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ABSTRACT

The ever-growing penetration of distributed energy resources in both the generation

and demand-side brings environmental benefits and technical challenges to electric power

distribution systems. Specifically, due to the inherently intermittent nature of renewable

energy resources and the invisible behaviors of customers in electricity use, there exists

a high level of uncertainty, which has significantly threatened the stable, secure, and

dedicated operation of distribution systems. The conventional operation strategies tend

to be model-driven based on offline studies or historical experiences, leading to an

over-conservative or risky operation solution especially when the system encounters

considerable uncertainty. That is, such a deterministic solution is highly difficult to adapt

to the various unknown system operating conditions. Therefore, it is imperative to find a

proper operation strategy for distribution systems under uncertainty. With the high volume

of the real-time measurement data available to the distribution system operator and the

huge success of Machine Learning (ML) technologies in the data-intensive industry, it

is promising to marriage the knowledge representation and reasoning power of ML to

analyze, understand and reveal the potential effects of uncertainty from data itself, finally

solving optimal operation problems under uncertainty more efficiently and accurately. This

dissertation aims at developing learning-based approaches for three representative and

challenging operation problems to have accurate situational awareness, optimal decision

making, and efficient flexibility aggregation under uncertainty. The problems are focused

on identifying the behind-the-meter Electric Vehicle charging load, scheduling energy

storage systems for voltage regulation, and estimating a feasible active-reactive power

flexibility region for capacity support.
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CHAPTER 1

INTRODUCTION

In this chapter, an overview of the research background is first provided, and then

the motivations and objectives are presented. After that, some literature reviews for three

representative and challenging research problems are conducted. Finally, the dissertation

organization is outlined.

1.1 Distribution System With Uncertainties

The main objective of electric power distribution systems is to deliver energy from

the transmission system to end-users at medium voltage and low voltage. In the

last two decades, some tremendous changes have been witnessed in the distribution

system. On one hand, unlike the conventional distribution system, there are various

Distributed Energy Resources (DERs), such as Wind Turbines (WTs), Photovoltaics (PVs),

Energy Storage Systems (ESSs), microgrids, Electric Vehicle (EV) charging stations, and

residential/commercial buildings, as shown in Figure 1.1.

Figure 1.1: Illustration of the distribution system with various distributed energy resources
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The future trend is that DERs will become the main part of energy producers and

consumers. For example, according to Annual Energy Outlook 2021 [1] released from

U.S. Energy Information Administration, renewable electric generating technologies will

account for almost 60 of the approximately 1,000 gigawatts of cumulative capacity

additions from 2020 to 2050, and the solar generation will be responsible for almost three-

quarters of the increase in renewable generation. On the other hand, a massive number of

smart meters are installed in the distribution system, which provides detailed data required

for accurate information and automated decision support.

With the changes in current distribution systems, there are many uncertainty sources.

On the side of generation, the uncertainty mainly comes from the renewable energy sources,

which in nature are stochastic and intermittent depending on the weather conditions. On the

side of demand, the uncertainty is the behaviours of customers in electricity use, especially

with more and more prosumers or active stakeholders, e.g., EVs and ESSs, emerging in

the distribution system. These two types of uncertainty result in great fluctuation and

unpredictability, and impose challenges to the operation of distribution systems. Moreover,

the insufficient real meter measurements and the measurement error may also create

uncertainty, which has a further negative impact on the grid operation. The uncertainty

has to be addressed in order to prevent the power quality from degrading and maintain the

reliability and stability of distribution systems.

1.2 Modern Artificial Intelligence Technologies

Artificial Intelligence (AI) is defined as intelligence demonstrated by machine, as

opposed to natural intelligence displayed by animals including humans. Modern AI

technologies tend to refer to learning based computational intelligence, such as ML, Deep

Learning (DL), and Reinforcement Learning (RL), which has gained the huge success in

multiple research fields such as engineering, medicine and economics. ML is a branch of

AI, which refers to the automated detection of meaningful patterns in datasets. DL can be

2



considered as a sub-class of ML, which is focused on neural network based methods with

many nonlinear layers for pattern recognition. Unlike ML and DL, RL is a sub-field of ML

for decision making by trial and error.

1.3 Motivations and Objectives

As mentioned before, the high penetration of DERs as well as the inaccurate and

insufficient data measurement can introduce much uncertainty, which has an adverse

impact on the operation of distribution systems. The traditional operation strategies tend

to be model-driven based on offline studies or historical experiences, leading to a over-

conservative or risky operation solution especially when a high level of uncertainty exists

in the system. That is, they have the limited capabilities to adapt to various unknown

system operating conditions. Therefore, it is imperative to find a proper operation strategy

for distribution system with uncertainty.

Nowadays, with the high volume of the real-time measurement data available to the

Distribution System Operator (DSO) and the significant success of modern AI technologies

in the data-intensive industry, it could be promising to utilize ML or other advanced

learning technologies to analyze, understand and reveal the potential effects of unknown

operating conditions from the data, finally addressing optimal operation problems under

uncertainty in a more efficient and accurate way. As shown in Figure 1.2, a learning-in-

the-loop distribution system operation framework is proposed to respond to a high level

of uncertainty. At each operation interval (depending on the specific task), a closed-loop

procedure is implemented. First, the grid operation data is collected from the smart meters.

Second, the AI agent learns from the data and provides useful information and insights to

the DSO. Third, with the assistance or guidance of the AI agent, the DSO can properly

schedule the distribution assets (i.e., controllable DERs or other devices) to maintain the

reliability and efficiency of the distribution system while mitigating the adverse effect of

uncertainty sources.

3



Figure 1.2: Illustration of the proposed learning-in-the-loop distribution system operation
framework responding to a high level of uncertainty

In this dissertation, centered around the above-mentioned framework, the goal is

to develop learning-based methods for three representative and challenging operation

problems: situational awareness, decision making, and flexibility aggregation, specified

as follows.

• Insufficient meter installment renders the distribution system less visible, leading

to inaccurate grid models and inadequate situational awareness. This dissertation

is concentrated on residential EV charging load profile identification. For the

consideration of installment cost, normally each household has only one meter to

measure total energy consumption. The residential EV charging load as an important

uncertain source attracts more and more attention of the DSO for modeling the

accurate EV charging load profile. Therefore, the first task is to develop a learning-

based method to estimate the behind-the-meter EV charging load and enhance the

situational awareness under uncertainty. The relative literature reviews can be found

in Section 1.4.

• High PV penetration can degrade the power quality especially on voltage profiles due

to its intermittent nature. Moreover, with its large-scale integration, it is difficult to

model uncertainty or capture the system dynamics and stochastic nature. Although

4



there exist many deterministic methods to schedule voltage regulation devices, it

seems challenging to make an optimal schedule decision in a similar way in an

environment with a high level of uncertainty. Therefore, the second task is to develop

a learning-based method to schedule ESSs for voltage regulation in Low Voltage (LV)

networks with high PV penetration and improve the computational performance of

decision making under uncertainty. The relative literature reviews can be found in

Section 1.5.

• Apart from the engagement in the problems of situational awareness and decision

making, it is essential for the DSO to interact with the Transmission System

Operator (TSO). The distribution system with controllable DERs can provide great

power flexibility to support transmission system operation, i.e., power flexibility

aggregation. This dissertation is focused on estimating an approximate and feasible

power flexibility region. However, the forecast error uncertainty of PV generation

and load has an adverse impact on the ahead-of-time flexibility region estimation,

which hinders the efficient and safe implementation of power flexibility aggregation.

Therefore, the third task is to develop a learning-based method to find a region that

can hedge against the forecast error uncertainty as much as possible. The relative

literature reviews can be found in Section 1.6.

1.4 Review of Residential EV Charging Load Profile Identification

The worldwide electricity demand profile is experiencing a paradigm shift with

increasing penetration of electrified transportation. In the U.S., it is expected that

transportation electrification will drive domestic electricity demand rise through 2050 [2],

by when over 2.3 million new light-duty EVs will be sold annually [3]. Across the

globe, many major economies have announced their intentions to end the sale of internal

combustion engine vehicles [4] within several decades. The impact of high volume of
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EVs on power grids has been extensively studied in literature [5]. In general, EVs have

been considered as active loads which could provide flexibility in terms of grid services [6]

through Vehicle-to-Grid (V2G) modes [7] or transactive controls [8].

In the literature, aggregated EV charging demands are modeled as a stochastic part of

the overall load model. However, the uncertainty in individual EV charging profiles (i.e.,

start charging time, initial State of Charge (SOC), charging power, and charging duration)

[9] and traffic conditions [10] makes it difficult to accurately derive real-time EV charging

demand models under various scenarios. Therefore, probabilistic distributions are typically

assumed. In [11] and [12], the charging start time is represented by the normal distribution.

Similarly, a truncated normal distribution is suggested to represent the arriving time and

parking time at commercial buildings [13] for EV charging duration. Furthermore, in [14],

EV charging duration is assumed to be exponentially distributed. Moreover, the initial

SOC is modeled as a random variable under log-normal distribution [9]. However, it

is questionable whether these assumptions from locational models can be used in other

regions. For example, charging start times in rural residential, urban residential, and

commercial districts at different seasons are unlikely to be the same. Therefore, in recent

years, pilot projects have been carried out globally to collect and analyze EV charging

profiles in the Netherlands [15], U.K. [16], Australia [17], and California [18].

However, most of the historical data is only small-scale and sampled at commercial

charging stations. For residential applications, it is costly to (intrusively) install additional

sampling devices into existing residential EV chargers and (more importantly) unrealistic

to sample and communicate EV charging information to system operators, another recent

research effort [19–23] focuses on utilizing widely-available smart meter data to non-

intrusively, locally, and reliably estimate EV charging profiles in real-time to preserve

privacy and avoid unnecessary investment in additional infrastructure.

To conclude above discussions, it is of great interests for system operators and planners

to extract EV charging profiles from smart meter data in a non-intrusive manner such that
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1) unrealistic and uncertain assumptions (as pointed out in the above discussions) can be

alleviated; and 2) EV charging profiles can be accurately extracted in real-time to support

both short-term system operations and long-term planning.

To the best of our knowledge, reference [20] is probably the first to adopt Non-Intrusive

Load Monitoring (NILM) and apply benchmark algorithms such as the Hidden Markov

Models (HMMs) [24] to detect events and disaggregate EV charging profiles from low-

frequency smart meter readings. HMM is a general modeling technique suited to represent

a sequence of hidden features in time or space, in which each hidden feature causes or

emits an observation. In the context of EV charging profile identification, the aggregated

power consumption profile and EV charging profile can be treated as observation and

hidden feature, respectively. Obviously, the former is dependent on the latter, i.e., the

latter may take different proportions of the former. In addition, to more accurately model

the aggregated power consumption profile, profiles of other loads can also be considered

by utilizing a variant of HMM called Factorial Hidden Markov Models (FHMMs) [25–

28]. Reference [25] proposed a Conditional Factorial Hidden Semi-Markov Model which

works well for appliances with simple or modestly complex power signatures, but suffers

from complex signatures. Reference [26] developed a Difference Additive Factorial

Approximate MAP, which can perform exact inference and is computationally efficient.

A convex formulation of approximate inference avoids susceptibility to local optima.

Reference [27] presented a solution by designing a hierarchical probabilistic model, which

has efficient and effective estimation of latent states. Reference [28] proposed a ensemble

methods named hierarchical FHMM, which handles the correlations between devices in

order to strengthen independence assumption of devices and preserve the one-at-a-time

condition.

Although the FHMM is a favorable model, which is relatively easy to train, it

has some drawbacks. Firstly, FHMMs work well for discrete-state (e.g., ON/OFF or

High/Medium/Low) loads but have difficulty in determining optimal number of quantized
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states for continuous loads. Secondly, FHMMs require detailed a priori information such

as the number of loads in the aggregated signal and thus are unable to tackle unknown loads.

Finally, the computational complexity of an exact inference grows exponentially with the

number of sequence lengths and the number of appliances. Meanwhile, an approximate

inference may compromise the accuracy. Therefore, it is desired to design an algorithm to

mitigate the aforementioned issues. Apart from FHMM-based non-intrusive approaches,

reference [21] presents an unsupervised algorithm to extract EV charging loads from the

smart meter data using independent component analysis, and reference [23] proposes a

training-free algorithm based on bounding-box fitting and load signatures.

1.5 Review of Voltage Regulation with High PV Penetration

The global electricity industry is undertaking a significant paradigm shift from

traditionally being centralized, passive, and rigid to potentially being distributed, active,

and autonomous. The accelerating proliferation of DERs, such as distributed generations,

ESSs, and electrified transportation, has been making positive technical, economic, and

environmental impacts. The inherently intermittent nature of DERs has brought many

challenges to distribution networks, especially on voltage profiles [29–31]. For instance,

it has been shown that in the daytime, high solar generation can cause over-voltage issues

[32], while at night, excessive EV charging demands could also result in under-voltage

issues [33], especially for rural and remote areas. Conventional voltage regulation devices,

such as On-Load Tap Changers (OLTCs), Step Voltage Regulators (SVRs), and shunt

capacitors, are too slow or inflexible to accurately regulate voltage in distribution networks

with high DER penetrations [34, 35].

In general, voltage regulation methods are categorized into two groups: active power-

based and reactive power-based [36]. Contrast to high-voltage transmission lines, the R/X

ratio of LV distribution networks is inherently much higher, which implies that voltage

magnitudes in LV distribution networks are more sensitive to active power injections [29,
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35]. Therefore, this work will focus on active power control for autonomous voltage

regulation in LV Unbalanced Distribution Network (UDS).

Besides conventional strategies such as generation curtailment [37], many recent

works utilize distributed ESSs for voltage regulation. Reference [34] coordinates PV

inverters, ESSs, and SVRs every five seconds to follow volatile PV fluctuations. ESS

charging/discharging is adaptively tuned to avoid SOC exhaustion and implemented with

no real-time communication requirement. A similar problem is considered to dynamically

estimate SOC, adjust participating factors, and regulate ESS charging/discharging by

consensus algorithms [38], in which real-time information exchange among neighboring

ESS is required. Moreover, a Model Predictive Controller (MPC) is proposed to

autonomously coordinate ESSs and grid devices and alleviate voltage variation caused

by PV fluctuations [39]. A similar MPC-based coordination of ESSs and OLTCs for

voltage regulation is proposed in [40]. However, how the model accuracy might impact

those model-driven methods is not discussed. To address a common constraint of single

time-scale, a multi-time-step strategy is designed using back-and-forth communication to

optimally coordinate ESS by calculating global voltage violation sensitivities [41].

Compared to model-based methods, model-free control is more preferable to avoid

modeling challenges [42], such as RL [43]. In RL, autonomous agents can actively learn

(in a model-free manner) to perform a given task by trial and error without any guidance

from human operators. A batch RL algorithm is proposed in [44] to determine optimal tap

settings, in which a Markov Decision Process (MDP)-based policy is formulated to map

voltage magnitude measurements to tap ratio changes. Each OLTC is assigned an action-

value function, which is sequentially learned by the least-square policy iteration with the

distribution network modeled by the LinDistFlow [45, 46].

Moreover, RL is typically combined with deep neural networks, i.e., Deep

Reinforcement Learning (DRL), for enhanced representational capability in high-

dimensional spaces [47, 48]. A safe off-policy DRL algorithm is proposed in [49] to model
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Volt-VAR control as a constrained MDP with discrete action space. A popular value-based

DRL formulation, called the Deep Q-network (DQN), is constructed with designed rewards

in [50] to handle time-varying operating conditions, in which statuses/ratios of capacitors,

SVRs, and inverters are modeled as agents’ actions. A two-time-scale DQN is proposed

in [51] to incorporate both on-off capacitor actions (hourly or daily) and smart inverter

injections (within milliseconds). It is shown that, for autonomous voltage control, the Deep

Deterministic Policy Gradient (DDPG) method requires less action corrections than DQN

[52].

To the authors’ best knowledge, model-free voltage regulation with multiple ESSs

autonomously coordinated has not been well addressed. To fill this gap, this work aims at

designing a DRL-based framework to autonomously schedule day-ahead ESS operations

for real-time voltage regulation in UDS. Note that although in literature UDS could refer

to that each bus can have one, two, or three nodes, most recent voltage regulators consider

three-phase distribution systems with significant power or voltage imbalance across phases

due to unbalanced DER installation and fluctuations [35, 53–57]. Furthermore, although

some recent works have used three-phase balanced distribution system to reduce the

modeling complexity, three-phase UDS is more consistent with practice and is thus adopted

in this dissertation proposal. Specifically, the UDS considered in this dissertation proposal

models the placement of loads and DERs at different phases and the coupling effect

between different phases, which cannot be reflected in the simplified balanced distribution

systems.

1.6 Review of Power Flexibility Aggregation for TSO-DSO Interaction

The penetration of DERs such as solar generations, ESSs, and demand response has

considerably increased over the last years, which promotes a transformation of distribution

systems from passive to active state. Specifically, unlike the conventional distribution

system treated as a passive load on transmission side, the modern distribution system
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with large-scale integration of DERs can not only meet energy demand of local loads, but

also actively release significant power flexibility to support transmission system operation.

The power flexibility typically refers to the ability of a distribution system to modulate

its exchanged power with the transmission system at the substation interface. Through

coordinated transmission and distribution (T&D) dispatch (i.e., flexibility aggregation), the

potential power flexibility can be fully exploited to make power grids more efficient and

resilient [58, 59].

In practice, aggregating a large population of DERs and exploiting power flexibility for

system-wide operation and control are challenging due to computational complexity and

cybersecurity risks. Some existing works [58–60] are focused on applying disaggregation-

based methods (e.g., generalized Benders decomposition) to jointly dispatch all generators

in both the transmission and distribution networks in a formulation of economic dispatch.

However, these methods suffer from slow convergence issues especially when there

exists a large number of DERs. Meantime, it requires frequent boundary information

exchange, which aggravate communication burden issues. Other alternatives for flexibility

aggregation are to characterize a feasible time-varying power flexibility region on

distribution side, which can be integrated into mature transmission optimization programs

to mitigate the complexity from coupled transmission-distribution networks.

With massive DER devices, multiple time periods and a complex network environment

with multiple coupled factors (i.e., time-coupled, power-coupled, and phase-coupled

constraints), it is intractable to procure an exact and feasible power flexibility region.

Therefore, more research efforts are devoted to approximation methods. Reference

[61] models the power flexibility of an individual flexible load as a polytope, and then

their aggregate flexibility is represented by the Minkowski sum of all these polytopes.

Reference [62] models the aggregate P-Q feasible domain over time as a series of time-

moving ellipsoids, and their parameters are obtained by a data-driven system identification

procedure. In [63], a box-shape active-power flexibility region is modeled, and a distributed
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model predictive control framework is developed to optimize the parameters of such an

approximated region. Reference [64] proposes a two-stage adaptive robust optimization

framework for power flexibility aggregation with a hyperbox approximation in [64] and an

ellipsoid approximation in [65].

From the perspective of control system, the power flexibility aggregation can be

regarded as a process of controlling the power output of DERs to track the power flexibility

command. The majority of existing works are focused on designing control rules of DERs.

However, the power output of DERs as control variables is redundant. That is, a power

flexibility command can be realized by multiple dispatch alternatives, which may hinder

efficient design of control rules and flexibility evaluation schemes. To our best knowledge,

[65] is probably the first to reconstruct the DER power region and design control rules

of converted control variables, which can regulate power flexibility as the DERs do while

providing a new insight into control law design of DERs. Through this reconstruction,

the redundancy issue can be avoided, and the feasibility of power flexibility can be easily

guaranteed in some case.

Apart from the above-mentioned redundancy issue, approximation results in the ahead-

of-time flexibility region evaluation may be compromised by the forecast error uncertainty.

That is, if the forecast model has low accuracy, there may exist some infeasible points

in the approximated region leading to the termination of the aggregation process. To

our best knowledge, few works address this issue. In [66], the forecast error uncertainty

is explicitly characterized by Gaussian Mixture Model and incorporated into a chance-

constrained optimization problem. The results show its higher aggregation efficiency

than the scenario-based methods such as the Monte-Carlo simulation. The [67] proposes

a data-driven probabilistic-based flexibility region estimation method by constructing a

distributionally robust optimization problem to handle unknown forecast error uncertainties

and find a conservative solution.
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1.7 Dissertation Organization

The main content of this dissertation consists of six chapters including this introduction.

The remainder of this dissertation is organized as follows.

Chapter Two provides a brief introduction to several background about neural network

and reinforcement learning. Additional background will be introduced in later chapters if

necessary.

Chapter Three proposes a Deep Generative Model (DGM)-driven inference framework

for non-intrusive, real-time identification of EV charging profiles. Firstly, the joint

probability distribution for available smart meter data (which can actually be considered as

time series) is modeled by DGMs. The posterior distributions are approximated by neural

networks whose parameters are obtained by variational inference and supervised learning.

Secondly, the EV charging status is inferred from DGMs via dynamic programming.

Finally, the target EV charging profile can be reconstructed according to the rated power of

EV models and inferred status.

Chapter Four proposes a DRL-based voltage regulation method for high PV penetrated

distribution systems. Firstly, an ESS-based voltage regulation problem is proposed, with

the objective of minimizing the expected total daily system-wide voltage regulation cost

subject to operational constraints. Secondly, this problem is converted to an MDP with

a partial objective (i.e., negative voltage regulation compensation at single time step) as

rewards, with constraints treated as an action space flexibly. Finally, the preceding problem

is further formulated as an entropy-constrained MDP problem to make agents explore their

action spaces more widely and wisely, which can be approximately solved by a state-of-the-

art DRL method called Soft Actor Critic (SAC), without the need of modeling uncertainties.

Chapter Five proposes an inner approximation framework for an ahead-of-time

flexibility region estimation considering the forecast error uncertainty. Firstly, the

distribution system including device, network, and uncertainty propagation is modeled
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as a polyhedral power region. After that, through a coordinate transformation, two

types of flexibility regions called non-feeder-level and feeder-level flexibility regions are

defined. The latter can be viewed as an aggregation of the former. Finally, a chance-

constrained Chebyshev centering optimization model is developed to approximate multiple

maximum inscribed balls, which can be solved by simultaneously and unsupervisedly

learning multiple hyperplanes.

Finally, Chapter Six summarizes the main contributions and lists outcomes of this

dissertation.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, a brief introduction to Deep Neural Networks (DNNs) and DRL is

provided. The DNNs are used to parameterize the probability distributions in Chapter

Three, and the control law and optimal value function in Chapter Four. DRL is involved in

Chapter Four. The additional background will be introduced if necessary in later chapters.

2.1 Deep Neural Networks

The first artificial neural network component “perceptron” developed in [68] can be

dated back to 1958, which is designed to mimic the way the human brain processes

visual data and identifies recognizable objects. After that, it was extended to multilayer

perceptrons, also called deep feedforward networks, which are the basic deep neural

network architectures.

Given an input x and an output y, the goal of a deep feedforward network is to

approximate some function y = f ∗(x). For example, for a classifier, x is a vector of

features while y is a probability distribution of categories. A feedforward network defines

a mapping y = f(x,θ) where parameters θ can be learned by training data samples so that

f can become the best function approximation to f ∗. With the following representation

x︸︷︷︸
input layer

→ f︸︷︷︸
hidden layers

→ y︸︷︷︸
output layer

,

the models are called feedforward. The first layer of the models is called the input layer

and the final layer of the models is called the output layer. When the models have more

than two layers, the intermediate layers are called hidden layers.
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Take a three-layer feedforward network as an example

f(x,θ) = g(W⊤x+ b)

where

• θ = {W,b} denotes neural network parameters,

• W is the weights of a linear transformation,

• b is the biases, and

• g is a nonlinear function called an activation function.

Note that in modern neural networks, the default recommendation [69] for g is to use the

rectifier linear unit, i.e.,

g(z) = max(0, z)

.

Given a training set {x(i),y(i)}ni=1, the parameters θ can be learned by solving the

following minimization problem

min
θ

1

n

n∑
i=1

L(f(x(i),θ),y(i))

where L(f(x,θ),y) is a loss function that can be used to evaluate how good the

approximated function is. This problem can be solved by using back-propagation and

variants of stochastic gradient decent algorithm such as the Adam optimizer [70].

Based on this feedforward network, with some tricks casted on loss functions and

intermediate layer representation, some other types of neural network architecture such

as convolutional neural networks, recurrent neural networks etc. can be built. Refer to the

book [69] for more relative details.
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2.2 Deep Reinforcement Learning

RL is a representative bio-inspired learning approach. Through the trial-and-error

interaction in an unknown environment, RL can learn a decision or control policy. This

section starts with principles of RL problems and then moves to DRL.

2.2.1 Principles of RL Problems

Agent

The agent is a learner, or a decision maker, or a controller.

Environment

Most stochastic and discrete-time environments can be viewed as MDPs, or MDP

problems. For a MDP, the agent and environment interact at each of a sequence of discrete

time steps, t = 0, 1, 2, 3, . . . . At each time step t, the agent receives state st ∈ S, and

on that basis selects an action at ∈ A. One time step later, the environment responds

to the received action, and sends the next state st+1 ∈ S as well as a numerical reward

rt ∈ R ⊂ R to the agent.

The state can be seen as some representation of the environment which contains

sufficient information used for decision making. The state evolves based on environment

dynamics:

P a
ss′ := Pr{st+1 = s′|st = s, at = a} (2.1)

where s′, s and a are the values of random variables st+1, st and at, respectively. The

Equation 2.1 follows the Markov property, i.e., the state at current time step depends only

on the state and action of precedent steps.
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State-Action Samples

In an unknown environment, it is difficult to obtain an exact representation of

environment dynamics like Equation 2.1. Therefore, the state-action samples (st, at, st+1)

are considered as another representation of environmental dynamics, which can be

collected by interacting between agent and environment, either physically in the real world

or virtually in a computer.

Policy

The policy π is a function mapping state to action, which describes how the agent

responds to the environment. In a MDP problem, the policy is Markovian, i.e., the action

is only determined by the current state. This kind of policies can be categorized into

deterministic policy and stochastic policy. The deterministic policy π(s) selects the same

action at the same state, i.e.,

a = π(s), s ∈ S (2.2)

while the stochastic policy π(a|s) selects action according to a learned probability

distribution where

∑
a∈A

π(a|s) = 1, s ∈ S (2.3)

In general, stochastic policies are more efficient than their deterministic counterparts

because they allow the agent to explore better policies.

When both state space and action space are discrete, a policy can be represented

as the look-up table, i.e., an array that holds a set of pre-computed actions in all state

positions. For large-scale problems especially in an environment with continuous or high-

dimensional state and action space, such a tabular policy is not always computationally
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efficient. Alternatively, a parameterized function can be used to represent the policy to

reduce the computational burden:

πθ(s) := π(s, θ) : deterministic policy

πθ(a|s) := π(a|s, θ) : stochastic policy
(2.4)

where θ is the parameter of the policy. The choice of parameterization is a good way of

injecting prior knowledge about the desired form of the policy.

Reward and Return

In RL, a reward signal rt is determined by a function r with reference to the current

state st, current action at, and next state st+1, defined as:

rass′ := r(st = s, at = a, st+1 = s′) (2.5)

The return Gt is defined as some specific function of the reward sequence. The most

popular definition is the discounted return:

Gt =
+∞∑
i=0

γirt+i (2.6)

where γ ∈ [0, 1] is the discounting factor. If γ = 0, the agent is myopic and concerns only

immediate reward. As γ approaches 1, the agent becomes more farsighted. The purpose of

discounting returns is to provide a tractable measure, i.e., Gt is finite.

Value Function

To evaluate how good a policy is, there are two kinds of value functions: state-value

function and action-value function. The former is a function of the state only, defined as
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the expected return under a policy π starting from s:

vπ(s) := Eπ[Gt|s] (2.7)

The latter is a function of both state and action, defined as the expected return under a

policy π taking action a in state s:

qπ(s, a) := Eπ[Gt|s, a] (2.8)

When both state and action spaces are small, the tabular function can be used to

represent value functions. Otherwise, parameterized functions are better choices with less

computation and storage burden.

A fundamental property inherited in value functions is that it naturally holds a certain

recursive relationship, i.e., self-consistency condition. Looking ahead from a state to its

successor states, the recursive relationship between vπ(s) and qπ(s, a) can be easily found:

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a) (2.9)

and

qπ(s, a) =
∑
s′∈S

P a
ss′(r

a
ss′ + γvπ(s

′)) (2.10)

Combining Equation 2.9 and Equation 2.10, the self-consistency condition of state-

value function can be found:

vπ(s) =
∑
a∈A

π(a|s)[
∑
s′∈S

P a
ss′(r

a
ss′ + γvπ(s

′))] (2.11)

Reusing Equation 2.9 and Equation 2.10 with next state s′ and next action a′, the self-

consistency condition of action-value function can be found:
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qπ(s, a) =
∑
s′∈S

P a
ss′ [r

a
ss′ + γ

∑
a′∈A

π(a′|s′)qπ(s′, a′)] (2.12)

The self-consistency condition builds the connection between value function and

policy. Given a policy and environment dynamics, the so-called model-based evaluation

method is performed by solving the self-consistency condition, like dynamic programming,

approximate dynamic programming, etc.

Goal

The goal of MDP problems is to find an optimal solution that maximizes the expected

return

max
π

J(π) = max
π

Es0 [vπ(s0)] (2.13)

where J ∈ R is called objective function, s0 ∈ S is initial state, and π is the policy to be

optimized. For problem Equation 2.13, its solution can be classified as model-based and

model-free, depending on whether the environment dynamics is known or not.

Optimality

For any finite MDPs, there at least exists an optimal policy, i.e., π∗, that is better than

or equal to any other policies. An optimal policy naturally results in corresponding optimal

state-value function,

v∗(s) = max
π

vπ(s), ∀s ∈ S (2.14)

and optimal action-value function

q∗(s, a) = max
π

qπ(s, a), ∀s ∈ S and ∀a ∈ A (2.15)
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The relation of v∗(s) and q∗(s, a) is

v∗(s) = max
a∈A

q∗(s, a) (2.16)

q∗(s, a) =
∑
s′∈S

P a
ss′ [r

a
ss′ + γv∗(s

′)] (2.17)

An optimal policy can be found by maximizing optimal action-value function:

π∗ = π∗(a|s) =


1 if a = a∗

0 if a ̸= a∗
(2.18)

where

a∗ = argmax
a

q∗(s, a)

By combining Equation 2.16 and Equation 2.17, the self-consistency condition of v∗(s)

can be found:

v∗(s) = max
a∈A

∑
s′∈S

P a
ss′ [r

a
ss′ + γv∗(s

′)] (2.19)

Reusing Equation 2.16 and Equation 2.17 with next state s′ and next action a′, the

self-consistency condition of q∗(s, a) can be found:

q∗(s, a) =
∑
s′∈S

P a
ss′ [r

a
ss′ + γmax

a′∈A
q∗(s

′, a′)] (2.20)

The recursive relationship derived in Equation 2.19 and Equation 2.20 is also called

Bellman equation, which can be used to find the optimal action. Compared with

Equation 2.19 and Equation 2.20, using the latter is more efficient without need to use

environmental dynamics and know successor states and their values beforehand. There are

two methods to solve Bellman equation: policy iteration and value iteration. The former

involves alternating steps, i.e., policy evaluation and policy improvement. The policy is
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evaluated by its corresponding value function in the step of policy evaluation, and then its

new policy is searched in the step of policy improvement. Even though neither of them is

optimal, they together can gradually converge to the solution of Bellman equation as long

as the policy will become better and better in the phase of policy improvement. The latter

solves Bellman equation by using the fixed-point iteration technique. Specifically, the value

function is treated as the variable to be iterated. The optimal policy can be greedily searched

after an optimal value function is found. The convergence of value iteration depends on

whether the Bellman operator is contractive.

Solution

In this part, the connection of optimal policy π∗ and optimal solution π⋆ of the problem

defined by Equation 2.13 is explained.

According to the Jensen’s inequality,

max
π

J(π) = J(π⋆) ≤ Es0 [max
π

vπ(s0)] = Es0 [v∗(s0)] = J(π∗) (2.21)

Denote π ∈ Π as the policy set. When π∗ is inside the policy set, i.e., π∗ ∈ Π,

J(π∗) ≤ J(π⋆) (2.22)

By combining Equation 2.21 and Equation 2.22, J(π∗) = J(π⋆), and π∗ is one of

optimal solutions. Therefore, the solution of Bellman equation is equivalent to that of the

problem defined by Equation 2.13. At this time, the optimal solution has nothing to do

with the initial state distribution. When π∗ is not inside the policy set, i.e., π∗ /∈ Π, only

Equation 2.21 holds, and at this time the initial state distribution can affect the optimality of

the problem defined by Equation 2.13. Therefore, if Π can be equal to full policy space, the

problem defined by Equation 2.13 degenerates into finding the optimal state-value function

v∗(s) and its corresponding optimal policy π∗. For the methods solving for Bellman
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equation, there is no constraint on the policy set, and thus π∗ ∈ Π. Apart from using

Bellman equation to find an optimal policy, the other type of methods is to directly optimize

an policy (often parameterized like πθ(s)) with respect to the scalar performance index

J(θ). When πθ is neural networks or other functions with almost-universal approximate

ability, the problem defined by Equation 2.13 can be rewritten as

max
θ

J(θ) = max
θ

Es[vπθ
(s0)] = Es[max

θ
vπθ

(s0)] (2.23)

It can be seen from the problem defined by Equation 2.23 that the initial state

distribution has no impact on the optimality, and the objective is still to find the optimal

state-value function v∗(s). Normally, the gradient decent algorithm can be used to solve

problem defined by Equation 2.23

θ ← θ + η∇θJ(θ) (2.24)

where η is the learning rate, and∇θJ(θ) is called policy gradient. The key idea underlying

policy gradients is to push up the probabilities of actions that lead to higher return, and

push down the probabilities of actions that lead to a lower return, until the optimal policy

is found. This direct method requires effective estimation of policy gradient, which is a

costly procedure. And it always finds a local maximum. All in all, the essence of RL is to

find the optimal state-value or action-value function.

2.2.2 DRL

Traditional RL [43] algorithms exist several limitations. On one hand, they suffer

from the issue of “curse of dimensionality” when the state and action spaces are large

or continuous. As a result, it is intractable to compute or store a gigantic look-up table

for value and policy functions. On the other hand, hand-crafted state representations are

typically required. To overcome the above limitations, function approximation methods
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are developed to approximate value and policy functions with some parameterized function

classes. Driven by the advances of DL, DRL that utilizes DNNs to approximate value and

policy functions is becoming increasingly popular, which features the following technical

points:

Replay Buffer

The DNNs can equip RL with the ability to automatically extract features and

generalize to a large state space. But the training data sampled from the interaction are

highly correlated, violating the independence assumption. Therefore, in DRL, a replay

buffer denoted byD is adopted to store a large number of transitions (st, at, rt, st+1), which

can break the correlation among training data by randomly sampling a mini-batch data from

the replay buffer when updating neural networks.

Value Function Approximation

Firstly, the action-value function qπ(s, a), sometimes called q-function, can be

approximated by neural network qw(s, a) with weights w. Through Temporal-Difference

learning, i.e, one-step bootstrapping, the w can be updated by

w ← w + α[rt + γqw(st+1, at+1)− qw(st, at)]∇wqw(st, at) (2.25)

where α is a learning rate, and the gradient∇wqw(st, at) can be calculated efficiently using

the back-propagation method, and this updating process is called q-learning.

Secondly, to more conveniently find an optimal policy, some DRL algorithms directly

use neural networks to approximate optimal action-value functions q∗(s, a). Similar to

one-step bootstrapping, the w can be updated by

w ← argmin
w

E(st,at,rt,st+1)∼D[rt + γmax
at+1

qŵ(st+1, at+1)− qw(st, at)] (2.26)
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where qŵ(s, a) is a target optimal action-value function. In modern DRL algorithms such

as DQN[71], DDPG[72] etc., the qŵ(s, a) can be approximated by another neural network

with weights ŵ, called target network, which is a clone of qw(s, a). By introducing target

networks, the non-stationary distribution of training data, i.e., the training data may not

be identically distributed, can be alleviated, which significantly improves the stability of

training process. After a fixed number of updates of qw(s, a), the qŵ(s, a) is renewed by

replacing ŵ with the latest learned w. Note that it is not easy to solve a maximum problem

in Equation 2.26 due to the nonlinear and complex formulation of qŵ(s, a), which hinders

the use of value-based RL methods. In actor-critic RL methods, by replacing at+1 with the

optimal policy evaluated at state st+1, the maximum operator can be removed.

Thirdly, the state-based function vπ(s) can also be approximated by neural network,

which can be further combined with the state-dependent action advantage function to

determine the action-value function. The main benefit of this factoring is to generalize

learning across actions without changing the underlying RL algorithm.

Policy Function Approximation

In policy-based and actor-critic RL methods, neural networks are widely used to

parameterize control policies πθ, which can be solved by Equation 2.24. In order to reduce

the variance of the gradient, an extra baseline term is added to calculate the gradient.

Compared the stochastic policy with the deterministic policy, the latter is more sample-

efficient because its policy gradient only integrates over the state space while the former

integrates over both state and action spaces. One major issue regarding a deterministic

policy is the lack of exploration, which may lead to a poor policy. A common way to

encourage exploration is to perturb a deterministic policy with exploratory noises, e.g.,

adding a Gaussian noise ξ to the policy with a = πθ(s) + ξ.
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CHAPTER 3

LEARNING-BASED SITUATION AWARENESS UNDER UNCERTAINTY

The proliferation of EVs brings environmental benefits and technical challenges to

power grids. An identification algorithm which can accurately extract individual EV

charging profiles out of widely available smart meter measurements has attracted great

interests. This chapter proposes a non-intrusive identification framework for EV charging

profile extraction, which is driven by DGM. First, the proposed DGM is designed as

a representation layer embedded into the Markov process and used to model the joint

probability distribution of available time-series data. A novel contribution is to approximate

posterior distributions by neural networks whose parameters are obtained by variational

inference and supervised learning. Second, the EV charging status is inferred from

the DGM via dynamic programming. Lastly, the desired EV charging profile can be

reconstructed by the rated power of EV models and inferred status.

The remainder of this chapter is organized as follows. Section 2.1 defines the EV

charging profile identification problem considered in this dissertation and then formulates

it with in the architecture of NILM. Next, Section 2.2 reviews the framework of HMM,

which will be used as a benchmark algorithm. Furthermore, Section 2.3 proposes a DGM

to model the joint probability distribution of the available aggregated consumption data, of

which parameters are obtained by variational inference and supervised learning. Section

2.4 utilizes dynamic programming to perform exact inference of the DGM for the EV

charging status. Moreover, Section 2.5 discusses numerical validation setup and results.

Finally, Section 2.6 concludes this chapter.
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Figure 3.1: Overview of EV charging profile identification. (a): a sample aggregated power
consumption profile; (b): its corresponding EV charging status (charging started at ts and
ended at te); and (c) its corresponding EV charging profile.

3.1 Problem Formulation

The EV charging profile identification problem considered in this dissertation proposal

is presented in Figure 3.1, in which a sample aggregated power consumption profile is

shown in Figure 3.1(a), with its corresponding EV charging profile shown in Figure 3.1(c).

Furthermore, Figure 3.1(b) shows the corresponding EV charging status (charging started

at time ts and ended at time te).

3.1.1 Definitions

Given an aggregated power consumption profile x = (x1, . . . , xT ), i.e., a timed

sequence of a total of T power consumption data points, determine its corresponding EV

charging profile P (or P (x) if the source power consumption profile x is relevant). Note

that the power consumption profile is called aggregated as most smart meters measure the

power consumption of the whole household and thus include all loads (i.e., aggregated).

An EV charging profile is thus a timed sequence (of the same length T ) of EV charging

power consumption data points. In other words, the value Pt of P at time step t denotes the

28



amount of power by EV charging.

Moreover, at time step t, the charging status yt of an EV is binary, i.e., either ON

(i.e., yt = 1 if Pt is greater than a pre-defined threshold Pth) or OFF (yt = 0 otherwise).

Furthermore, the probability of an EV at its yt is denoted by p(yt). When yt = 1,

p(yt = 1) = 1 and p(yt = 0) = 0. When yt = 0, p(yt = 1) = 0 and p(yt = 0) = 1.

3.1.2 EV Charging Profile Identification as NILM

The objective of the EV charging profile identification problem considered in this

dissertation proposal is to determine EV charging profile P given aggregated power

consumption profile x. Therefore, the scope of this work falls within the framework of

an NILM problem. Most techniques used for NILM problems in the literature consist of

two sub-tasks: 1) classification and 2) reconstruction. The former task aims at classifying

the load operation status into known categories, and the latter task is to reconstruct load

consumption profiles using classification results. For example, if the first task returns

that the charging status of a certain model of EV at time step t is classified to be ON

(i.e., yt = 1) with rated power consumption around 6.7 kW (i.e., Pt = 6.7), then the

latter task would focus on reconstructing its corresponding EV charging profile. Therefore,

this dissertation proposal follows [22, 73] to assume that EV charging power level and

corresponding models can be identified separately and mainly focuses on EV charging

status classification and converts the EV charging profile identification problem into a

binary EV charging status classification task.

Therefore, the EV charging profile identification problem this dissertation proposal

aims to solve can be formulated as follows: given an aggregated power consumption profile

x = (x1, . . . , xT ), determine yt of an EV at each time step t = 1, . . . , T . The general

procedure of how the proposed EV charging profile identification problem is studied in

this dissertation proposal is presented in Figure 3.2. First of all, each generative process

for time-series data is modeled by a joint probability distribution in Step 1. Secondly,
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Figure 3.2: The general procedure of the proposed identification algorithm under the
architecture of NILM can be divided into four steps.

each component (e.g., evidence and transition probabilities) in the joint distribution from

Step 1 is approximated by a common parametric density function in Step 2. Thirdly,

parameters of the density function (in the joint distribution) from Step 2 are learned by

maximum likelihood estimation in Step 3. Finally, the above-defined identification problem

is converted to a Bayesian inference process by the proposed DGM in Step 4. The above

steps are further specified in Sections 3.3 and 3.4.
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3.2 Benchmark Algorithm: HMMs

3.2.1 Applicability

HMMs have been extensively utilized for EV charging profile and other load profile

identification in the field of NILM. The reasons that HMMs are used as benchmark

algorithms for EV Charging profile identification are summarized as next three points.

First, HMMs are a widely acknowledged tool for modeling time series like the collected

smart meter data (i.e., aggregated power consumption profiles and the corresponding EV

charging profiles). Second, HMMs are relatively easy to train, and can be quickly deployed

in practical scenarios. Third, mainly due to its low identification accuracy with a single

Markov chain, it is desired to improve it by enhancing the representational ability of the

Markov chain in this proposal.

3.2.2 Implementation Details

Given the aggregated power consumption profiles and their corresponding EV charging

profiles, their joint probability distribution can be modeled by a standard HMM [74]. The

graphical illustration of such an HMM is given by Figure 3.3, in which an aggregated power

consumption profile x = (x1, ..., xT ) and its corresponding EV charging status profile

y = (y1, ..., yT ) (depicted by nodes) are modeled as random variables. Under this model,

the aggregated power consumption at each step xt only depends on some unobserved or

latent EV charging status yt, which are depicted by direct edges. Therefore, the former

can be generated/emitted by the latter. This conditional generative process can be modeled

by p(xt|yt, θ), which is typically known as emission probability [74]. The Markovianity is

defined such that yt only depends on yt−1. Note that the bottom representation layer (shown

in blue) in Figure 3.3 is the proposed model, which will be discussed in the next section.

Such an HMM can model the following joint probability distribution reflecting the
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Figure 3.3: Graphical illustration of how aggregated profiles and EV charging profiles are
represented by an HMM (black) vs. the proposed representation-layer-embedded Markov
model (blue), which introduces an additional layer of representations.

generative process of the time series x and y:

p(x, y|ϕ) = p(y1|π)︸ ︷︷ ︸
Prior

[ T∏
t=2

p(yt|yt−1, A)
]

︸ ︷︷ ︸
Transition Probability

[ T∏
t=1

p(xt|yt, θ)
]

︸ ︷︷ ︸
Emission Probability

(3.1)

where ϕ = {π,A, θ} denotes parameters of HMMs, π is the categorical distribution

of the initial status, A is the status transition matrix, and θ is the mean and deviation

if the emission probability is Gaussian, which can be obtained by counting frequencies

through supervised learning. With ϕ learned, the EV charging status y can be inferred by

Maximizing a Posterior (MAP) p(y|x, ϕ) which can be solved by the Viterbi Algorithm

[75, p.629], which is a well-known method for exact inference.

3.3 The Proposed DGM: Representation and Parameter Learning

This section presents in details the proposed DGM-driven framework, which simplifies

the classification complexity using only a single (but enhanced) Markov chain and utilizes

deep neural networks to approximate posterior probability distributions with weights

trained via supervised learning.
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Figure 3.4: Illustration of a sample standardized aggregated power consumption profile
(left) and its corresponding representation layer (right).

3.3.1 Representation Layer Embedded Markov Chain

A major innovation of the proposed framework for EV charging status classification is

to embed a representation layer (denoted by z) into the Markov chain. The z can be seen

as abstract but meaningful features from any aggregated power consumption profile x. As

shown in Figure 3.4, the left figure shows a standardized aggregated power consumption

profile x, and the right figure shows the value of the corresponding representation layer z.

The motivation behind the proposed representation layer can be summarized as follows.

• Firstly, although a single Markov chain can classify EV charging status, the

representation capability by raw, aggregated power consumption profiles (i.e., inputs)

is relatively weak due to similar and ambiguous features;

• Secondly, nonlinear dynamics in raw time-series inputs might present higher non-

stationary variances and thus fail to provide useful features;

• Finally, the learned likelihood distributions p(xt|yt = 0) and p(xt|yt = 1) from raw

inputs may have significant overlaps, which could cause mis-classification issues in

later steps. As illustrated in Figure 3.5, the learned (Gaussian mixture) likelihood

distributions for p(xt|yt = 0) and p(xt|yt = 1) are represented by the blue and red

lines respectively and overlap in the dash rectangle area.
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Overlap

Figure 3.5: An example likelihood function p(xt|yt) in HMM, where the learned likelihood
distributions for the two distinctive scenarios p(xt|yt = 0) and p(xt|yt = 1) are represented
by the blue and red lines, respectively.

The proposed representation-layer-embedded Markov model is illustrated by

Figure 3.3, which depicts the generative process of x and y with z (depicted by nodes) also

modeled as a random variable. Considered as measurements, x can always be observed,

while y can only be partially observed and z always cannot be observed. Compared with

the conventional HMM which only contains the upper and middle layers, the proposed

representation-layer-embedded Markov model adds a representation layer with the same

nodes as the HMM but without directed paths from y to x, which models likelihood

distributions p(xt|yt). Both methods generate the same x and y from different perspectives.

The HMM assumes that x can be generated by or correlated with y. Moreover, the proposed

model assumes that the feature z can generate y (depicted by directed edges). Generating

such a z needs to have a powerful feature extractor, which is one of reasons to use deep

neural networks.

The two directed edges connecting yt−1 to yt and z to yt meet the Markov property, i.e.,

current charging status only relies on the previous charging status and representation layer.

The advantage of adding a representation layer is to alleviate the above-discussed likelihood

distributions overlapping issue (as shown in Figure 3.5), i.e., the proposed model learns the
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posterior distributions p(z|x) and p(y|z) =
∏T

t=1 p(yt|z) instead of all p(xt|yt), which will

be studied in details in later sections.

3.3.2 Probability Distribution Approximation in DGM

In this work, a DGM is developed based on the proposed representation-layer-

embedded Markov model with the following characteristics:

1. Deep: using deep neural networks to approximate distributions;

2. Generative: taking x as input to generate z and then using z to generate a sequence

of yt, which can be abstracted into the following joint probability distribution

p(x, y, z|ϕ) = p(x)︸︷︷︸
Evidence

p(y1|π)︸ ︷︷ ︸
Prior

[ T∏
t=2

p(yt|yt−1, A)
]

︸ ︷︷ ︸
Transition Probability

p(z|x, θ)︸ ︷︷ ︸
Posterior of z

[ T∏
t=1

p(yt|z, θ)
]

︸ ︷︷ ︸
Posterior of yt

(3.2)

where ϕ = {π,A, θ} denotes parameters of the proposed representation-layer-

embedded Markov model.

The probability distributions in the right-hand side of Equation 3.2 are discussed in

details as follows.

• p(y1|π): π ∈ [0, 1]2 is prior probability distribution of the initial EV charging status,

in which πi := p(y1 = i), i ∈ {0, 1}, represents the probability that initially an EV is

at charging status i. With N labelled initial y(n)1 , n = 1, . . . , N , πi can be estimated

by

π∗
i =


∑N

n=1 y
(n)
1

N
if i = 1;

1−
∑N

n=1 y
(n)
1

N
if i = 0.

(3.3)

• p(yt|yt−1, A): A ∈ R2×2 is the probability transition matrix, in which Aij represents
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the probability that the EV charging status transits from i at t− 1 to j at t:

Aij = p(yt = j|yt−1 = i) where i, j ∈ {0, 1}. (3.4)

With N labelled y
(n)
t , n = 1, . . . , N , Aij can be estimated by

A∗
ij =

∑N
n=1

∑T
t=2 1ij(y

(n)
t = j|y(n)t−1 = i)

N(T − 1)
(3.5)

where 1ij(yt = ·|yt−1 = ·) is an indicator function whose output is 1 if and only if

y
(n)
t = j and y

(n)
t−1 = i.

• p(z|x, θ) and p(yt|z, θ): Recall that an abstract but meaningful feature, z is always

unobservable. Therefore, the true posterior distribution of z given x is unknown.

This dissertation proposal follows [76, 77] to assume that p(z|x, θ) takes on an

approximate Gaussian form, i.e., a multivariate Gaussian with a diagonal covariance,

given as

log p(z|x, θ) = log N(z|µz(x), σ
2
z(x)I) (3.6)

where µz(x) and σz(x) are the mean and standard deviation of z, respectively.

Because yt is a binary variable, it is assumed that yt follows a Bernoulli distribution

log p(yt|z, θ) = log(µyt(z)
yt(1− µyt(z))

1−yt) (3.7)

where µyt(z) is the mean of yt, which can also be interpreted as the probability that

an EV is at ON charging status given z at t, i.e., µyt(z) = p(yt = 1|z, θ). Thus

the p(y|z, θ) is a multivariate Bernoulli distribution that is a product of Bernoulli

distribution of each yt.

In this dissertation, DNNs [69, Ch. 6 and 9] are used to approximate p(z|x, θ) and

p(yt|z, θ). Compared to linear regression models, DNNs can better extract features in a
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robust manner (against noise and error in data) and generalize to new data. Moreover,

recurrent layers are often used in DNNs to process time-series data. However, recurrent

layers have difficulties in handling long sequences, such as sequences more than 100 time

steps [69, Ch. 10]. Therefore, instead of recurrent layers, this dissertation proposal utilizes

fully connected (FC) and Convolutional Neural Network (CNN) layers. The former layer

is the weighted sum of inputs transformed by nonlinear activations into outputs. The latter

layer employs convolution operations to extract nonlinear features [78]. The CNN layer is

demonstrated in Figure 3.6, where

• Conv1D is a one-dimensional (1D) convolutional layer applied to time series. Its

parameters consist of a set of learnable filters, which can capture features such as

the spatial structure (e.g., change points) and local information (e.g., magnitudes)

of input time series. During the forward pass, each filter is convolved from the

beginning of a time series towards its end, computing the dot product between

the entries of the filter and the input and producing a feature map of that filter.

For instance, an example time series 1, 1, 2,−1, 1,−2, 1 with a filter 1, 0,−1 is

given in Figure 3.6. The convolution operation can be considered as the dot

product, e.g., the first output −1 after the convolution operation can be calculated

as 1 × 1 + 1 × 0 + 2 × (−1) = −1. Note that the output −1, 2, 1, 1, 0 after the

convolution operation is called a feature map.

• UpSampling1D is an operation to upsample (i.e., repeat and resize) the feature map.

For instance, given a feature map −1, 2, 1, 1, 0 as shown in Figure 3.6, the output

after the upsampling operation with factor 2 is −1,−1, 2, 2, 1, 1, 1, 1, 0, 0.

• MaxPooling1D is an operation to reduce the input size by taking the maximum value

of sliding windows in the original input. For instance, considering the feature map

−1, 2, 1, 1, 0, the output after MaxPooling1D with size 3 can be calculated as 2, 2, 1,

where the corresponding sliding windows are [−1, 2, 1], [2, 1, 1], and [1, 1, 0].
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Figure 3.6: Demonstration of a CNN layer, which consists of three sequential operations:
Conv1D, UpSamping1D, and MaxPooling1D.

The above three operations can be performed with or without overlaps and paddings,

which would imply different final output sizes. The complete network architecture

and parameter settings of the proposed DGM are shown in Table 3.1, which presents

approximation actions of p(z|x, θ) and p(y|z, θ) in each layer. The approximation of

p(z|x, θ) is carried out by two convolutional layers with the same padding, two pooling

layers with stride size of 2, and a FC layer for µz(x) and log σz(x)
2. Moreover, the

approximation of p(y|z, θ) is conducted by a FC layer, two upsampling layers, and two

convolutional layers with the same padding. Since µyt(z) is a probability, the sigmoid

function is selected to be the activation of the last layer.

Compared with FC layers, the proposed DGM can benefit from convolutional layers.

On one hand, convolutional layers can automatically capture useful features from local

patterns. As shown in Figure 3.7, an one-dimensional convolutional layer with 16 filters

is applied to a sample aggregated power consumption profile to illustrate this advantage.

Each subplot shows the identical power consumption profile (lines in black), EV charging

operation status (lines in red), and feature map outcomes of one filter (lines in blue). Each

trained filter aims at extracting both the spatial structure (e.g., change points) and local

information from the input and providing feature maps for its downstream layer. In this

illustration, filters #3, #4, #6, #7, #8, #12, #13, and #16 can effectively extract feature

maps that match the EV charging status change points (step changes in red lines). The other
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Figure 3.7: Visualization of feature maps extracted from convolutional layers with sixteen
filters.

filters also introduce positive impacts, but not as strong as these ones. For different inputs,

in general there would be a different subset of filters that perform dominating roles. On

the other hand, convolutional layers with weight sharing can reduce the number of neural

network weights and indirectly prevent overfitting.

Remark 1: The number of weights in convolutional layers depends on the product of

the number and the size of convolution filters (e.g., 16×3), while the number of weights in

FC layers relies on the product of the input and output size (e.g., 360× 50). In general, the

latter is much larger than the former. Therefore, given the same number of layers, a DNN

with more convolution layers requires less weights.

Remark 2: Though it is generally true that recurrent layers perform better in capturing
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Table 3.1: The proposed DGM architecture and parameter settings

Layer Name p(z|x, θ) p(y|z, θ)

Input 1440 50

Layer1 Conv1D,16,3,ReLU FC,360,ReLU

Layer2 MaxPooling1D,2 UpSampling1D,2

Layer3 Conv1D,1,3,ReLU Conv1D,16,3,ReLU

Layer4 MaxPooling1D,2 UpSampling1D,2

Layer5 FC,50/50,- Conv1D,1,3,sigmoid

*Conv1D denotes 1D convolution layer followed by
number and size of filters and an activation layer;
MaxPooling1D denotes 1D max pooling layer followed by
size of the max pooling windows; UpSampling1D denotes
1D upsampling layer followed by upsampling factors; FC
denotes a fully connected layer followed by number of
neurons and an activation layer

temporal information than convolutional layers, they tend to have difficulties in handling

very long time series. Some recent results [78, 79] have shown that convolutional layers

can achieve better performances than recurrent layers in some applications. Moreover, this

dissertation proposal utilizes convolutional layers for different purposes, such as extracting

spatial structures. As a result, the temporal information is not processed in the neural

network part of the proposed model. However, since the proposed DGM retains the Markov

property of HMMs, the corresponding temporal information is addressed by transition

probabilities. In other words, convolutional layers with Markov property is proposed here

as an alternative of recurrent layers for time series.

3.3.3 Supervised Learning in DGM

With labelled dataset (X ,Y), θ in Equation 3.6 and Equation 3.7 can be determined by

maximum likelihood [75]. The marginal distribution of each (x, y) ∈ (X ,Y) is obtained

from the joint distribution Equation 3.2 by marginalizing over the latent variable z

log p(x, y|θ) = log

∫
z

p(x, y, z|θ)dz. (3.8)
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Maximizing Equation 3.8 could lead to complicated expressions with no closed-form

solutions since 1) the integral of the marginal distribution is intractable when p(z|x, θ)

and p(y|z, θ) are approximated by DNNs with nonlinear hidden layers and 2) batch

optimization is costly for large amount of data. Following recent advances in variational

inference [80], the proposed DGM can be trained by maximizing the Evidence Lower

Bound (ELBO) under data distribution. A lower bound L(θ|x, y) on the marginal

distribution of (x, y) is given by

L(θ|x, y) = log p(x) + log p(y1) +
T∑
t=2

log p(yt|yt−1)

+
T∑
t=1

Ez∼p(z|x,θ)
[
log p(yt|z, θ)

]
.

(3.9)

Therefore, the ELBO under data distribution x, y ∼ pdata can be written as

L(θ|X ,Y) = Ex,y∼pdata

[
L(θ|x, y)

]
. (3.10)

Then Equation 3.6 and Equation 3.7 can be trained by

θ∗ = argmin
θ
−L(θ|X ,Y). (3.11)

Since z is stochastic and thus gradients cannot be backpropagated, reparameterization is

used to sample z, i.e., given x and a unit Gaussian noise ϵ ∼ N(0, I), z = µz(x) + ϵσz(x).

Note that the noises injected into the representation layer enables the proposed DGM to

learn continuous feature representations. Note that such a sampling process of z is similar

to the Variational Autoencoder (VAE) [76]. Therefore, in this dissertation proposal the

number of samples z is set to be 1 with a large minibatch size Nb in accordance with the

experimental setting in the VAE. Based on Equation 3.6, Equation 3.7, and Equation 3.11,

it can be concluded that

41



θ∗ = argmin
θ
−

Nb∑
nb=1

T∑
t=1

y
(nb)
t log µyt(z

(nb))

+ (1− y
(nb)
t ) log(1− µyt(z

(nb)))← Loss

(3.12)

where z(nb) = µz(x
(nb)) + ϵ(nb)σz(x

(nb)) and ϵ(nb) ∼ N(0, I), x(nb) and y(nb) are the nb-

th instance from minibatch, z(nb) is generated from x(nb), and y
(nb)
t is the t-th element of

y(nb). From Equation 3.12, it can be seen that the training objective is to minimize the

binary multi-label classification loss. In this dissertation proposal, p(z|x, θ) and p(yt|z, θ)

are both differentiable functions containing different neural layers composed of multilayer

perceptrons, convolution, max-pooling, upsampling, Rectified Linear Unit (ReLU), and

sigmoid. Therefore, the gradient-descent based training methods Adam [81] is applied,

which is fairly insensitive to the choice of hyperparameters.

Furthermore, this dissertation proposal utilizes the minibatch training, also known as

the minibatch gradient descent, which is a variation of the gradient descent algorithm

that splits the training dataset into small batches. The implementation flowchart of the

minibatch training in DGM is shown in Figure 3.8. For each batch, the forward propagation

first generates z and outputs µyt(z), and then the back propagation calculates model loss

and update model weights.

3.4 The Proposed DGM: Exact Inference

Once the proposed model is trained with ϕ∗, the next step is to infer EV charging status

y∗ given aggregated consumption profile x via MAP, i.e.,

y∗ = argmax
y

p(y|x, ϕ∗), (3.13)
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Figure 3.8: Implementation flowchart of the minibatch training in DGM, including both
forward and backward propagation.

which is approximated (with z sampled from p(z|x, θ∗)) by

y∗ = argmax
y

log p(y1) +
T∑
t=2

log p(yt|yt−1) +
T∑
t=1

log p(yt|z). (3.14)

Note that y∗ in (Equation 3.14) can be further inferred via Dynamic Programming (DP)

in two stages. For forward induction, at each time step t, the first step is to solve the

following

Fc(t, yt) = min
yt−1

{Fc(t− 1, yt−1)− log p(yt|z)− log p(yt|yt−1)} (3.15)

where Fc(t, yt) is the optimal cost function over time steps t and t − 1 given yt, and

F (1, y1) = − log p(y1)−log p(y1|z). An example is shown in Figure 3.9 to demonstrate the

calculation of Fc(t, yt), where the values on the nodes are the cost (or values of the negative

logarithm of posterior) and the values on the directed edges are the cost of transporting

a unit from one node to the other (i.e., the negative logarithm of transition probability).
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Figure 3.9: Example demonstration of how to calculate Fc(t = 3, yt = 0) where the red
sign highlights the possible minimum cost paths (the directed edges) from the last time step
(t = 2) to the current time step (t = 3).

Therefore, the overall process of forward induction is to find the minimum cost. Note that

the complexity of this implementation is O(4T ).

For backward induction, the second step is solve the following and find the minimum

cost route,

y∗t−1 = argmin
yt−1

{Fc(t− 1, yt−1)− log p(y∗t |z)− log p(y∗t |yt−1)} (3.16)

where y∗T = argminyT
F (T, yT ). The complexity of this implementation is O(2T ).

Figure 3.10 shows four typical inference results corresponding to (a) once-charging ,

(b) twice-charging in day and night, (c) twice-charging in two nights, and (d) multiple-

charging, respectively. It can be observed that the measured and inferred EV charging

status are almost identical, which validates the effectiveness of the proposed framework.

The incorporation of p(y1) and p(yt|yt−1) into the graph enables the model to consider the

past events at the expense of increased computational complexity of inference.
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Figure 3.10: Selected typical examples of inference results including (a) once-charging,
(b) twice-charging in day and night, (c) twice-charging in two nights, and (d) multiple-
charging, respectively. Each row shows the aggregated power consumption profile, the
probability of an EV at ON, the optimal cost over time steps t and t − 1 given yt,
the measured EV charging status profile, and the inferred EV charging status profile,
respectively.
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Figure 3.11: Illustration of convergence of the training (black line) and validation (blue
line) losses as the epochs increase during training.

3.5 Numeric Results

In this section, the proposed algorithm is validated on the Pecan Street dataset [82],

which consists of measurement of circuit-level household electricity consumption data

from nearly 1,000 homes across the U.S. Each such home have eight extra channels to

record power consumption by major appliances such as Heating, Ventilation and Air-

Conditioning (HVAC), refrigerators, and EVs.

3.5.1 Experiment Setup and Evaluation Metrics

The DGM in this dissertation proposal is trained using Adam with an epoch of 20,

a mini-batch size of 100, and a learning rate of 0.001. All neuron weights are initialized

using Glorot initialization [83]. After data pre-cleaning with removal of bad data points, the

aggregated power consumption profiles and EV charging profiles are then standardized and

binarized, respectively. The main program is executed on an Intel i7-7820X 8-Core CPU

while the training of the proposed DGM including the forward and backward propagation

is implemented on a TITAN Xp GPU using TensorFlow as the computational framework.

It is observed that the loss of the model goes to convergence as the epoch increases, as

shown in Figure 3.11. To evaluate performance of the proposed algorithm, the following
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classification metrics are employed,

Accuracy =
TP + TN

TP + TN + FP + FN
,

Recall =
TP

TP + FN

Precision =
TP

TP + FP
,

F1 =
2× Precision× Recall

Precision + Recall

where

• TP is the true positive indicator, i.e., is the number of cases where the DGM classifies

the EV charging status as ON and the actual status is indeed ON;

• TN is the true negative indicator, i.e., the number of cases where the DGM classifies

the EV charging status as OFF and the actual status is indeed OFF;

• FP is the false positive indicator, i.e., the number of cases where the DGM classifies

the EV charging status as ON but the actual status is OFF; and

• FN is the false negative indicator, i.e., the number of cases where the DGM classifies

the EV charging status as OFF but the actual status is ON.

3.5.2 EV Charging Status Classification

There are 93 houses with EV charging activities in the Pecan Street dataset, with

one data point per minute per house. With each aggregated power consumption profile

defined to be of 24 hours, i.e., daily profiles. In this work, both transfer-learning-based

and non-transfer-learning-based settings are utilized for the purpose of comparison on

performances. The difference between these two settings is that for non-transfer learning,

the set of houses used in training is typically the same as the set of houses used in testing.

On the contrast, for transfer learning, the set of houses used in testing is typically different
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from those used in training, which is a powerful method to check whether a certain model

can “transfer” knowledge from one dataset to another.

For the non-transfer learning setting, to reduce bias and variance caused by the source

data and better evaluate the effectiveness of the proposed DGM, the five-fold cross-

validation (i.e., all available data is first shuffled and divided into five subsets, and each

trial takes one subset for testing and the other four subsets for training) [75] is performed.

As shown in Figure 3.12, the box plot and the green triangle are used to visualize the

variance and mean of evaluation results for the following three scenarios, respectively.

• The first scenario is the proposed DGM without any noise injected into the test sets,

denoted as “DGM w/o noise”;

• The second scenario is the proposed DGM with a Gaussian noise (zero mean and

half standard deviation, i.e., ±0.5kW), denoted as “DGM w/ noise”;

• The third scenario is the HMM without any noise, denoted as “HMM w/o noise”.

It can be observed that the variance of evaluation results is small for all five data partitions,

and thus the proposed DGM is reasonably stable. On average, the proposed DGM increases

accuracy, precision, and F1 by 8.20%, 134.39%, 56.43%, respectively, at the cost of

reducing recall by 19.31% compared with the HMM on the five different data partitions. In

terms of F1, the proposed DGM is better than the HMM with better average performance

of accuracy.

Furthermore, another comparative experiment is performed to demonstrate the

robustness of the proposed DGM against noise in the data. From Figure 3.12, the

performance of the proposed DGM could be slightly affected by noise and error in the

data (the accuracy, precision, recall, and F1 drop by 0.82%, 2.83%, 19.02%, and 13.61%).

However, at a reasonable noise level, the proposed DGM still greatly outperforms HMM.

Detailed evaluation results are provided in Table 3.2
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Figure 3.12: Performance comparison using five-fold cross-validation and non-transfer
learning settings.

Table 3.2: Performance comparison using five-fold cross-validation and non-transfer
learning setting

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Overall

Accuracy
0.9794 /
0.9692 /
0.9055

0.9801 /
0.9724 /
0.9077

0.9802 /
0.9763 /
0.9084

0.9794 /
0.9728 /
0.9061

0.9809 /
0.9692 /
0.9058

0.9800±0.0006 /
0.9720±0.0027 /
0.9057±0.0011

Precision
0.7683 /
0.6348 /
0.3409

0.8369 /
0.8373 /
0.3494

0.8306 /
0.8275 /
0.3527

0.7751 /
0.7913 /
0.3466

0.8169 /
0.8233 /
0.3417

0.8056±0.0285 /
0.7828±0.0756 /
0.3437±0.0045

Recall
0.8318 /
0.8818 /
0.9822

0.7462 /
0.5548 /
0.9827

0.7613 /
0.6700 /
0.9820

0.8301 /
0.6224 /
0.9826

0.7894 /
0.4765 /
0.9819

0.7917±0.0035 /
0.6411±0.1369 /
0.9812±0.0004

F1 Score
0.7978 /
0.7370 /
0.5061

0.7879 /
0.6661 /
0.5155

0.7935 /
0.7394 /
0.5190

0.8006 /
0.6953 /
0.5124

0.8021 /
0.6021 /
0.5070

0.7964±0.0052 /
0.6880±0.0509 /
0.5091±0.0049

Note that top/middle/bottom numbers in each cell represent metrics of DGM w/o noise, DGM w/
noise, and HMM w/o noise, repsectively.
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For transfer learning setting, all data are split into the training dataset of 73 households

and testing dataset shown in the first column of Table III. For household with dataid 6871,

it is an extreme case where there is no any EV charging events. From Table 3.3, it is shown

that the proposed DGM increases accuracy, precision, and F1 by 10.8%, 89% and 42.8%

at the cost of reducing recall by 17.2% compared with the HMM. In terms of F1, DGM is

better than HMM with high average performance of accuracy.

Compared to HMMs, it can be observed that the proposed DGM achieved better

performance in accuracy, precision, and F1 but only received a lower score in recall under

both settings. That is because that HMMs cannot accurately classify the EV charging status

as “OFF”, i.e., HMMs classifies most “OFF” statuses as “ON” wrongly while the proposed

DGM method can mitigate this issue of the HMM method at the cost of classifying a small

number of “ON” statuses as “OFF”.

3.5.3 EV Charging Profile Elements Analyses

Four houses (dataid 3036 (a), 370 (b), 1782 (c), and 2018 (d)) are selected according

to their different F1 values from high to low. Four elements of EV charging profiles

are extracted from measured and corresponding classified EV charging status. Once the

extracted results are collected, the distribution of EV charging profile elements can be

visualized by Gaussian mixture. As shown in Figure 3.13, the distribution of EV charging

profile elements from measured and classified results are represented by the blue and red

lines respectively. For each household, it can be seen that the red line is almost identical to

the blue line. That is, the distribution of the measured elements can be well approximated

by the classified elements. Therefore, the proposed framework is accurate and effective.

According to the distribution of the classified elements, it can be summarized that most

households charge their EVs after work around 6 p.m and also tend to charge their EVs for

one hour and once per day. So these information can be further analyzed to achieve more

accurate EV charging profiles.

50



Table 3.3: Performance Comparison Using Transfer Learning Setting

Dataid Accuracy
[HMM]

Accuracy
[DGM]

Precision
[HMM]

Precision
[DGM]

Recall
[HMM]

Recall
[DGM]

F1
Score

[HMM]

F1
Score

[DGM]

370 97.49 98.54 74.50 95.49 98.04 83.28 84.67 88.97
545 94.63 98.68 50.86 95.64 96.40 79.93 66.59 87.08

1185 87.96 97.17 31.64 71.84 97.21 82.34 47.74 76.73
1782 85.85 97.70 28.40 86.04 98.23 70.94 44.06 77.77
2018 77.79 96.11 21.69 67.25 99.30 72.33 35.61 69.70
2335 88.90 96.30 20.48 43.48 96.52 86.88 33.79 57.96
2769 90.58 98.34 31.16 79.26 96.69 83.55 47.13 81.35
3036 98.09 99.28 79.74 96.55 97.11 92.98 87.57 94.73
3367 88.59 98.41 35.54 87.67 98.05 87.28 52.17 87.48
4373 93.40 95.00 67.21 95.96 94.86 63.71 78.68 76.58

4641 97.13 96.18 86.22 92.49 93.27 77.56 89.61 84.37

4957 89.28 98.38 30.25 86.72 99.77 77.05 46.42 81.60
5357 53.17 91.67 6.53 22.62 99.85 63.80 12.25 33.40
5749 92.53 98.34 49.72 84.18 99.87 95.40 66.39 89.44
5786 81.68 96.20 2.15 8.29 99.23 83.30 4.20 15.08
6139 93.16 98.56 45.36 86.13 96.48 89.22 61.70 87.65
6871 91.29 92.66 - - - - - -

7863 94.61 98.86 50.10 94.04 98.35 84.20 66.38 88.85
8197 67.49 98.11 12.94 79.00 99.62 83.06 22.90 80.98
8669 88.25 96.20 42.71 77.35 98.64 80.32 59.61 78.81

Overall 87.59
±10.58

97.03
±2.05

40.38
±24.03

76.32
±25.07

97.76
±1.79

80.90
±8.58

53.02
±24.34

75.71
±20.15

3.6 Conclusion

This chapter proposes a DGM driven non-intrusive identification framework for EV

charging profile. With the capability of complex density estimation by DGMs, the EV

charging status can be modeled and inferred from DGMs via DP. Then EV charging

profiles can be reconstructed according to the rated power of EV models and inferred

status. Experiments on Pecan Street datasets were conducted to validate the feasibility

and effectiveness of the proposed framework. The numerical results show that the proposed

method can improve the overall performance compared with the state-of-art HMMs, though
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Figure 3.13: The analysis of some example EV charging profile elements including start
charging time, end charging time, duration, and charging times for four representative
houses in terms of their F1 values, where the blue and red lines are the measured and
classified distributions, respectively.
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a decrease in the recall was observed. In addition, the proposed framework can well

handle noisy and unseen data and thus possesses improved robustness and generalization

capabilities. For future research, the proposed framework can be extended to more general

multi-class multi-label classification tasks.
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CHAPTER 4

LEARNING-BASED DECISION MAKING UNDER UNCERTAINTY

The ever-growing higher penetration of DERs in LV distribution systems brings both

opportunities and challenges to voltage support and regulation. This chapter proposes

a DRL-based scheduling scheme of ESSs to mitigate system voltage deviations in

unbalanced LV distribution networks. The ESS-based voltage regulation problem is

formulated as a multi-stage quadratic stochastic program, with the objective of minimizing

the expected total daily voltage regulation cost while satisfying operational constraints.

While existing voltage regulation methods are mostly focused on one-time-step control,

this dissertation proposal explores a day-horizon system-wide voltage regulation problem.

In other words, the size of action and state spaces are extremely high-dimensional and

need to be delicately handled. Furthermore, in order to overcome the difficulty of

modeling uncertainties and develop a real-time solution, a learn-to-schedule feedback

control framework is proposed by adapting the problem to a model-free DRL setting.

The remainder of this chapter is organized as follows. Section 3.1 presents a

LinDistFlow model for multi-phase UDS. Section 3.2 proposes a quadratic system voltage

regulation cost and defines a day-horizon ESS scheduling problem for voltage regulation,

which will be formulated as an MDP in Section 3.3. A learn-to-schedule feedback control

framework via SAC is presented in Section 3.4. The proposed algorithm is first tested on a

customized 6-bus system and then validated on a modified IEEE 34-bus system in Section

3.5. Note that a deterministic Quadratic Programming (QP) based control strategy is used

as a benchmark method to evaluate the near-optimality of the proposed strategy. Similar

practice is taken in [59] for method comparison. Finally, Section 3.6 concludes this chapter.
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4.1 Modeling of Multi-phase Unbalanced LV Distribution Network

Consider a three-phase distributed network represented by a graph G = (N , E), where

N := {0, 1, . . . , N} denotes the set of all nodes (i.e., buses) and E denotes the set of

edges (i.e., distribution lines). Note that this work follows the literature [53] to denote the

substation bus as bus 0, and thus the set of the remaining buses is denoted asN+ = N\{0}.

Moreover, each bus i ∈ N+ is connected to a unique parent bus πi and a set of child buses

denoted by Ci. Without loss of generality and for notational simplicity, the line from bus πi

to bus i is unique to bus i and thus can be denoted by the same index as line i ∈ E = N+.

Consequently, all buses are labeled in a manner that the index of each bus is always greater

than that of its parent bus. In other words, i > πi, i.e., monotonically increasing from the

substation bus 0 to rural buses.

Furthermore, let A0 = [a0 A] ∈ RN×(N+1) denote the line-bus incidence matrix, where

the first column a0 denotes line-bus incidences associated with bus 0 except itself and A

denotes line-bus incidences of the remaining network. Therefore, its entry A0
ij = 1 if

j = πi or A0
ij = −1 if j = i, and A0

ij = 0 otherwise. Since G is a connected tree, A is

invertible with the following property

A−1a0 = 1N (4.1)

where 1N is a vector of ones. Consequently, (complex) variables associated with each bus

(or line) i at t are represented by 3×1 vectors V̇πi,t and İi,t, respectively, which are coupled

by

V̇i,t = V̇πi,t − żiİi,t, (4.2)

where V̇i,t := [V̇ a
i,t V̇

b
i,t V̇

c
i,t]

⊤ denotes the three-phase voltages of bus i, İi,t := [İai,t İ
b
i,t İ

c
i,t]

⊤

denotes the three-phase currents of bus i, and the complex matrix żi = ri + jxi ∈ C3×3
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is the impedance matrix of line i1. Finally, squared voltage magnitudes in distribution

networks, denoted by vi,t := [vai,t v
b
i,t v

c
i,t]

⊤, can be obtained as follows

vi,t = V̇i,t ⊙ V̇∗
i,t = (V̇πi,t − żiİi,t)⊙ (V̇πi,t − żiİi,t)

∗

⇒ vi,t = vπi,t − V̇πi,t ⊙ ż∗i İ
∗
i,t − (V̇πi,t ⊙ ż∗i İ

∗
i,t)

∗ + żiİi,t ⊙ ż∗i İ
∗
i,t

= vπi,t − 2Re[V̇πi,t ⊙ ż∗i İ
∗
i,t] + żiİi,t ⊙ ż∗i İ

∗
i,t

(4.3)

where ⊙ is the element-wise product operator, i.e., Hadamard product. Note that the last

term żiİi,t ⊙ ż∗i İ
∗
i,t in Equation 4.3 is relatively small due to the small entries of żi and thus

can be neglected.

The power balance equation at each bus i is given by

Ṡi,t︸︷︷︸
power flow

from πi

− (żi,tİi,t)⊙ İ∗i,t︸ ︷︷ ︸
loss

−
∑

j∈Ci
Ṡj,t︸ ︷︷ ︸

power flow from i

= − ṡi,t︸︷︷︸
power

injection

(4.4)

where Ṡi,t := [Ṡa
i,t Ṡ

b
i,t Ṡ

c
i,t]

⊤ denotes the power flow on line i and ṡi,t := [ṡai,t ṡ
b
i,t ṡ

c
i,t]

⊤ is

the power injection at bus i. Since distribution line losses are relatively small compared to

line flows and often neglected, Equation 4.4 can be written as

Ṡi,t −
∑

j∈Ci
Ṡj,t = −ṡi,t. (4.5)

The power flow formulation in distribution networks is typically approximated linearly,

with the assumption that voltages are nearly balanced, i.e., |V̇ a
i,t| ≈ |V̇ b

i,t| ≈ |V̇ c
i,t| ≈ Ṽi,t

and
V̇ a
i,t

V̇ b
i,t

≈ V̇ b
i,t

V̇ c
i,t

≈ V̇ c
i,t

V̇ a
i,t

≈ ej
2π
3 . Surrogating V̇i,t by Ṽi,tα̇, the current vector İ∗i,t can be

approximately expressed as

İ∗i,t = Ṡi,t ⊘ V̇πi,t ≈
α̇∗ ⊙ Ṡi,t

Ṽπi,t

(4.6)

1The dot over an entity (i.e., vector or matrix) means that it is complex.
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where ⊘ is the element-wise division product, α̇ := [1 α α2]T and α = e−j 2π
3 .

Consequently,

V̇πi,t ⊙ ż∗i İ
∗
i,t ≈ α̇⊙ [ż∗i (α̇

∗ ⊙ Ṡi,t)] ≈ diag(α̇)ż∗idiag(α̇
∗)Ṡi,t ≈ ˙̃z∗i Ṡi,t (4.7)

where diag(x) is the diagonal matrix with x on its diagonal, and ˙̃zi := diag(α̇∗)żidiag(α̇)

is a constant matrix. Thus, Equation 4.3 can be reformulated as follows by plugging

Equation 4.7 and ignoring the last term

vπi,t − vi,t = 2Re[ ˙̃z∗i Ṡi,t] (4.8)

Equation 4.8 and Equation 4.5 then form the (linear) multi-phase LinDistFlow model.

For mathematical conciseness, all variables associated with non-substation buses are

organized as ṡt := [ṡ⊤1,t . . . ṡ
⊤
N,t]

⊤ and vt := [v⊤
1,t . . .v

⊤
N,t]

⊤, and all variables with lines

are organized as Ṡt := [Ṡ⊤
1,t . . . Ṡ

⊤
N,t]

⊤. Therefore, Equation 4.8 and Equation 4.5 can be

written in a compact form as

M−⊤vt = 2Re[bdiag( ˙̃z∗i )Ṡt]− v0 · (a0 ⊗ 13) (4.9)

Ṡt = Mṡt (4.10)

where ⊗ is the Kronecker product, bdiag(xi) is the block diagonal matrix with xi as the

i-th block, M := A−⊤ ⊗ I3 and v0 is the squared voltage magnitude of the substation bus.

Plugging Equation 4.10 into Equation 4.9 and multiplying both sides of Equation 4.9 by

M⊤, the multi-phase LinDistFlow model can be equivalently converted to the following
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equation

vt = 2M⊤Re[bdiag( ˙̃z∗i )Mṡt]− (−v013N)

= 2M⊤Re[bdiag( ˙̃z∗i )M(pt + jqt)] + v013N

= 2M⊤bdiag(Re[ ˙̃z∗i ])Mpt − 2M⊤bdiag(Im[ ˙̃z∗i ])Mqt + v013N

= Rpt +Xqt + v013N

(4.11)

where

• ṡt = pt+jqt, pt := [p⊤
1,t . . .p

⊤
N,t]

⊤, pi,t := [pai,t p
b
i,t p

c
i,t]

⊤ is the active power injection

of bus i,

• qt := [q⊤
1,t . . .q

⊤
N,t]

⊤, qi,t := [qai,t q
b
i,t q

c
i,t]

⊤ is the reactive power injection at bus i, and

• Real matrices defined as

R := 2M⊤bdiag(Re[ ˙̃zi])M

X := 2M⊤bdiag(Im[ ˙̃zi])M.

4.2 ESS Scheduling for Voltage Regulation

4.2.1 Total Daily System Voltage Regulation Cost

The system voltage regulation cost at time t is defined as a quadratic function in terms

of the deviations of voltage profiles vt from their reference values

f∆V
t = ct · ∥vt − v013N∥22 (4.12)

where ct ≥ 0 is the regulation price2, and can be estimated by the utility according to the

historical voltage profiles. This cost increases with increasing system voltage deviations
2Similar to [84], the regulation price is a parameter to manifest economic value, which can be determined

from historical voltage deviation and PMU data. Estimating the regulation price is beyond the scope of this
dissertation proposal, and thus it is randomly set from historical data in numerical simulations.
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from the reference value.

Plugging Equation 4.11 into Equation 4.12, f∆V
t can then be represented in the form of

the active and reactive power injections as

f∆V
t = ct · (Rpt +Xqt)

⊤(Rpt +Xqt) (4.13)

According to Equation 4.13, both active and reactive power injections can be utilized to

reduce voltage deviations. As discussed above, the R/X ratio is high in LV distribution

networks and thus ∥Xqt∥22 is relatively small in comparison with ∥Rpt∥22. Therefore, f∆V
t

can be approximated by neglecting terms containing the reactive power qt

f∆V
t = ct · p⊤

t R
⊤Rpt (4.14)

which indicates that in LV distribution networks active power injection is more effective to

mitigate voltage deviations than the reactive power.

Moreover, the 3×3 complex matrix ˙̃zi can be expanded into

˙̃zi =


żaai αżabi α∗żaci

α∗żbai żbbi αżbci

αżcai α∗żcbi żcci

 , (4.15)

where

żi =


żaai żabi żaci

żbai żbbi żbci

żcai żcbi żcci



=


raai + jxaa

i rabi + jxab
i raci + jxac

i

rbai + jxba
i rbbi + jxbb

i rbci + jxbc
i

rcai + jxca
i rcbi + jxcb

i rcci + jxcc
i

 .
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Then 3×3 real matrix Re[ ˙̃zi] can be decomposed as

Re[ ˙̃zi] = r̃i + x̃i

=


raai −1

2
rabi −1

2
raci

−1
2
rbai rbbi −1

2
rbci

−1
2
rcai −1

2
rcbi rcci

+


0

√
3
2
xab
i −

√
3
2
xac
i

−
√
3
2
xba
i 0

√
3
2
xbc
i

√
3
2
xca
i −

√
3
2
xcb
i 0

 .
(4.16)

Since ∥x̃i∥22 is relatively small in comparison with ∥r̃i∥22, Re[ ˙̃zi] ≈ r̃i and the f∆V
t can

be further approximated as

f∆V
t = ct · p⊤

t R̃
⊤R̃pt (4.17)

where R̃ := 2M⊤bdiag(r̃i)M. This approximation fully decouples the impact of the line

reactance on the voltage magnitudes due to high R/X ratios.

Assuming installation of PV generations, ESSs, and (controllable) loads throughout the

LV network, the active power injection profile is defined as

pt := pPV
t + pE

t − pD
t (4.18)

where

• pPV
t := [pPV

1,t
⊤
. . .pPV

N,t
⊤
]⊤ with pPV

i,t := [pPV,a
i,t pPV,b

i,t pPV,c
i,t ]

⊤
denotes PV power

generation at bus i at t,

• pE
t := [pE

1,t
⊤
. . .pE

N,t
⊤
]⊤ with pE

i,t := [pE,a
i,t pE,b

i,t pE,c
i,t ]

⊤
denotes ESS power injection at

bus i at t.

If pE,φ
i,t ≥ 0, the ESS is discharging; otherwise the ESS is charging. pD

t :=

[pD
1,t

⊤
. . .pD

N,t
⊤
]⊤, pD

i,t := [pD,a
i,t pD,b

i,t pD,c
i,t ]

⊤
is the power demand of the load at bus i at

time t. Insert it into the Equation 4.17 and the f∆V
t can be expanded into
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f∆V
t = ct · pE

t

⊤
R̃⊤R̃pE

t + 2ct · (pPV
t − pD

t )
⊤R̃⊤R̃pE

t︸ ︷︷ ︸
negative voltage regulation compensation

+ ct · (pPV
t − pD

t )
⊤R̃⊤R̃(pPV

t − pD
t )︸ ︷︷ ︸

voltage regulation cost before control

(4.19)

In this dissertation, the ESS is the only controllable source for voltage regulation.

Therefore, f∆V
t can be considered as a quadratic function in terms of ESS power injection.

It can be interpreted as the voltage regulation cost after control, i.e., the summation of

voltage regulation cost before control and negative voltage regulation compensation by

ESSs.

The total daily system voltage regulation cost is defined as the summation of the voltage

regulation cost over the total number T of control intervals within a day

f∆V
daily =

T−1∑
t=0

f∆V
t . (4.20)

4.2.2 ESS-based Voltage Regulation Problem Formulation

Finally, the ESS-based voltage regulation problem is formulated as an expected total

daily system voltage regulation cost minimization problem subject to ESS operation

constraints.

min
pE

{ E
soc0,pPV,pD

(f∆V
daily)} (4.21)

s.t. −1T ⊗ pE ≤ bdiag(I3N)︸ ︷︷ ︸
3NT×3NT

pE ≤ 1T ⊗ pE (4.22)

soc · 13NT ≤ soc ≤ soc · 13NT (4.23)

61



soc = 1T ⊗ soc0 − bdiag(I3N)(L⊗ I3N)⊙ (1T×T ⊗ (13N ⊗∆e⊤))pE (4.24)

pE,φ
i,t = 0, ∀(i, φ) /∈ X (4.25)

where

• pE := [pE
1
⊤
. . .pE

T
⊤
]⊤ is a vector of power supply of all ESSs ,

• pPV := [pPV
1

⊤
. . .pPV

T
⊤
]⊤ is a vector of power supply of all PV inverters ,

• pD := [pD
1
⊤
. . .pD

T
⊤
]⊤ is a vector of power demand of all loads ,

• soc := [soc⊤1 . . . soc⊤T ]
⊤ is a vector of state of charge of all ESSs ,

• soct := [soc⊤1,t . . . soc
⊤
N,t]

⊤ is a vector of state of charge of all ESSs at time t ,

• soci,t := [socai,t soc
b
i,t soc

c
i,t]

⊤ is the ESS SOC at bus i,

• pE := [pE
1
⊤
. . .pE

N
⊤
]⊤ is a vector of the maximum power supply of all ESSs ,

• pE
i := [pE,a

i pE,b
i pE,c

i ]⊤ is the maximum ESS power injection at bus i,

• soc and soc denote the minimum and maximum allowable SOC, respectively,

• L is a T×T lower triangular matrix, i.e., Lij = 1 if i ≥ j and = 0 otherwise,

• ∆e := [∆e⊤1 . . .∆e⊤N ]
⊤, ∆ei := [∆eai ∆ebi ∆eci ]

⊤. ∆eφi = ∆t
eφi

if (i, φ) ∈ X ;

otherwise ∆eφi = 0. ∆t is the length of the control interval, eφi is the capacity of the

ESS at bus i and X is a 2-tuple (i, φ) set of positions where bus has ESS installation.

Note that the objective defined by Equation 4.21 minimizes the expected total daily system

voltage regulation cost over random variables soc0, pPV, and pD by scheduling the power
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supply of ESS. Moreover, constraints defined by Equation 4.22 and Equation 4.23 are to

impose limits on the power rate and SOC, respectively, while constraint Equation 4.24

represent dynamics of the ESS without considering energy losses. Finally, constraint

Equation 4.25 is to ensure that pE,φ
i,t = 0 at all times if bus has no ESS installation.

Therefore, this problem can be considered as a multi-stage quadratic stochastic program.

However, optimally solving such a problem is challenging and even intractable. The

major difficulties are uncertainties encountered in modern distribution networks. In order

to overcome this challenge, a model-free method is proposed in the following section to

approximately solve this problem without needs of knowing the uncertainty model.

4.3 Real-time Voltage Regulation as MDP

In this section, the above-formulated ESS-based voltage regulation problem is first

converted to an MDP problem where the central controller for scheduling is designed

as an agent. To make the agent explore action space more widely and more wisely, the

preceding MDP problem is then reformulated as an entropy-constrained MDP problem.

An advanced model-free off-policy DRL algorithm called SAC [85] is introduced later to

approximately solve such a constrained optimization problem. Finally, a learn-to-schedule

feedback control framework is proposed and integrated with a practical deep reinforcement

schedule scheme as an optimizer. The learned agent can use real-time operation data

to near-optimally schedule ESSs so that the total daily system voltage deviation can be

mitigated.

Consider an MDP where state and action are continuous. It is assumed that the state is

time dependent and there is no overlap in the state space at different time steps. As shown

in Figure 4.1, the agent starts at initial state s0. In each control interval t + 1, the agent

samples an action at from the policy πt, receives a bounded reward rt, and transitions

to a new state st+1 according to environmental dynamics p(st+1|st, at). After T control

intervals, the agent stops in an artificial terminal state sT . The above-mentioned process
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Figure 4.1: Illustration of an MDP for ESSs based voltage regulation

defines a sequential decision-making problem specified as follows

• AGENT: An agent is defined as a central controller for scheduling the power supply

of the ESS;

• ACTION: An action at ∈ A := [−1, 1]|X | is defined as a vector of the normalized

power supply commands of the ESSs. For ESS installed at bus i and phase φ, given

the normalized power supply command p̃E,φ
i,t ∈ [−1, 1], the actual power supply

command pE,φ
i,t ∈ [pE,φ

i,t
, pE,φ

i,t ] can be reconstructed by denormalization

pE,φ
i,t = pE,φ

i,t
+

1

2
(pE,φ

i,t − pE,φ
i,t

)(1 + p̃E,φ
i,t ) (4.26)

where

– pE,φ
i,t

:= −min{pE,φ
i ,

soc−socφi,t
∆eφi

} for charging, and

– pE,φ
i,t

:= min{pE,φ
i ,

socφi,t−soc

∆eφi
} for discharging.

The above normalization forcefully restricts the action to the feasible region of the

proposed optimization problem;

• STATE: A state st ∈ St is defined as a vector of the active power injections before

control, the states of charge and the scaled time stamp t
T−1

. We claim that this design

is sufficient. On one hand, the solution of the proposed problem is dependent on
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the first two factors. On the other hand, the time stamp can make the state time

dependent. It should be noted that the artificial terminal state can be anything

irrespective of the previous action;

• REWARD: The reward r(st, at) (abbreviated as rt sometimes) is highly related

to the objective defined by Equation 4.21 and designed as the voltage regulation

compensation

r(st, at) = −ct ·
[
pE
t − 2(pPV

t − pD
t )
]⊤

R̃⊤R̃pE
t ; (4.27)

• POLICY: Each agent selects an action according to a policy that is a family of

conditional probability distribution functions π(at|st) (abbreviated as πt sometimes)

reflecting the probability that action at being taken in st;

• ENVIRONMENT: The environment responses to actions based on its internal

dynamics p(st+1|st, at) that can be considered as a state transition probability

distribution;

• MDP PROBLEM: The goal of the agent is designed as finding an optimal policy

π⋆
0:T−1 so that the expected return from t = 0 can be maximized

max
π0:T−1

E
s0∼p(s0), at∼πt

st+1∼p(st+1|st,at)

[G0] (4.28)

where

– G0 is a special case of the return Gk :=
∑T−1

t=k r(st, at) at k = 0;

– p(s0) is a probability distribution of the initial state.

The MDP problem defined by Equation 4.28 can be considered as an approximating

version of the proposed problem, i.e., the solution space is assumed as a specific form
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through feedback policies. This assumption relaxes the dependence of actions on global

states over all control intervals and sequentially solves a multi-stage quadratic stochastic

program. Once the optimal policy is determined, voltage regulation can be implemented

in real-time. However, explicitly solving Equation 4.28 and finding the optimal policy

is impractical. Firstly, with many DERs installed, dynamics of the states are difficult to

capture. Secondly, high-dimensional state and action spaces lead to a known issue called

the curse of dimensionality. Therefore, a model-free DRL is resorted to overcome these

two limits and approximately solve Equation 4.28.

4.4 Learn-to-schedule Feedback Control Framework Via SAC

A state-of-art DRL algorithm called SAC is selected to approximately solve

Equation 4.28 with the following advantages. Firstly, it can handle continuous action spaces

and unknown environmental dynamics. Secondly, by integrating the policy entropy into

the MDP, the policy is incentivized to explore more widely while avoiding unpromising

avenues, which is beneficial to finding near-optimal policies. Finally, as an off-policy

algorithm, SAC is sample-efficient by reusing samples during training and takes less effort

to tune hyper-parameters.

In SAC, the problem defined by Equation 4.28 can be reformulated as the entropy

constrained MDP problem

max
π0:T−1

E
s0∼p(s0), at∼πt

st+1∼p(st+1|st,at)

[G0]

s.t. H(πt) ≥ H0 (∀t)

(4.29)

where H(πt) = − E
at∼πt

[log π(at|st)] is the entropy of the policy πt and H0 is a predefined

minimum policy entropy threshold. Then the goal of the agent is modified as finding an

optimal policy π⋆
0:T−1 so that the expected return from t = 0 can be maximized while

satisfying a minimum expected entropy constraint. Although this modification constrains
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the original solution space, the current agent is endowed with more rational exploration. To

solve a constrained maximization problem, the Lagrangian function is constructed as

L(π0:T−1, γ0:T−1) = E
s0∼p(s0), at∼πt

st+1∼p(st+1|st,at)

[
G0 −

T−1∑
t=0

γt log πt

]
︸ ︷︷ ︸

maximum entropy objective

−γtH0 (4.30)

where γt ≥ 0 (∀t) is the dual variable of the corresponding inequality or called

“temperature”. For a fixed dual variable, the non-constant term is called “maximum entropy

objective”. The dual variable performs a role to control the stochasticity of the optimal

policy. If the constraint at time t is satisfied, γt = 0 and the agent is inclined to exploit the

current action. If the constraint at time t is violated, γt > 0 and the agent is inclined to

explore other actions.

Define an optimal soft q-function q⋆(st, at) (abbreviated as q⋆t sometimes)

q⋆(st, at) =


rt + E[q⋆(st+1, at+1)− γt log π

⋆
t+1], t ̸= T − 1

r(sT−1, aT−1), t = T − 1

(4.31)

where at+1 ∼ π⋆
t+1 and st+1 ∼ p(st+1|st, at). It should be noted that the optimal policy

at time t is independent of the policy at the previous time steps. Assuming the q⋆t has

been evaluated for some t and substituted in the Lagrangian, the optimal policy π⋆
t at t for

∀st ∈ St can be achieved by

max E
at∼πt

[q⋆t − γt log πt] (4.32)

over πt, which is an exact step to solve a primal problem for a fixed dual variable. By

traversing backwards in time, the Lagrangian with respect to the policy can be optimized.

After solving for the primal problem using Equation 4.32, the dual variable γt can be
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updated by minimizing

E
s0∼p(s0), at∼π⋆

t
st+1∼p(st+1|st,at)

[−γt log π⋆
t − γtH0] (4.33)

This is exactly a step to solve a dual problem given an optimal policy. Although

alternatively optimizing πt and αt provide a possible solution, finding exact solutions

to Equation 4.31, Equation 4.32, and Equation 4.33 is in general not practical for

continuous states and actions and for unknown environmental dynamics. In other words,

the expectation cannot be computed. Therefore, the SAC uses function approximators and

Stochastic Gradient Decent (SGD) as well as other standard techniques to approximately

solve Equation 4.29, as discussed in the following.

The policy and optimal soft q-function are approximated by a neural network (called

actor) πϕ(at|st) with weight ϕ and a neural network (called critic) qθ(st, at) with weight

θ, respectively. To reduce overestimation of qθ(st, at), two parameterized q-functions

qθ1(st, at) and qθ2(st, at) are used instead of qθ(st, at) where θ1 and θ2 are weights. To

improve the stability of learning, two target critic networks qθ′1
(st, at) and qθ′2

(st, at) are

introduced, which is a copy of the original critic networks qθ1(st, at) and qθ2(st, at) with an

earlier snapshot of weights where θ
′
1 and θ

′
2 are weights.

Assume that the samples (st, at, rt, st+1, d) including state, action, reward, next state

and done have been collected and stored in the replay buffer D where d = 1 if st+1 is a

terminal state; otherwise d = 0. The critic network weight θi can be learned by minimizing

the soft Bellman residual

Jq(θi) := E
st,st+1∼D

at∼D,at+1∼πϕ

rt,d∼D

[
1

2
(qθi(st, at)− y(rt, st+1, at+1, d))

2]
(4.34)

where γ ≥ 0 is a dynamic temperature. A global temperature is used instead of preceding
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γt because each γt has the same objective defined by Equation 4.33. y(rt, st+1, at+1, d) :=

rt + (1− d)( min
i∈{1,2}

qθ′i
− γ log πϕ(at+1|st+1)) is the target value of qθi(st, at).

According to Equation 4.32 and Equation 4.33, the actor network weight ϕ and the

dynamic temperature γ can be learned by minimizing

Jπ(ϕ) := E
st∼D
at∼πϕ

[γ log πϕ(at|st)− min
i∈{1,2}

qθi(st, at)] (4.35)

and

J(γ) := E
st∼D
at∼πϕ

[−γ log πϕ(at|st)− γH0], (4.36)

respectively. The target critic network weight θ′
i can be updated by having them slowly

track the learned critic networks

θ
′

i ← τθi + (1− τ)θ
′

i
(4.37)

where τ ≪ 1 is a parameter for updating the target networks. Assume that the continuous

action at is Gaussian distributed with mean µϕ(st) and covariance σ2
ϕ(st), where µϕ(st) and

σ2
ϕ(st) are parameterized by the preceding actor network. The policy function can then be

represented as a multivariate Gaussian distribution function

πϕ(at|st) = N(µϕ(st), σ
2
ϕ(st)) (4.38)

To make the action at differentiable, re-parameterization is adopted to sample the

actions and an invertible squashing function (tanh, (i.e., hyperbolic tangent)) is applied

after sampling

at = tanh (µϕ(st) + ϵtσϕ(st)) (4.39)
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Figure 4.2: Overview of the proposed learn-to-schedule feedback controller

where ϵt ∼ N(0, I) is a unit Gaussian noise. Equation 4.34 - Equation 4.39 proposes

a deep reinforcement ESS scheduling scheme with a learn-to-schedule feedback control

framework. In Algorithm 1, nwarmup is a threshold size to start to update network weights

and nbatch is the batch size. The superscript j denotes the j-th sample in a minibatch. The

symbol ∇̂ denotes stochastic gradients. Moreover, λθi , λϕ, and λγ are learning rates. The

episode means a sample for training, and the action is sampled during training while the

mean µϕ(st) is output as the action instead of sampling from the policy during execution.

From lines 23-25, SGD is used to update weights.

The proposed framework in Figure 5.2 is constituted by three main components: the

DRL agent, the optimizer, and the simulator. The agent uses the optimized policy to

generate actions. During offline training, the optimizer is in charge of optimizing the policy

based on Algorithm 1. After running out the episodes in the training dataset while finding

a near-optimal policy, the optimizer will stop. The simulator is an artificial environment to

mimic probability distribution p(st+1, rt|st, at). Its main role is to respond to actions taken

by the agent. Specifically, at each time t the SOC, as the sole part of the state, dependent

on the action transits to the next states of charge using the following dynamics

soct+1 = soct +∆e⊙ pE
t . (4.40)

Other parts) of the state, such as active power injections before control, can transit

70



Algorithm 1 Deep Reinforcement Schedule Scheme
1: // offline training
2: Initialize ϕ, θ1, θ

′
1, θ2 and θ

′
2 and α

3: Initialize D ← ∅
4: for each episode do
5: reset the initial state s0 ;
6: for t=0:T-1 do
7: sample action at from policy πϕ(at|st) ;
8: denormalize action at using Equation 4.26 ;
9: calculate reward rt using Equation 4.27 ;

10: if t == T-1 then
11: set next state st+1 arbitrarily ;
12: d← 1 ;
13: else
14: collect next state st+1 from the simulator ;
15: d← 0 ;
16: end if
17: D ← D ∪ {(st, at, rt, st+1, d)} ;
18: st ← st+1 ;
19: end for
20: if |D| > nwarmup then
21: sample a minibatch {(sjt , a

j
t , r

j
t , s

j
t+1, d

j)}j=1:nbatch from D ;
22: normalize rewards {rjt}j=1:nbatch ;
23: calculate ∇̂θiJq(θi), ∇̂ϕJπ(ϕ) and ∇̂γJ(γ) ;
24: update θi ← θi − λθi∇̂θiJq(θi) for i ∈ {1, 2} ;
25: update ϕ← ϕ− λϕ∇̂ϕJπ(ϕ) ;
26: update γ ← γ − λγ∇̂γJ(γ) ;
27: update θ

′
i for i ∈ {1, 2} using Equation 4.37 ;

28: end if
29: end for
30: output near-optimal policy π⋆

ϕ ;
31: // online execution
32: for each day do
33: for t = 0:T-1 do
34: collect state st from the simulator ;
35: output action at using π⋆

ϕ ;
36: denormalize action at using Equation 4.26 ;
37: execute at in the simulator ;
38: end for
39: end for
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by collecting it directly from operation data. The observer further converts the received

information into a desired form of the next state while calculating the reward. During

online execution, the simulator is still used except that real-time operation data is used

instead of historical data. It can be noted that this framework is non-intrusive, i.e., without

requiring direct interaction with a real distribution network for policy search. Before a real-

time action is sent to local ESSs, it can be first confirmed by the system operator to avoid

risks. In addition, every time period the policy needs to be retrained.

4.5 Simulation Results

The proposed algorithm is tested on the customized 6-bus and modified IEEE 34-bus

systems 3 where the former and latter have five and fifteen single-phase customers (i.e.,

DERs), respectively, as shown in Figure 4.3. All DERs are installed at phase a. The base

voltage magnitude and power rating are set as 0.416 kV and 0.01 MVA, respectively. The

feeder-to-bus and bus-to-bus distances are set as 0.5 km and 0.1 km, respectively. The self

and mutual impedances on each line are set as 0.840+0.080j and 0.371+0.005j ohm/km

for the 6-bus system as well as 0.249+0.072j and 0.071+0.005j ohm/km for the 34-bus

system, respectively. The ESSs are the sole voltage controllers in both systems with the

capacity and maximum charging/discharing rate set as 5 p.u.×h and 0.5 p.u., respectively.

The minimum and maximum allowable SOC are set as 0.1 and 0.9, respectively. The

regulation price is set as 1.5 $/p.u.2.

The daily hour operational data, including PV generation and load profiles, is scaled

from one-month’s real-world PJM Interconnections data, which is further augmented

by perturbation. PV generations and loads are perturbed with a random range from

80% ∼ 120% of their original base values. The initial SOC is randomly sampled from

a uniform distribution sj0 ∼ unif(0.1, 0.9). The power factor is set as 0.92.

The architecture of actor and critic networks is presented in Figure 4.4. For the actor
3Line parameters are selected from IEEE Europe LV Test Feeder [86].
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Figure 4.3: Schematic diagram of (a) the customized 6-bus and (b) modified IEEE 34-bus
systems where the black, red and blue line correspond the line with three phases, only a
phase and only b phase, respectively.

network, the number of neurons in the input, hidden, and output layers are designed as 5/3/1

(active power injection/SOC/time stamp), 2/2, 3/3 (mean/logarithmic standard deviation)

for the 6-bus system as well as 15/8/1, 8/4, 8/8 for the 34-bus system, respectively.

Similarly, for the critic network, the number of neurons of in the input, hidden, and output

layers are designed as 5/3/3/1 (active power injection/SOC/time stamp/action), 2/2/2, and

1 for the 6-bus system as well as 15/8/8/1, 8/4/4, and 1 for the 34-bus system, respectively.

Moreover, the fully connected (FC) layer is used to build these two networks. Except the

output layer, after each layer the ReLU activation function is applied. The Adam optimizer

is adopted for training, with a learning rate of 0.001, 0.001, and 0.001 for actor λi, critic

λϕ, and temperature λγ , respectively. The target critic network is updated with τ set as

0.01. The entropy threshold H0, size of replay buffer |D|, batch size nbatch, and number of

control intervals T are set as -0.05, 1e6, 128 and 24, respectively. Finally, the threshold

size nwarmup is set as 1280.

In this dissertation proposal, the baseline, i.e., the performance before control actions

are applied, is used to evaluate the effectiveness of the proposed algorithms. Moreover, a

deterministic QP is constructed with the objective function f∆V
daily and the same constraints

as the proposed problem Equation 4.22 - Equation 4.25. Since its solution is a strictly lower

bound of the original problem, it is used to evaluate the near-optimality. Moreover, since
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Figure 4.4: Illustration of neural network architecture of actor and critic network where
blue layer is a concatenation layer

the matrix R̃⊤R̃ is positive-definite, this quadratic program is solvable, and there always

exists a unique global optimizer with the optimum f∆V
daily

⋆.

4.5.1 Customized 6-Bus Test System

As shown in Figure 4.5(a), the average return in the first 250 episodes is below the

baseline, i.e., the voltage regulation performance after control is worse than the one before

control. As the training process continues, the average return has a upward tendency

and finally converges to some value. As shown in Figure 4.5(b), it can be seen that the

regulation cost optimized by DRL is close to the lower bound achieved by QP solver,

and significantly improved in comparison with the cost without control where the average

regulation cost is $1.367 for baseline, $0.467 for DRL and $0.334 for QP. In addition, the

CPU running time for action generation is 0.0003s in average, which is far less than the

length of control interval.

A sample daily profile (including PV generation and load) is provided in Figure 4.6(a).

Three ESSs are installed on buses 2, 3, and 5 and labeled as ESS 1, 2, and 3, respectively.

Take 9:00-13:00 as an example, it can be observed in Figure 4.6(a) that in this time

period over-voltage issues are caused by high solar generation. Consequently, the ESSs

are scheduled to charge from the grid and mitigate the voltage deviation (as shown in

Figure 4.6(b)) until their maximum SOC limits are reached (as shown in Figure 4.6(c)).
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Figure 4.5: Illustration of learning performance (a) during training and voltage regulation
performance (b) during execution where the dash line is a baseline

Finally, Figure 4.6(d) shows the comparison of voltage profile at bus 5 with and without

ESSs installed. It can be observed that with ESSs installed and scheduled by the proposed

method, all three-phase voltage profiles are controlled within the upper and lower bounds,

which are far more volatile (i.e., not within the bounds) without ESSs. Finally, Figure 4.7

presents voltage dynamics of phase a at bus 5, which shows that the regulated voltage is

more flatten by DRL-scheduled ESSs. Similarly, under-voltage issues between 17:00-23:00

caused by high load demand can be observed and alleviated by scheduling of ESSs as well,

as shown in Figure 4.6.

4.5.2 Modified IEEE 34-Bus Test System

As shown in Figure 4.8(a), since the DRL needs to explore possible optimal states at

early training stages, the average return in the first 600 episodes is below the baseline.

However, with the training process continues, the average return has an upward tendency

and finally converges. It can be observed in Figure 4.8(b) that the regulation cost optimized

by DRL is close to the lower bound achieved by QP solver, and significantly improved in

comparison with the cost without control, where the average regulation cost is $25.435 for

baseline, $12.542 for DRL and $8.734 for QP. In addition, the CPU running time for action

generation is 0.0004 s in average, which is far less than the length of control interval.
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Figure 4.6: Illustration of (a) a sample daily profile with load, PV, and ESSs; (b) active
power injection profile at bus 5; (c) ESS SOC profiles; and (d) voltage profile at bus 5
where dash lines represent upper/lower bounds.
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Figure 4.7: Voltage dynamics of phase a bus 5 (a) w/o and (b) w control
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Figure 4.8: Illustration of learning performance (a) during training and voltage regulation
performance (b) during execution where the dash line is a baseline

A sample daily profile is shown Figure 4.9, which is different from the profile used in

the 6-bus case. The ESSs of phase a are scheduled to charge power from the grid to mitigate

the over-voltage issue and discharge power to the grid to mitigate the under-voltage issue.

It can be observed that phase b ESSs do not follow previous similar control effect. One

possible reason is that the positive reward contribution of phase b ESSs is relatively small.

The daily voltage profiles for all three phases are significantly improved with no voltage

violations. It can be observed from Figure 4.10 that the regulated voltage dynamics is more

flat with the schedule of ESSs by DRL.
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Figure 4.9: Illustration of (a) a sample daily profile with load, PV, and ESS; (b) active
power injection profile at bus 11; (c) ESS SOC profiles; and (d) voltage profiles at bus 11,
with ESSs at bus 7, 9, 10, 11, 13, 23, 32, 33 are relabeled as ESS 1, 2, 3, 4, 5, 6, 7, 8,
respectively
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Figure 4.10: Voltage dynamics of phase a bus 11 (a) w/o and (b) w control.

4.6 Conclusion

This chapter proposes a DRL-based ESS-scheduling algorithm for real-time voltage

regulation in LV UDS. The voltage regulation problem was formulated as a multi-stage

quadratic stochastic program with the objective of minimizing the expected total daily

voltage regulation cost, which could explore a day-horizon, network-wide and continuous

voltage control effect by the ESSs. To make the problem tractable, the problem was

further accommodated to a DRL setting by developing a learn-to-schedule feedback control

framework, which can adaptively find an effective, near-optimal, and computational-

efficient policy in a simulator environment instead of modeling complicated uncertainties.
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CHAPTER 5

LEARNING-BASED FLEXIBILITY AGGREGATION UNDER UNCERTAINTY

The large-scale integration of DERs converts the role of a distribution system from a

customer to a prosumer. In this context, the controllable DERs are expected to provide

capacity support for the transmission system, which can be considered as power flexibility

aggregation. Specifically, it is a process of controlling the power output of DERs to fulfill

the desired capacity or flexibility, which can be arbitrarily selected from a feasible power

flexibility region. To estimate a feasible power flexibility region, a Chebyshev centering

optimization model is developed to approximate the active-reactive power flexibility region

as time-decoupled two-dimensional Euclidean balls. For an ahead-of-time power flexibility

region estimation problem, the inherent forecast error uncertainty tends to compromise

the estimation results and arouse the aggregation safety issue. That is, some infeasible

power flexibility points may exist in the estimated region. Once those points are selected,

the aggregation process will probably be forcedly terminated. Therefore, this chapter

develops a chance-constrained Chebyshev centering optimization model to handle this

uncertainty by controlling the risk of violation of operation constraints. By transforming

probabilistic constraints into deterministic constraints, solving such a chance-constrained

problem can be viewed as unsupervisedly learning multiple conditional hyperplanes from

the uncertainty data.

The remainder of this chapter is organized as follows. Section 4.1 presents a system

model including the device, network and uncertainty propagation model. Section 4.2

first constructs three types of non-feeder-level power flexibility regions, and then utilizes

a coordinate transformation to convert non-feeder-level power flexibility regions into a

feeder-level region. Section 4.3 proposes an inner approximation framework. Section 4.4

validates the proposed method. Finally, Section 4.5 concludes this chapter.
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5.1 System Model

In this dissertation, a multiphase unbalanced distribution network with buses collected

in the index set N = {0, 1, . . . , N} is considered where the index 0 represents the

substation bus. For simplicity, assume that all the buses have three phases: a, b, and c.

Each electric device can be multi-phase wye-connected or delta-connected to the network.

Denote the set ΦY := {a, b, c} and Φ∆ := {ab, bc, ca}. Let the aggregation time horizon be

discretized into T periods, and let the duration of each period be τ .

5.1.1 Device Model

In this subsection, three types of typical DERs are considered: PV (with front-end

inverters), ESSs, and directly controlled loads (DCLs). Note that the proposed method can

be naturally extended to account for other types of DERs so long as individual power region

over a whole aggregation period is a polyhedron.

PV Inverters

The index set of buses connected with PV inverters is denoted asNPV. For a PV inverter

installed at phase ϕ ∈ ΦY ∪ Φ∆ and bus k ∈ NPV, its active and reactive power injections

at time t are constrained by

0 ≤ pϕ,tk,PV ≤ p̂
ϕ,t

k,PV, ∀t ∈ {1, . . . , T} (5.1)

pϕ,t
2

k,PV + qϕ,t
2

k,PV ≤ sϕ
2

k,PV, ∀t ∈ {1, . . . , T} (5.2)

|qϕ,tk,PV| ≤ pϕ,tk,PV · tan θk,PV, ∀t ∈ {1, . . . , T} (5.3)
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where p̂
ϕ,t

k,PV is the expected available maximum active power of this PV inverter at time

t, sϕk,PV is the nameplate capacity of this PV inverter, and θk,PV is the maximum power

factor angle of this PV inverter. Constraints defined by Equation 5.1, Equation 5.2, and

Equation 5.3 are active power limit, apparent power capacity limit, and power factor limit,

respectively. Assume that over-sized PV inverters are installed, i.e.,

sϕk,PV = ηpϕk,PV(η > 1)

where pϕk,PV is the rated active power of this PV inverter, and its maximum power factor

angle is set as θk,PV ≤ θck,PV = arccos 1
η
. Then nonlinear constraint Equation 5.2 can be

removed, the power region of this PV inverter at time t becomes a triangle, as shown in

Figure 5.1 (a). Define the vector xk,PV := [(pϕ,tk,PV)t∈{1,...,T}, (q
ϕ,t
k,PV)t∈{1,...,T}]

⊤. According

to Equation 5.1 and Equation 5.3, the power region of this PV inverter over a whole

aggregation period can be written in a compact way as

Ak,PVxk,PV ≤ bk,PV (5.4)

where

Ak,PV =



[−IT ,0T×T ]

[IT ,0T×T ]

[− tan θk,PV · IT , IT ]

[− tan θk,PV · IT ,−IT ]


,

bk,PV =



0T

p̂
ϕ

k,PV

0T

0T


,

p̂
ϕ

k,PV = [p̂
ϕ,1

k,PV, . . . , p̂
ϕ,T

k,PV]
⊤.
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Figure 5.1: Illustration of the power region at time t for (a): a PV inverter and (b): an ESS
where the area depicted by a blue line is the original nonlinear power region, and the area
colored by yellow is the polygonal power region.

Without loss of generality, three-phase electric devices can be modeled as equivalent

single-phase devices, because they have equal power at each phase. With a slight abuse

of notation, the superscript ϕ for a three-phase device can be denoted as any phase in ΦY

or Φ∆ depending on its connection type. When calculating the system power flow, three-

phase power injections can be treated as an equal power injection at each phase provided

by the same single-phase device. Note that in this dissertation PV inverters are required

to maintain a certain level of power factor at the expense of losing some reactive power

flexibility. For example, similar to [87], if the η is chosen as 1.08, the θck,PV is 22.19◦. If

the θk,PV is designed as 18.19◦, i.e., the corresponding minimum power factor is 0.95, the

power region of this PV inverter at time t becomes a triangle.

ESSs

The index set of buses connected with ESSs is denoted as NESS. For a ESS installed at

phase ϕ ∈ ΦY ∪Φ∆ and bus k ∈ NESS, its active and reactive power injections at time t are

constrained by

−pϕk,ESS ≤ pϕ,tk,ESS ≤ pϕk,ESS, ∀t ∈ {1, . . . , T} (5.5)
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pϕ,t
2

k,ESS + qϕ,t
2

k,ESS ≤ sϕ
2

k,ESS, ∀t ∈ {1, . . . , T} (5.6)

where pϕk,ESS is the maximum discharging rate of this ESS, and sϕk,ESS is the nameplate

capacity of this ESS. Constraints defined by Equation 5.5 and Equation 5.6 are active

power limit, and apparent power capacity constraint, respectively. To construct a polygonal

power region for ESSs, the boundary of constraint Equation 5.6 is linearized, as shown in

Figure 5.1 (b). Then Equation 5.6 can be approximated by

pϕ,tk,ESS −mϕ
k,ESSq

ϕ,t
k,ESS ≤ nϕ

k,ESS, −pϕ,tk,ESS −mϕ
k,ESSq

ϕ,t
k,ESS ≤ nϕ

k,ESS

pϕ,tk,ESS +mϕ
k,ESSq

ϕ,t
k,ESS ≤ nϕ

k,ESS, −pϕ,tk,ESS +mϕ
k,ESSq

ϕ,t
k,ESS ≤ nϕ

k,ESS

, ∀t ∈ {1, . . . , T}

(5.7)

where mϕ
k,ESS =

pϕk,ESS√
sϕ

2

k,ESS−pϕ
2

k,ESS−sϕk,ESS

, and nϕ
k,ESS =

pk,ESS·s
ϕ
k,ESS

sϕk,ESS−
√

sϕ
2

k,ESS−pϕ
2

k,ESS

. In addition, its SOC

at time t is constrained by

ek,ESS ≤ etk,ESS ≤ ek,ESS, ∀t ∈ {1, . . . , T} (5.8)

where

• etk,ESS = et−1
k,ESS −

τ ·σk,ESS

Ek,ESS
pϕ,tk,ESS, e0k,ESS is initial state of charge of this ESS,

• σk,ESS is an indicator function, i.e., σk,ESS = 3 if this ESS is a three-phase device;

otherwise, σk,ESS = 1,

• Ek,ESS is the capacity of this ESS, and

• ek,ESS(ek,ESS) is the minimum (maximum) allowable SOC of this ESS.

Define the vector xESS := [(pϕ,tk,ESS)t∈{1,...,T}, (q
ϕ,t
k,ESS)t∈{1,...,T}]

⊤. According to

Equation 5.5, Equation 5.7 and Equation 5.8, the power region of this ESS over a whole
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aggregation period can be written in a compact way as

Ak,ESSxk,ESS ≤ bk,ESS (5.9)

where

Ak,ESS =



[−IT ,0T×T ]

[IT ,0T×T ]

[IT ,−mϕ
k,ESS · IT ]

[−IT ,−mϕ
k,ESS · IT ]

[IT ,m
ϕ
k,ESS · IT ]

[−IT ,mϕ
k,ESS · IT ]

[− τ ·σk,ESS

Ek,ESS
· LT ,0T×T ]

[
τ ·σk,ESS

Ek,ESS
· LT ,0T×T ]



,

bk,ESS =



pϕk,ESS · 1T

pϕk,ESS · 1T

nϕ
k,ESS · 1T

nϕ
k,ESS · 1T

nϕ
k,ESS · 1T

nϕ
k,ESS · 1T

e′k,ESS · 1T

e′k,ESS · 1T



,

e′k,ESS = ek,ESS − e0k,ESS,

e′k,ESS = e0k,ESS − ek,ESS.

For simplicity, it is assumed that the maximum charging rate of an ESS is equal to

its maximum discharging rate, and there is no power loss in the charging or discharging

process. Note that the initial state of charge is known before the flexibility region evaluation

is implemented because the ESSs here are assumed to be only used for power flexibility

85



support service.

DCLs

The index set of buses connected with DCLs is denoted asNDCL. For a DCL installed at

phase ϕ ∈ ΦY ∪Φ∆ and bus k ∈ NDCL, its active power injections at time t are constrained

by

−pϕk,DCL ≤ pϕ,tk,DCL ≤ −p
ϕ

k,DCL
, ∀t ∈ {1, . . . , T} (5.10)

where pϕ
k,DCL

(pϕk,DCL) is the minimum (maximum) active power demand. Constraint

Equation 5.10 is active power limit. Define the vector xDCL := [(pϕ,tk,ESS)t∈{1,...,T}]
⊤.

According to Equation 5.10, the active power region of this DCL over a whole aggregation

period can be written in a compact way as

Ak,DCLxk,DCL ≤ bk,DCL (5.11)

where

Ak,DCL =

 IT

−IT

 ,

bk,DCL =

−pϕk,DCL
· 1T

pϕk,DCL · 1T

 .

5.1.2 Network Model

In this subsection, a linear power flow model developed in [88] is used to calculate

the system voltage magnitudes, and the total three phase net active and reactive power

injections at the substation. The system voltage magnitudes at time t can be written as
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vt =
∑

k∈N\{0}

aϕ
k,pp

ϕ,t
k +

∑
k∈N\{0}

aϕ
k,qq

ϕ,t
k + a0, ∀t ∈ {1, . . . , T} (5.12)

where

• vt ∈ R3N collects the voltage magnitudes from all phases of all buses at time t,

• pϕ,tk (qϕ,tk ) is the total active (reactive) power injection at phase ϕ at bus k at time t,

• aϕ
k,p(a

ϕ
k,q) is a column vector of system parameters corresponding to the total active

(reactive) injections at phase ϕ at bus k, and

• a0 is a column vector of system parameters relative to the zero-load voltage.

Since
pϕ,tk = pϕ,tk,PV + pϕ,tk,ESS + pϕ,tk,DCL + p̂ϕ,tk,L,

qϕ,tk = qϕ,tk,PV + qϕ,tk,ESS + qϕ,tk,DCL + q̂ϕ,tk,L,

and the respective device power injection is set as 0 when the specific type of device is not

present, the vt can be written as

vt =
∑

k∈NPV

aϕ
k,pp

ϕ,t
k,PV + aϕ

k,qq
ϕ,t
k,PV +

∑
k∈NESS

aϕ
k,pp

ϕ,t
k,ESS

+ aϕ
k,qq

ϕ,t
k,ESS +

∑
k∈NDCL

aϕ
k,pp

ϕ,t
k,DCL + aϕ

k,qq
ϕ,t
k,DCL + at, ∀t ∈ {1, . . . , T}

(5.13)

where

• at = a0 +
∑

k∈NL

aϕ
k,pp̂

ϕ,t
k,L + aϕ

k,qq̂
ϕ,t
k,L, p̂ϕ,tk,L(q̂

ϕ,t
k,L) is the expected active (reactive) power

injection of an uncontrollable load, and

• NL is the index set of buses connected with uncontrollable loads.

Assume that DCLs and uncontrollable loads have the fixed power factor angles, and

then qϕ,tk,DCL = pϕ,tk,DCL · tan θk,DCL and q̂ϕ,tk,L = p̂ϕ,tk,L · tan θk,L.
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The system voltage magnitudes are constrained by

v ≤ vt ≤ v, ∀t ∈ {1, . . . , T} (5.14)

where v(v) is the lower (upper) bound of system voltage magnitudes. In addition, similar to

Equation 5.13, the total three phase net active and reactive power injections at the substation

at time t can be written as

pt0 =
∑

k∈NPV

bϕk,pp
ϕ,t
k,PV + bϕk,qq

ϕ,t
k,PV +

∑
k∈NESS

bϕk,pp
ϕ,t
k,ESS

+ bϕk,qq
ϕ,t
k,ESS +

∑
k∈NDCL

bϕk,pp
ϕ,t
k,DCL + bϕk,qq

ϕ,t
k,DCL + bt, ∀t ∈ {1, . . . , T}

(5.15)

qt0 =
∑

k∈NPV

cϕk,pp
ϕ,t
k,PV + cϕk,qq

ϕ,t
k,PV +

∑
k∈NESS

cϕk,pp
ϕ,t
k,ESS

+ cϕk,qq
ϕ,t
k,ESS +

∑
k∈NDCL

cϕk,pp
ϕ,t
k,DCL + cϕk,qq

ϕ,t
k,DCL + ct, ∀t ∈ {1, . . . , T}

(5.16)

where

• bt = b0 +
∑

k∈NL

bϕk,pp̂
ϕ,t
k,L + bϕk,qq̂

ϕ,t
k,L,

• ct = c0 +
∑

k∈NL

cϕk,pp̂
ϕ,t
k,L + cϕk,qq̂

ϕ,t
k,L, and

• b0, bϕk,p, bϕk,q, c0, c
ϕ
k,p, cϕk,q are system parameters.

If pt0(q
t
0) > 0, the distribution system absorbs the redundant energy from the

transmission system. If pt0(q
t
0) < 0, the distribution system release the redundant energy to

the transmission system.

Note that the system parameters corresponding to equivalent single-phase power

injections of three-phase electric devices in Equation 5.13, Equation 5.15, and

Equation 5.16 should be
∑
ϕ

mϕ
k,p,

∑
ϕ

bϕk,p,
∑
ϕ

cϕk,p for active power injections and
∑
ϕ

mϕ
k,q,∑

ϕ

bϕk,q,
∑
ϕ

cϕk,q for reactive power injections. In essence, the power flow model used here
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can be viewed as a linear interpolation between two power flow solutions: the given

operational point and a known operational point with no power injection. The [88] validates

that this linear model can provide an accurate approximation of unbalanced power flow,

which has been applied in the existing papers [64, 89] on power flexibility aggregation.

5.1.3 Uncertainty Propagation Model

Denote the actual available maximum active power of PV inverters and uncontrollable

load at time t as pϕ,tk,PV and pϕ,tk,L, respectively. The forecast errors of pϕ,tk,PV and pϕ,tk,L constitute

random variables and introduce the uncertainties to the system, and are denoted as ξϕ,tk,PV

and ξϕ,tk,L, respectively. When ξϕ,tk,PV(ξ
ϕ,t
k,L) > 0, it means that pϕ,tk,PV(p

ϕ,t
k,L) is underestimated.

When ξϕ,tk,PV(ξ
ϕ,t
k,L) < 0, it means that pϕ,tk,PV(p

ϕ,t
k,L) is overestimated.

If the actual value is considered, the p̂
ϕ,t

k,PV is replaced by pϕ,tk,PV in Equation 5.1, and extra

constraints for PV inverters are written as

pϕ,tk,PV ≤ pϕ,tk,PV, ∀t ∈ {1, . . . , T} (5.17)

where pϕ,tk,PV = p̂
ϕ,t

k,PV + ξϕ,tk,PV.

If the actual value of pϕ,tk,L is considered, the p̂ϕ,tk,L is replaced by pϕ,tk,L in Equation 5.14,

and extra constraints for system voltage magnitudes are written as

v ≤ vt +
∑
k∈NL

(aϕ
k,p + tan θk,L · aϕ

k,q)(p
ϕ,t
k,L − p̂ϕ,tk,L) ≤ v, ∀t ∈ {1, . . . , T} (5.18)

where pϕ,tk,L = p̂ϕ,tk,L + ξϕ,tk,L.

5.2 Flexibility Region Construction

In this section, based on the system model in Section 2.1, three-type non-feeder-

level power flexibility regions (i.e., device-level, network-level and uncertainty-level power
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flexibility regions) are defined and constructed first. Through a coordinate transformation,

two-type feeder-level power flexibility regions (i.e., deterministic and stochastic power

flexibility regions) are then derived.

5.2.1 Non-Feeder-Level Power Flexibility Region

Define the vector that collects n = (2nPV + 2nESS + nDCL) · T controllable

power injections of all the DERs over a whole aggregation period x :=

[(x⊤
k,PV)k∈NPV , (x

⊤
k,ESS)k∈NESS , (x

⊤
k,DCL)k∈NDCL ]

⊤ where nPV = |NPV|, nESS = |NESS|, and

nDCL = |NDCL| . Define the vector that collects nξ = (nPV + nL) · T random variables

ξ⃗ := [(ξ⃗⊤k,PV)k∈NPV , (ξ⃗
⊤
k,L)k∈NL ]

⊤ where

nL = |NL|,

ξ⃗k,PV := [(ξϕ,tk,PV)t∈{1,...,T}]
⊤,

ξ⃗k,L := [(ξϕ,tk,L)t∈{1,...,T}]
⊤.

According to Equation 5.4, Equation 5.9, and Equation 5.11, the device-level power

flexibility region is defined as a power region of x where individual device constraints are

met, which can be written in a compact way as

ADEVx ≤ bDEV (5.19)

where

ADEV =


bdiag(Ak,PV) 04TnPV×2TnESS 04TnPV×TnDCL

08TnESS×2TnPV bdiag(Ak,ESS) 08TnESS×TnDCL

02TnDCL×2TnPV 02TnDCL×2TnESS bdiag(Ak,DCL)

 ,

and

bDEV = [(b⊤
k,PV)k∈NPV , (b

⊤
k,ESS)k∈NESS , (b

⊤
k,DCL)k∈NDCL ]

⊤.
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According to Equation 5.14, the network-level power flexibility region is defined as a

power region of x where system voltage constraints are met, which can be written in a

compact way as

ANETx ≤ bNET (5.20)

where

ANET =

−A
A

 ,

bNET =

−1T ⊗ v + a

1T ⊗ v − a

 ,

A =

[
A1 . . . At . . . AT

]⊤
,

a = [(at⊤)t∈{1,...,T}]
⊤.

Denote At’s j-th column and x’s j-th element as the vector At
j and the scalar xj ,

respectively. Then At can be achieved based on the following rule

At
j =


aϕ
k,p if xj = pϕ,tk,(·)

aϕ
k,q if xj = qϕ,tk,(·)

03N if otherwise

.

According to Equation 5.17 and Equation 5.18, the uncertainty-level power flexibility

region is defined as a power region of x where uncertainty-relative constraints are met,

which can be written in a compact way as

AUNCx+GUNCξ⃗ ≤ bUNC (5.21)

where
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AUNC =

Aξ
DEV

Aξ
NET

 ,GUNC =

Gξ
DEV

Gξ
NET

 ,bUNC =

bξ
DEV

bξ
NET

 ,

Aξ
DEV =

[
bdiag([IT ,0T×T ]) 0TnPV×2TnESS 0TnPV×TnDCL

]
,

Gξ
DEV =

[
bdiag(−IT ) 0TnPV×TnL

]
,

bξ
DEV = [(p̂

ϕ⊤

k,PV)k∈NPV ]
⊤,

Aξ
NET = ANET,

Gξ
NET =

[
−G G

]⊤
,

bξ
NET = bNET,

G =

[
G1 . . .Gt . . .GT

]⊤
.

Denote Gt’s j-th column and ξ⃗’s j-th element as the vector Gt
j and the scalar ξ⃗j ,

respectively. Then Gt can be achieved based on the following rule

Gt
j =


aϕ
k,p + tan θk,L · aϕ

k,q if ξ⃗j = ξϕ,tk,L

03N if otherwise
.

5.2.2 Feeder-Level Power Flexibility Region

Denote the vector that collects 2T controllable power injections at the substation over a

whole aggregation period y := [(yt⊤)t∈{1,...,T}]
⊤ where yt := [pt0, q

t
0]

⊤. If the actual value

is considered, the p̂ϕ,tk,L is replaced by pϕ,tk,L in Equation 5.15 and Equation 5.16, and then the

pt0 and qt0 can be written as

pt0 = bt⊤

x x+ bt⊤

ξ ξ⃗ + bt

qt0 = ct
⊤

x x+ ct
⊤

ξ ξ⃗ + ct
(5.22)
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Denote bt
x’s, bt

ξ’s, ctx’s and ctξ’s j-th element as the scalar bt
x,j , bt

ξ,j , ctx,j and ctξ,j ,

respectively. Then bt
x, bt

ξ, c
t
x and ctξ can be achieved based on the following rules

bt
x,j =


bϕk,p if xj = pϕ,tk,(·)

bϕk,q if xj = qϕ,tk,(·)

0 if otherwise

,

bt
ξ,j =


bϕk,p + tan θk,L · bϕk,q if ξ⃗j = ξϕ,tk,L

0 if otherwise
,

ctx,j =


cϕk,p if xj = pϕ,tk,(·)

cϕk,q if xj = qϕ,tk,(·)

0 if otherwise

,

and

ctξ,j =


cϕk,p + tan θk,L · cϕk,q if ξ⃗j = ξϕ,tk,L

0 if otherwise
.

According to Equation 5.22, the y can be written as

y = Hxx+Hξ ξ⃗ + h (5.23)

where

Hx =



H1
x

...

Ht
x

...

HT
x


,Hξ =



H1
ξ

...

Ht
ξ

...

HT
ξ


,h =



h1

...

ht

...

hT


,
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Ht
x =

bt⊤
x

ct
⊤

x

 ,Hξ =

bt⊤

ξ

ct
⊤

ξ

 ,h =

bt
ct

 .

Since x ∈ Rn, every x can be expressed as a linear combination of n linearly

independent vectors

x = Wee+Wff =
2T∑
i=1

eiwi +
n−2T∑
j=1

fjwj+2T (5.24)

where

• We = [w1, . . . ,w2T ] ∈ Rn×2T , wi ∈ Rn,

• e = [e1, . . . , e2T ]
⊤ ∈ R2T ,

• Wf = [w2T+1, . . . ,wn] ∈ Rn×(n−2T ), and

• f = [f1, . . . , fn−2T ]
⊤ ∈ Rn−2T .

Also since the rows of Hx are linearly independent, the number of bases for the null-

space of Hx is n− 2T . Then w1, . . . ,wn can be designed as orthogonal bases of Rn such

that w2T+1, . . . ,wn span the null-space of Hx. Specially, We and Wf can be achieved by

using Gram-Schmidt [90] to orthonomalize the bases of the row-space and null-space of

Hx, respectively.

By inserting Equation 5.24 into Equation 5.23, y can be rewritten in the new coordinates

as

y = Hx(Wee+Wff) +Hξ ξ⃗ + h = Ĥxe+Hξ ξ⃗ + h (5.25)

where Ĥx = HxWe ∈ R2T×2T is invertiable, and HxWff vanishes because Wf spans the

null-space of Wx. Then, e can be expressed as

e = Ĥ−1
x (y −Hξ ξ⃗ − h) (5.26)
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Using Equation 5.26 to substitute for x in Equation 5.19 - Equation 5.21, the feeder-

level power flexibility region is defined as a feasible power region of y where any point can

be fulfilled by the dispatch of DERs (i.e., x) without violating their individual operation

constraints, which can be written in a compact way as

Ayy +Aξ ξ⃗ +Aff ≤ by (5.27)

where

Ay =


ADEVWeĤ

−1
x

ANETWeĤ
−1
x

AUNCWeĤ
−1
x

 ,

Aξ =


ADEVWeĤ

−1
x Hξ

ANETWeĤ
−1
x Hξ

GUNC −AUNCWeĤ
−1
x Hξ

 ,

Af =


ADEVWf

ANETWf

AUNCWf

 ,

by =


bDEV +ADEVWeĤ

−1
x h

bNET +ANETWeĤ
−1
x h

bUNC +AUNCWeĤ
−1
x h

 .

Denote the region constituted by Equation 5.27 as Dy. When ξ⃗ = 0nξ
, the Dy is

called a deterministic feeder-level power flexibility region. When ξ⃗ follows some unknown

distribution p(ξ⃗), theDy is called a stochastic feeder-level power flexibility region, and this

region is uncertain. In addition, this feeder-level power flexibility region can be treated as

an aggregation of non-feeder-level power flexibility regions. As for a polyhedral system

model, the feeder-level power flexibility region can be explicitly characterized as another

polyhedron via coordinate transformation.
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5.3 Inner Approximation Framework

Although the above-constructed feeder-level power flexibility region Dy has an explicit

form, with uncertainties ξ⃗ and extra variables f , it is complex and intractable for

transmission system operators to procure or use such an exact representation. Instead,

its concise and efficient representation is desired. Therefore, this work aims to identify an

inner approximated region of Dy with T time-decoupling two-dimensional Euclidean balls

denoted as D̂y, which can be parameterized as follows

D̂y :=
T∏
t=1

B(xt
c, r

t) (5.28)

where B(xt
c, r

t) := {yt|yt = xt
c + rt · ut, ||ut||2 ≤ 1} is a ball in the (pt0,q

t
0)-plane with the

center xt
c and radius rt.

In this section, a data-driven inner approximation framework is developed, as shown

in Figure 5.2. In the proposed framework, the inner approximated region D̂y is found

by solving a deterministic Chebyshev centering optimization problem. To mitigate the

adverse impact of the forecast error uncertainty on the approximated results, a chance-

constrained Chebyshev centering optimization problem is then formulated. Finally, a data-

driven solution is proposed by converting the original inner-approximation problem to a

hyperplane learning problem.

5.3.1 Problem Formulation

When the forecast error uncertainty does not exist, i.e., ξ⃗ = 0nξ
, to aggregate power

flexibility at the feeder as much as possible, the approximated region (i.e., multiple
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Figure 5.2: Illustration of the proposed inner approximation framework.

maximum inscribed balls) is pursued here by solving the following optimization problem

max
xc,r≥0,f

||r||1 s.t.

Ayxc + ||Ay||∗r+Aff − by ≤ 0

(5.29)

where xc := [(xt⊤
c )t∈{1,...,T}]

⊤, r := [(rt)t∈{1,...,T}]
⊤, || · ||1 is the L1 norm, || · ||∗ is defined

as an operator to find the Euclidean norm of every two entries in a row corresponding to

the same rt.

The problem Equation 5.29 aims at maximizing the sum of volume of all balls while

keeping any points of D̂y on the boundary within Dy, which can be considered as a variant

of the Chebyshev centering optimization problem [91] for multiple Chebyshev centers (i.e.,

ball centers in our case). Note that it is a linear programming problem, and thus can be

solved by off-the-shelf solvers. After solving this problem, multiple ball-shape regions can

be utilized to evaluate the feasible power flexibility supply ability of DERs. Moreover, the

whole distribution system can be treated as a special inverter with time-variant capacity

curves through this approximation.

When the forecast error uncertainty exists, i.e., ξ⃗ ̸= 0nξ
, the approximated region found

by solving the problem Equation 5.29 may encounter the safety issue, i.e., some infeasible

power flexibility points may appear. To mitigate this issue, the problem Equation 5.29 is
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reformulated into a chance-constrained Chebyshev centering optimization problem

max
xc,r≥0,f

||r||1 s.t.

Pr{Ay,ixc + ||Ay,i||∗r+Af,if +Aξ,iξ⃗ − by,i ≤ 0} ≥ 1− ϵ, ∀i
(5.30)

where

• Row vectors Ay,i, Af,i, and Aξ,i are the i-th row of matrix Ay, Af, and Aξ,

respectively

• by,i ∈ R is the i-th element of vector by, and

• ϵ ∈ (0, 1] is the maximum allowable violation probability.

The problem Equation 5.30 is an individual chance-constrained programming problem

which ensures individual constraint is met with high probability 1− ϵ. The main challenge

in solving this problem is that the probability distribution p(ξ⃗) is rarely available in practice.

Even with the prior knowledge on the probability distribution, calculating the probability

involves multivariate integration, which is NP-hard. In this framework, assume that the

partial knowledge on the probability distribution, i.e., the uncertainty data, is available. A

computationally-tractable and data-driven solution is developed in next subsection.

5.3.2 Data-driven Solution

Relying on some specific probability distribution, such as Gaussian etc., can lead to

sub-optimal results. Therefore, instead of using a single type of probability distribution

function, this framework uses a family of probability distribution functions defined in

an ambiguity set where all of them share the same first-order and second-order moment

information, i.e., mean vector µ⃗ and covariance matrix Σ

Dξ := {p(ξ⃗)|Ep(ξ⃗)[ξ⃗] = µ⃗,Ep(ξ⃗)[ξ⃗ξ⃗
⊤] = Σ} (5.31)
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where µ⃗ and Σ can be estimated from m historical uncertainty realizations {ξ⃗i}mi=1 as

µ⃗ =
1

m

m∑
i=1

ξ⃗i

Σ =
1

m

m∑
i=1

(ξ⃗i − µ⃗)(ξ⃗i − µ⃗)⊤
(5.32)

Then the problem Equation 5.30 can be further reformulated as

max
xc,r≥0,f

||r||1 s.t.

inf
p(ξ⃗)∈Dξ

Pr{Ay,ixc + ||Ay,i||∗r+Af,if +Aξ,iξ⃗ − by,i ≤ 0} ≥ 1− ϵ, ∀i
(5.33)

The problem Equation 5.33 enforces the satisfaction of the chance constraints for all

the probability distribution functions in the ambiguity set.

Take probability constraint i as an example, and it can be viewed as a subspace of Rnξ

separated by a hyperplane with slope Aξ,i and intercept bi in the uncertainty data space

Aξ,iξ⃗ = bi (5.34)

where bi = by,i −Ay,ixc − ||Ay,i||∗r −Af,if . As for hyperplane Equation 5.34, the slope

Aξ,i is known, and the intercept bi is the only parameter pending to be solved.

Recall the result of Bertsimas and Sethuraman [92],

supPr{Aξ,iξ⃗ ≥ bi} =
1

1 + d2
(5.35)

where

d2 = inf
Aξ,iξ⃗≥bi

(ξ⃗ − µ)⊤Σ−1(ξ⃗ − µ).

The d2 can also be written as
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d2 = inf
c⊤w≥f

w⊤w (5.36)

where w = Σ− 1
2 (ξ⃗ − µ), c⊤ = Aξ,iΣ

1
2 , and f = bi −Aξ,iµ.

First notice that if f ≤ 0, then d2 = 0 when ξ⃗ = µ, which is certainly the optimum

becuase d2 ≥ 0 and the infimum is taken. At this time, supPr{Aξ,iξ⃗ ≥ bi} = 1, and

thus there is no optimization space for the hyperplane c⊤w = f to mitigate constraint

violation risk. If f ≥ 0, then d2 is the square of the minimum distance from the origin to

the hyperplane c⊤w = f , which can be expressed as follows

d2 =
f 2

c⊤c
=

(bi −Aξ,iµ)
2

Aξ,iΣA⊤
ξ,i

(5.37)

According to Equation 5.35 and Equation 5.37, any probability constraint in problem

Equation 5.33 is equivalent to

supPr{Aξ,iξ⃗ ≥ bi} =
1

1 + d2
=

Aξ,iΣA
⊤
ξ,i

Aξ,iΣA⊤
ξ,i + (bi −Aξ,iµ)2

≤ ϵ (5.38)

The Equation 5.38 can be rewritten as

bi ≥ Aξ,iµ⃗+ κ(ϵ)
√

Aξ,iΣA⊤
ξ,i︸ ︷︷ ︸

bound

(5.39)

where κ(ϵ) =
√

1−ϵ
ϵ

is a coefficient to control the robustness againt the forcast error

uncertainty. As the size of uncertainty dataset m is sufficiently large, according to central

limit theorem, the sample mean vector and covariance matrix are close to the real mean

vector and covariance matrix, and the bound is valid with relatively small estimation

errors. According to Equation 5.39, multiple hyperplanes can be simultaneously learned
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by solving the following deterministic linear programming problem

max
xc,r≥0,f

||r||1 s.t.

Ay,ixc + ||Ay,i||∗r+Af,if − by,i︸ ︷︷ ︸
expected constraint terms

+Aξ,iµ+ κ(ϵ)
√
Aξ,iΣA⊤

ξ,i︸ ︷︷ ︸
error compensation terms

≤ 0, ∀i
(5.40)

From the problem Equation 5.40, it can be observed that solving the original inner

approximation problem is to learn multiple hyperplanes (i.e., finding multiple intercepts) in

an unsupervised way, which can classify the majority of uncertainty data as the “constraint

feasible” label while regularizing partial hyperplane parameters. In addition, compared

with the problem Equation 5.29, the problem Equation 5.40 has extra forecast error

compensation terms to hedge against the risk of constraint violation due to the inherent

uncertainty in the expected constraint terms.

5.4 Numerical Simulation

In this section, the proposed inner approximation framework are numerically verified in

an artificially-designed system for illustrative purposes. Similar to paper [93], a balanced

network with a single three-phase PQ bus (with index 1) connected to the slack bus via a

transmission line is considered. The line admittance matrix is given as follows, in p.u.:


7− 12j −1 + 2j −1 + 2j

−1 + 2j 7− 12j −1 + 2j

−1 + 2j −1 + 2j 7− 12j

 . (5.41)

In this example, there are three dispatchable DERs: PV, ESS and DCL, and an

uncontrollable load installed at the bus 1, as shown in Figure 5.3. For simplicity, they are

all three-phase and purely wye-connected, except one single-phase DCL. Detailed device

model parameters can be found in Table 5.1.
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Figure 5.3: Illustration of the artificially-designed system.

Table 5.1: Parameters of the device model

Parameters Value Parameters Value
θ1,PV/θ1,DCL/θ1,L 0.3176 rad e1,ESS 0.1

pϕ1,ESS 0.5 p.u. e1,ESS 0.9
sϕ1,ESS 0.6 p.u. σ1,ESS 3
E1,ESS 10 p.u. pa

1,DCL
0.2 p.u.

e01,ESS 0.5 pa1,DCL 0.6 p.u.

1 2 3 4
t

0.5
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p
,t 1,
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 (p
.u

.)
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1 2 3 4
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p
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p.
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)
(b)

Figure 5.4: Illustration of PV and uncontrollable load data.

Moreover, the length of the aggregation time horizon is set as 4 with the granularity

of 2 hours. The lower and upper limits of voltage magnitudes are set as 0.95 and 1.05,

respectively. The expected available maximum active power of PV inverter and the

expected active power injection of uncontrollable load are shown in Figure 5.4.

The proposed inner approximation framework is implemented in Python with CVXPY

solvers for the problem Equation 5.29, Equation 5.40 and Equation 5.44.

In order to evaluate the approximated region, four types of metrics are defined. The

first metric is the negative value of the optimization objective function ||r||1, which reflects

the optimality of the solution for the entire aggregation period. The second metric is the
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radius rt, which reflects the optimality of the solution at time t. The third metric is the

active-power / reactive-power / capacity flexibility contribution rate γt
p / γt

q / γt
s ∈ [0, 1],

which reflects the level of the contribution of flexibility at time t in the entire aggregation

period, and is respectively defined as

γt
p =

St
p,+

T∑
t=1

St
p,+

, ∀t

γt
q =

St
q,+

T∑
t=1

St
q,+

, ∀t

γt
s =

St
s,+

T∑
t=1

St
s,+

, ∀t

(5.42)

where

• St
p,+ is the area of the active-reactive flexibility region at time t in the left half plane

of the y-axis,

• St
q,+ is the area of the active-reactive flexibility region at time t in the lower half plane

of the x-axis, and

• St
s,+ is the area of the active-reactive flexibility region at time t.

The fourth metric is the violation risk level ϵ̂t ∈ [0, 1], which reflects the level of the

robustness of the flexibility region to the forecast error uncertainty at time t, and is defined

as

ϵ̂t = 1−

m∑
i=1

1{D̂t
y⊂D̂t

ξi
}

m

(5.43)

where

• D̂t
y := B(xt

c, r
t) is the approximated flexibility region at time t solved by the problem

Equation 5.29 or Equation 5.40, and
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• D̂t
ξi

is one of possible approximated stochastic flexibility regions at time t solved by

the problem formulated by

max
xc,r≥0,f

||r||1 s.t.

Ay,ixc + ||Ay,i||∗r+Af,if +Aξ,iξ⃗i − by,i ≤ 0

(5.44)

Note that the process of solving the problem Equation 5.44 with different uncertainty

realizations is a Monte Carlo method to approximate the stochastic power flexibility

regions. If the approximated deterministic flexibility region at time t can be included in

the approximated stochastic flexibility region at time t, it means that the approximated

deterministic flexibility region at time t is robust to the uncertainty realization ξ⃗i. The

more uncertainty realizations this region is robust to at time t, the lower the corresponding

violation risk level will become.

5.4.1 Deterministic Region Approximation

After solving the problem Equation 5.29, the approximated region is shown in

Figure 5.5. At each time t, there is a ball-shaped region where any point (i.e., small white

circle) can be fulfilled by appropriately dispatching controllable DERs. Specifically,

• At t = 1, the minimum load demand is smaller than the maximum generation supply,

and thus the DERs can provide capacity support to the transmission system (i.e., the

region intersects the red rectangle region);

• At t = 2, p̂
ϕ,t

1,PV encounters a large increase in its value, and thus the maximum

generation supply increases and the DERs can provide more capacity support (i.e.,

the radius is increased and the ball center moves to the left);

• At t = 3, p̂ϕ,t1,L encounters a large increase in its value, and thus the minimum load

demand increases and the ability of providing the flexibility is undermined (i.e., the

radius is decreased and the ball center moves to the right);

104



4 3 2 1 0 1
Active Flexibility (p.u.)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Re
ac

tiv
e 

Fl
ex

ib
ilit

y 
(p

.u
.)

t=1
t=2
t=3
t=4

Figure 5.5: Illustration of the approximated deterministic region. The points in the red
rectangle region can provide the capacity support to the transmission system while the ones
in the blue rectangle region require the capacity support from the transmission system.

• At t = 4, p̂
ϕ,t

1,PV encounters a large decrease in its value, and thus the maximum

generation supply decreases and it is less than the minimum load demand and the

DERs can provide less capacity support (i.e., the radius is further decreased and the

ball center moves to the right and the region only intersects the blue rectangle region).

As shown in Figure 5.6, the contribution of the active-power / reactive-power / capacity

flexibility at t = 2 is the highest while the contribution of the active-power / reactive-power

/ capacity flexibility at t = 4 is the lowest. In addition, it can be observed that compared

with γt
p and γt

s, γ
t
q has less value variance in the entire aggregation period because the

designed system has certain power factor limit.

The values of PV data are proportionally changed by multiplying a coefficient called PV

penetration level. As shown in Figure 5.7, as the PV penetration level increases (i.e., more

and more PVs are integrated to the system), the objective function value gradually increases

until saturation because network constraints (i.e., voltage constraints) limit the capacity of

flexibility support. As shown in Figure 5.8, as the PV penetration level increases, the
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Figure 5.6: Illustration of the flexibility metrics: γt
p, γt

q and γt
s in the entire aggregation

period.

contribution variance at different time steps is reduced for γt
p because at each time step

there is sufficient flexibility support. The γt
q and γt

s have the similar contribution mode with

the highest value at t = 2 and the lowest value at t = 4.

Given an uncertainty realization, the actual approximated region can be found by

solving problem Equation 5.44. As shown in Figure 5.9, some flexibility points in the

expected approximated region are outside the actual approximated region. So there exists

high constraint violation risks when the forecast error uncertainty is not considered in the
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Figure 5.7: Illustration of the effect of PV penetration level on the optimization results.

problem Equation 5.29.

5.4.2 Deterministic Region Approximation Under Uncertainty

This subsection verifies how effective the proposed inner approximation framework is

to mitigate the risk of constraint violation caused by forecast error uncertainty. The 1000

uncertainty data points is randomly sampled from a Mixture Gaussian distribution, i.e.,

ω1N (µ⃗1,Σ1) + ω2N (µ⃗2,Σ2) where

ω1 = 0.6

ω2 = 0.4

µ⃗1 = [0.005, 0.005, 0.005, 0.005, 0.006, 0.006, 0.006, 0.006]⊤

µ⃗2 = [−0.003,−0.003,−0.003,−0.003,−0.005,−0.005,−0.005,−0.005]⊤

Σ1 = diag([0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001])

Σ2 = diag([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002])

By solving the problem Equation 5.40 with ϵ = 0.2, a robust deterministic

approximated region can be found. As shown in Figure 5.10, the grey, black and red

regions are the stochastic, deterministic and robust deterministic approximated regions,

respectively. Compared with the black region, at each time moment, the red region is
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contained in the black region while it covers less points from the grey region.

Therefore, the proposed inner approximation framework is valid to mitigate the adverse

impact of the forecast error uncertainty. It can be seen in Figure 5.11 that as the value of

ϵ decreases, the optimized rt (i.e., black squares) will gradually decrease, and the solution

become more conservative (i.e., below the black dash line corresponding to the problem

Equation 5.29) while the robustness metric ϵ̂t will increase first and then decrease, and

the robustness to forecast error uncertainty is improved in the solution of the problem

Equation 5.40 (i.e., above the red dash line corresponding to the problem Equation 5.29).

5.5 Conclusion

This chapter proposes an inner approximation framework for flexibility aggregation

under uncertainty based on a chance-constrained Chebyshev centering optimization

problem. The formulated problem can be solved by simultaneously and unsupervisedly

learning multiple hyperplanes in a data-driven manner. The proposed framework can

effectively reduce the risk of constraint violation due to forecast error uncertainty.
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Figure 5.8: Illustration of the effect of PV penetration level on the approximated region.
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Figure 5.9: Illustration of the approximated deterministic region without considering
forecast error uncertainty.
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Figure 5.10: Illustration of the robust deterministic approximated region.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation investigates three representative operation problems for power

distribution systems with high penetration of DERs, where the conventional operation

methods are experiencing unprecedented challenges due to a high level of uncertainties.

On one hand, it is extremely difficult to model uncertainties. On the other hand, it is almost

intractable to make an optimal decision making under uncertainties. With the tremendous

amount of available uncertainty data and the vast success of machine learning in the data-

intensive industry, machine learning is resorted to develop novel data-driven operation

methods so as to handle uncertainties in the operation problems. The conclusions and

main contributions are summarized as follows:

First, a residential EV charging load profile identification problem is studied. The

residential EV charging load is an important uncertainty source in the demand side.

Different charging habits (i.e., charging start time, charging end time, charging rate etc.)

of customers lead to huge difference among EV charging load profiles. Meanwhile, this

uncertainty source is behind the meter, and the only information relative to EV charging

load demand is the aggregated power consumption, which exacerbates the difficulty of

the problem. The conventional methods such as Hidden Markov Model is weak to model

residential EV charging load profile given the aggregated power consumption profile with

the low identification accuracy. This dissertation reformulates this problem as a time-series

classification problem, and a Deep Generative Model: a representation layer embedded

Markov chain is proposed. The proposed model keeps the Markov property of Hidden

Markov Model. It can learn the joint probability distribution of EV charging load profile

112



from the uncertainty data. Thanks to the powerful representation ability of deep neural

networks to capture abstract but useful features, the proposed model achieves improved

identification accuracy compared with Hidden Markov Model, which can help to enhance

the situational awareness.

Second, a real-time voltage regulation problem in a PV penetrated distribution system

is studied. The PV as an important uncertainty source in the generation side is exacerbating

the voltage quality issue. Specifically, the fluctuation of PV generation degrades the voltage

stability and causes the voltage deviation as well as violation. The existing deterministic

voltage regulation methods are extremely difficult to quickly respond to uncertainty and

make an optimal decision to mitigate its adverse impact. This dissertation reformulates this

problem as a Markov Decision Process problem, and a Deep Reinforcement Learning based

method is proposed to solve it. The proposed method can learn a near-optimal strategy from

the uncertainty data so as to autonomously schedule Energy Storage Systems to mitigate

a long-term voltage deviation. In addition, there is no need to have the uncertainty model

for decision making, which largely boosts the tractability of the problem. Compared with

a deterministic quadratic programming based strategy, the proposed method can reach a

near-optimal optimization level and respond to uncertainty in real-time, which can help to

support the decision making under uncertainty.

Finally, an ahead-of-time deterministic active-reactive power flexibility region

estimation problem with forecast error uncertainty is studied. The forecast error is an

important uncertainty source in the control side. The inaccurate forecast model brings

large forecast errors, threatening the reliability and security of time-ahead operation. That

is, the estimated region contains some infeasibility operation points, and increases the risk

of operation constraint violation and failure of flexibility aggregation. This dissertation

explicitly constructs a stochastic flexibility region using a coordinate transformation. An

inner approximation framework is proposed based on a chance-constrained Chebyshev

centering optimization problem, which can be solved by learning multiple hyperplanes
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from the uncertainty data in an unsupervised way so as to classify most of uncertainty

realizations as the constraint feasibility label. Compared with a deterministic Chebyshev

centering optimization solution, the proposed method has better robustness to forecast error

uncertainty at the expense of losing a partial of optimality, which can help to strengthen the

flexibility aggregation under uncertainty.

6.2 Future Work

There are some other interesting and relevant topics that could be considered for further

investigations.

Residential rooftop PV has been widely integrated into distribution systems. In most

cases, PV generations are also installed behind-the-meter (BTM), and only the net demand

is measured. So the BTM PV generation is unknown to utilities. Identifying solar

generation from net demand is critical for improving grid-edge visibility. Therefore,

the future investigation could be done on how to extend the proposed Deep Generative

Model in Chapter Three to the behind-the-meter PV identification problem. Meanwhile,

the proposed model can be modified to use the widely available high-resolution data for

training, which may further improve the classification accuracy and enhance the utilities’

situational awareness of grid-edge resource.

For the proposed method in Chapter Four, one DRL agent is trained to control all energy

storage systems. In order to improve the scalability, the future work could be conducted

on using multi-agent DRL techniques to train multiple agents for voltage regulation.

Meanwhile, it is interesting to using DRL to coordinate ESSs with other types of voltage

regulation devices such as voltage regulators and capacitors. For the proposed method in

Chapter Five, the impact of forecast error uncertainty can be mitigated from the estimation

step. In future work, the inner approximation framework can be further modified, and allow

some controllable DERs to fully erase the impact of forecast error uncertainty.
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