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the activity of the preferred first-line ART regimens, which 
infrequently include NNRTIs and very rarely include thymidine 
analogues. Our finding of an ongoing TDR increase is consist-
ent with the high TDR levels observed in other North American 
studies [4–6, 8, 27]. The finding that NNRTI-associated TDR has 
been increasing is consistent with the global TDR trends [28, 29].

Consistent with a previous meta-analysis, a small subset of 
NNRTI-associated SDRMs accounted for the vast majority of 
NNRTI TDR [29]. Although the spectrum of NRTI-associated 
SDRMs was diverse, >80% of NRTI TDR cases were caused 
by TAMs, of which those other than T215Y/F may have lit-
tle impact on currently used NRTIs [30]. The rarity of K65R, 

Figure�5. Time-scale analysis of the large virus cluster containing viruses with the nonnucleoside reverse transcriptase inhibitor resistance mutation Y181C and the prote-
ase inhibitor resistance mutation L90M. Viruses were labeled with a randomly generated person identi�er (PID), the sample year and month in four digits (two-digit sample 
year and two-digit month), and the viruses’ list of surveillance drug resistance mutations delimited by “_”. The values at the nodes represent posterior support values for the 
clusters obtained using Markov chain Monte Carlo sampling implemented in BEAST version 1.8.4 software. Leaf nodes for sequences from antiretroviral therapy (ART)–naive 
individuals are un�lled circles whereas those from ART-experienced individuals are �lled circles. Viruses from 16 ART-naive individuals with Y181C + L90M are indicated in 
red, and 4 viruses with the same mutations from an ART-experienced individual are indicated in blue (PID 52). This ART-experienced individual appeared to acquire Y181C + 
L90M plus K70R in 1999 (sequence followed by an asterisk). One individual (PID 50)�was also primarily infected with this virus as a 2002 sequence obtained prior to therapy 
contained Y181C + L90M (indicated in red with an open triangle) and later developed K103N (indicated in black with a closed triangle) after receiving multiple nucleoside 
reverse transcriptase inhibitor regimens followed by tenofovir/emtricitabine/efavirenz in combination with atazanavir/ritonavir and then raltegravir. There were an additional 
3 individuals whose viruses likely originated from this virus strain but were not in the same cluster because their sequence differed from the 12 clustered viruses by >2.0%.
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other less common TDF-associated mutations, and the primary 
TAMs T215Y/F indicates that transmitted TDF resistance is 
unusual. Moreover, the evolution of US treatment guidelines 
toward first-line regimens that include an integrase strand 
transfer inhibitor (INSTI) or bDRV means that the preferred 
first-line regimens are highly active in most patients with  
TDR [31].

The prevalence of TDR in chronically infected individuals is 
generally lower than in acutely infected individuals because in the 
years following initial infection, the least fit DRMs revert to wild 
type [32–35]. Indeed, our selection analyses shows that within 
the combined phylogeny of sequences from ART-naive and ART-
experienced individuals, natural selection maintained existing 
amino acids at the SDRM sites along the ART-naive branches. 
Thus, despite their ability to persist in ART-naive populations, 
the overall trend for many SDRMs is toward a gradual reversion 
to wild type. Some of the increase in TDR prevalence may also 
have resulted from the trend to perform genotypic resistance test-
ing earlier in infection as evidenced by the cohort’s progressively 
lower proportion of sequence mixtures and higher CD4 counts.

Endemic TDR strains emanating from a single instance of 
ART-selection pressure that spread among ART-naive individ-
uals have different implications from TDR strains emanating 
from independent episodes of ART-selection pressure in differ-
ent ART-experienced individuals. Endemic strains may carry a 
greater risk of ongoing transmission consistent with their abil-
ity to persist in a population in the absence of selective drug 
pressure [29]. However, they may also be less likely to harbor 
additional DRMs as the process of ongoing transmission among 
ART-naive individuals would be expected to filter out minority 
variants that may have originally been transmitted from an 
ART-experienced individual [36, 37].

The high proportion of DRMs associated with infrequently 
used ART regimens combined with the clustering of many TDR 
strains suggests that some proportion of TDR strains represent 
established drug-resistant lineages transmitted among ART-
naive individuals. This hypothesis is consistent with findings 
from other countries with mature HIV-1 epidemics such as 
Switzerland and the United Kingdom, where it has been esti-
mated that most TDR cases are transmitted from ART-naive 
individuals [34, 36, 38, 39]. Our dataset, however, is limited by 
the fact that KPNC provides care to about 25% of the insured 
population in Northern California [12], making it likely that 
many transmission events occurred with individuals not within 
our cohort and not captured in our phylogenetic analyses.

In conclusion, this is one of the largest studies of the trends 
and mutation patterns associated with HIV-1 TDR in the United 
States. The finding that a large proportion of TDR strains con-
tain DRMs associated with regimens now used infrequently is 
consistent with the concept that many TDR cases are transmit-
ted between ART-naive individuals. Although the frequency 
of transmitted INSTI resistance has been extremely rare in the 

United States [40], ongoing surveillance is required as INSTIs 
have been increasingly used for both first-line and salvage ART.
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