problem de�ned by Equation 2.13. At this time, the optimal solution has nothing to do

with the initial state distribution. When� � is not inside the policy set, i.e.,� � =2 � , only

Equation 2.21 holds, and at this time the initial state distribution can affect the optimality of

the problem de�ned by Equation 2.13. Therefore, if� can be equal to full policy space, the

problem de�ned by Equation 2.13 degenerates into �nding the optimal state-value function

v� (s) and its corresponding optimal policy� � . For the methods solving for Bellman
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equation, there is no constraint on the policy set, and thus� � 2 � . Apart from using

Bellman equation to �nd an optimal policy, the other type of methods is to directly optimize

an policy (often parameterized like� � (s)) with respect to the scalar performance index

J (� ). When� � is neural networks or other functions with almost-universal approximate

ability, the problem de�ned by Equation 2.13 can be rewritten as

max
�

J (� ) = max
�

Es[v� � (s0)] = Es[max
�

v� � (s0)] (2.23)

It can be seen from the problem de�ned by Equation 2.23 that the initial state

distribution has no impact on the optimality, and the objective is still to �nd the optimal

state-value functionv� (s). Normally, the gradient decent algorithm can be used to solve

problem de�ned by Equation 2.23

�  � + � r � J (� ) (2.24)

where� is the learning rate, andr � J (� ) is called policy gradient. The key idea underlying

policy gradients is to push up the probabilities of actions that lead to higher return, and

push down the probabilities of actions that lead to a lower return, until the optimal policy

is found. This direct method requires effective estimation of policy gradient, which is a

costly procedure. And it always �nds a local maximum. All in all, the essence of RL is to

�nd the optimal state-value or action-value function.

2.2.2 DRL

Traditional RL [43] algorithms exist several limitations. On one hand, they suffer

from the issue of “curse of dimensionality” when the state and action spaces are large

or continuous. As a result, it is intractable to compute or store a gigantic look-up table

for value and policy functions. On the other hand, hand-crafted state representations are

typically required. To overcome the above limitations, function approximation methods
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are developed to approximate value and policy functions with some parameterized function

classes. Driven by the advances of DL, DRL that utilizes DNNs to approximate value and

policy functions is becoming increasingly popular, which features the following technical

points:

ReplayBuffer

The DNNs can equip RL with the ability to automatically extract features and

generalize to a large state space. But the training data sampled from the interaction are

highly correlated, violating the independence assumption. Therefore, in DRL, a replay

buffer denoted byD is adopted to store a large number of transitions(st ; at ; r t ; st+1 ), which

can break the correlation among training data by randomly sampling a mini-batch data from

the replay buffer when updating neural networks.

ValueFunctionApproximation

Firstly, the action-value functionq� (s; a), sometimes called q-function, can be

approximated by neural networkqw(s; a) with weightsw. Through Temporal-Difference

learning, i.e, one-step bootstrapping, thew can be updated by

w  w + � [r t + 
q w(st+1 ; at+1 ) � qw(st ; at )]r wqw(st ; at ) (2.25)

where� is a learning rate, and the gradientr wqw(st ; at ) can be calculated ef�ciently using

the back-propagation method, and this updating process is called q-learning.

Secondly, to more conveniently �nd an optimal policy, some DRL algorithms directly

use neural networks to approximate optimal action-value functionsq� (s; a). Similar to

one-step bootstrapping, thew can be updated by

w  arg min
w

E(st ;at ;r t ;st +1 )�D [r t + 
 max
at +1

qŵ(st+1 ; at+1 ) � qw(st ; at )] (2.26)
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whereqŵ(s; a) is a target optimal action-value function. In modern DRL algorithms such

as DQN[71], DDPG[72] etc., theqŵ(s; a) can be approximated by another neural network

with weightsŵ, called target network, which is a clone ofqw(s; a). By introducing target

networks, the non-stationary distribution of training data, i.e., the training data may not

be identically distributed, can be alleviated, which signi�cantly improves the stability of

training process. After a �xed number of updates ofqw(s; a), theqŵ(s; a) is renewed by

replacingŵ with the latest learnedw. Note that it is not easy to solve a maximum problem

in Equation 2.26 due to the nonlinear and complex formulation ofqŵ(s; a), which hinders

the use of value-based RL methods. In actor-critic RL methods, by replacingat+1 with the

optimal policy evaluated at statest+1 , the maximum operator can be removed.

Thirdly, the state-based functionv� (s) can also be approximated by neural network,

which can be further combined with the state-dependent action advantage function to

determine the action-value function. The main bene�t of this factoring is to generalize

learning across actions without changing the underlying RL algorithm.

PolicyFunctionApproximation

In policy-based and actor-critic RL methods, neural networks are widely used to

parameterize control policies� � , which can be solved by Equation 2.24. In order to reduce

the variance of the gradient, an extra baseline term is added to calculate the gradient.

Compared the stochastic policy with the deterministic policy, the latter is more sample-

ef�cient because its policy gradient only integrates over the state space while the former

integrates over both state and action spaces. One major issue regarding a deterministic

policy is the lack of exploration, which may lead to a poor policy. A common way to

encourage exploration is to perturb a deterministic policy with exploratory noises, e.g.,

adding a Gaussian noise� to the policy witha = � � (s) + � .
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CHAPTER 3

LEARNING-BASED SITUATION AWARENESS UNDER UNCERTAINTY

The proliferation of EVs brings environmental bene�ts and technical challenges to

power grids. An identi�cation algorithm which can accurately extract individual EV

charging pro�les out of widely available smart meter measurements has attracted great

interests. This chapter proposes a non-intrusive identi�cation framework for EV charging

pro�le extraction, which is driven by DGM. First, the proposed DGM is designed as

a representation layer embedded into the Markov process and used to model the joint

probability distribution of available time-series data. A novel contribution is to approximate

posterior distributions by neural networks whose parameters are obtained by variational

inference and supervised learning. Second, the EV charging status is inferred from

the DGM via dynamic programming. Lastly, the desired EV charging pro�le can be

reconstructed by the rated power of EV models and inferred status.

The remainder of this chapter is organized as follows. Section 2.1 de�nes the EV

charging pro�le identi�cation problem considered in this dissertation and then formulates

it with in the architecture of NILM. Next, Section 2.2 reviews the framework of HMM,

which will be used as a benchmark algorithm. Furthermore, Section 2.3 proposes a DGM

to model the joint probability distribution of the available aggregated consumption data, of

which parameters are obtained by variational inference and supervised learning. Section

2.4 utilizes dynamic programming to perform exact inference of the DGM for the EV

charging status. Moreover, Section 2.5 discusses numerical validation setup and results.

Finally, Section 2.6 concludes this chapter.
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Figure 3.1: Overview of EV charging pro�le identi�cation. (a): a sample aggregated power
consumption pro�le; (b): its corresponding EV charging status (charging started atts and
ended atte); and (c) its corresponding EV charging pro�le.

3.1 Problem Formulation

The EV charging pro�le identi�cation problem considered in this dissertation proposal

is presented in Figure 3.1, in which a sample aggregated power consumption pro�le is

shown in Figure 3.1(a), with its corresponding EV charging pro�le shown in Figure 3.1(c).

Furthermore, Figure 3.1(b) shows the corresponding EV charging status (charging started

at timets and ended at timete).

3.1.1 De�nitions

Given an aggregated power consumption pro�lex = ( x1; : : : ; xT ), i.e., a timed

sequence of a total ofT power consumption data points, determine its corresponding EV

charging pro�leP (or P(x) if the source power consumption pro�lex is relevant). Note

that the power consumption pro�le is called aggregated as most smart meters measure the

power consumption of the whole household and thus include all loads (i.e., aggregated).

An EV charging pro�le is thus a timed sequence (of the same lengthT) of EV charging

power consumption data points. In other words, the valuePt of P at time stept denotes the
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