
fpsyg-10-02995 January 9, 2020 Time: 18:25 # 1

ORIGINAL RESEARCH
published: 21 January 2020

doi: 10.3389/fpsyg.2019.02995

Edited by:
Pascal van Lieshout,

University of Toronto, Canada

Reviewed by:
Douglas M. Shiller,

Université de Montréal, Canada
Ben Parrell,

University of Wisconsin–Madison,
United States

*Correspondence:
Elaine Kearney

ekearney@bu.edu

Specialty section:
This article was submitted to

Language Sciences,
a section of the journal
Frontiers in Psychology

Received: 29 April 2019
Accepted: 17 December 2019

Published: 21 January 2020

Citation:
Kearney E, Nieto-Castañón A,

Weerathunge HR, Falsini R, Daliri A,
Abur D, Ballard KJ, Chang S-E,

Chao S-C, Heller Murray ES, Scott TL
and Guenther FH (2020) A Simple
3-Parameter Model for Examining

Adaptation in Speech and Voice
Production. Front. Psychol. 10:2995.

doi: 10.3389/fpsyg.2019.02995

A Simple 3-Parameter Model for
Examining Adaptation in Speech and
Voice Production
Elaine Kearney1* , Alfonso Nieto-Castañón1, Hasini R. Weerathunge2, Riccardo Falsini1,
Ayoub Daliri3, Defne Abur1, Kirrie J. Ballard4, Soo-Eun Chang5,6, Sara-Ching Chao3,
Elizabeth S. Heller Murray1, Terri L. Scott7 and Frank H. Guenther1,2,8,9

1 Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States, 2 Department
of Biomedical Engineering, Boston University, Boston, MA, United States, 3 Department of Speech and Hearing Science,
Arizona State University, Tempe, AZ, United States, 4 Faculty of Health Sciences, The University of Sydney, Sydney, NSW,
Australia, 5 Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States, 6 Cognitive Imaging Research
Center, Department of Radiology, Michigan State University, East Lansing, MI, United States, 7 Graduate Program
for Neuroscience, Boston University, Boston, MA, United States, 8 The Picower Institute for Learning and Memory,
Massachusetts Institute of Technology, Cambridge, MA, United States, 9 Athinoula A. Martinos Center for Biomedical
Imaging, Massachusetts General Hospital, Charlestown, MA, United States

Sensorimotor adaptation experiments are commonly used to examine motor learning
behavior and to uncover information about the underlying control mechanisms of many
motor behaviors, including speech production. In the speech and voice domains,
aspects of the acoustic signal are shifted/perturbed over time via auditory feedback
manipulations. In response, speakers alter their production in the opposite direction
of the shift so that their perceived production is closer to what they intended. This
process relies on a combination of feedback and feedforward control mechanisms that
are difficult to disentangle. The current study describes and tests a simple 3-parameter
mathematical model that quantifies the relative contribution of feedback and feedforward
control mechanisms to sensorimotor adaptation. The model is a simplified version
of the DIVA model, an adaptive neural network model of speech motor control. The
three fitting parameters of SimpleDIVA are associated with the three key subsystems
involved in speech motor control, namely auditory feedback control, somatosensory
feedback control, and feedforward control. The model is tested through computer
simulations that identify optimal model fits to six existing sensorimotor adaptation
datasets. We show its utility in (1) interpreting the results of adaptation experiments
involving the first and second formant frequencies as well as fundamental frequency;
(2) assessing the effects of masking noise in adaptation paradigms; (3) fitting more than
one perturbation dimension simultaneously; (4) examining sensorimotor adaptation at
different timepoints in the production signal; and (5) quantitatively predicting responses
in one experiment using parameters derived from another experiment. The model
simulations produce excellent fits to real data across different types of perturbations
and experimental paradigms (mean correlation between data and model fits across all
six studies = 0.95 ± 0.02). The model parameters provide a mechanistic explanation for
the behavioral responses to the adaptation paradigm that are not readily available from
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the behavioral responses alone. Overall, SimpleDIVA offers new insights into speech
and voice motor control and has the potential to inform future directions of speech
rehabilitation research in disordered populations. Simulation software, including an easy-
to-use graphical user interface, is publicly available to facilitate the use of the model in
future studies.

Keywords: computational modeling, sensorimotor adaptation, motor control, speech production, voice, auditory
feedback

INTRODUCTION

Sensorimotor adaptation paradigms have become an important
experimental approach in studying the neural mechanisms of
motor control, including speech production. These paradigms
are based on the premise that small, often imperceptible,
manipulations of sensory feedback result in lasting changes
within the sensorimotor system (often referred to as motor
learning) as participants gradually adapt their movements
to compensate for the sensory perturbations. Residual
compensatory behavior is evident after the manipulation is
removed; such after-effects provide clear evidence of the adaptive
changes within the motor system.

A typical sensorimotor adaptation paradigm consists of
four phases, shown in Figure 1. The paradigm begins with
a baseline phase1 where participants produce stimuli (e.g.,
syllables, sustained vowels) and receive normal, unaltered
auditory feedback. The second phase, referred to as a ramp
phase, is characterized by a gradual addition of the auditory
feedback perturbation. The perturbation is implemented in near
real time (typically with a delay of 40 ms or less) using a
digital signal processing system and/or personal computer-based
software (e.g., Audapter; Cai et al., 2008) and is increased
linearly until reaching the maximum perturbation magnitude.
The maximum perturbation remains constant during the hold
phase. The final phase is the after-effect phase, where auditory
feedback immediately returns to normal. The number of trials
per phase varies by study but is often in the range of 10 to 100
trials, with the largest number of trials usually occurring in the
hold phase. In addition, the ramp may be more or less gradual
(or omitted), and masking noise played on short blocks of trials
during the hold phase can be used to assess adaptation in place of
the after-effect phase.

Originally adapted from studies of limb motor control, the
sensorimotor adaptation paradigm was first applied to formant
frequencies during speech by Houde and Jordan (1998). Formant
frequencies are peaks in the acoustic spectrum that are related
to the overall shape of the vocal tract and are important
for differentiating speech sounds. Roughly speaking, the first
formant (F1) is inversely related to tongue height (i.e., sounds
with higher tongue positions have lower F1 values) whereas
the second formant (F2) is related to the location of the
tongue constriction along the vocal tract (i.e., sounds with

1Note that the names used to describe the phases are not always the same as those
used in this article. We will use the terms defined here throughout the article to
avoid confusion.

constrictions closer to the lips have higher F2 values). In the
study by Houde and Jordan (1998), participants produced CVC
syllables containing the vowel/ε/while the first two formants were
shifted either toward the vowel/i/or the vowel/a/. Compensation
was observed in the opposite direction to the perturbation.
During the hold phase, adaptation was assessed by randomly
interspersing trials with masking noise so that auditory feedback
was unavailable to participants. The masked trials also showed
evidence of compensatory behavior, revealing adaptation within
the speech motor system to the formant perturbations.

Since the first application of the sensorimotor adaptation
paradigm to speech, a number of adaptation studies have
supported the original findings for formant perturbations (e.g.,
Purcell and Munhall, 2006; Villacorta et al., 2007) as well as
several additional acoustic manipulations, including shifting the
center of spectral energy of fricatives (Shiller et al., 2007, 2009)
and perturbing fundamental frequency (f o, the acoustic correlate
of pitch) during sustained phonation (Jones and Munhall, 2000;
Hawco and Jones, 2010). The findings have also been generalized
to perturbations of pitch and formant frequencies in Mandarin,
a tonal language (Jones and Munhall, 2002, 2005; Cai et al.,
2010), and to sentence-level stimuli with formants of multiple
vowels perturbed within an utterance (Lametti et al., 2018).
Keough et al. (2013) demonstrated that the presence or absence
of specific instructions to attend to the acoustic manipulations
does not affect adaptation suggesting that adaptation is under
automatic rather than conscious control. Links have also been
demonstrated between perceptual abilities and sensorimotor
adaptation. For example, both Villacorta et al. (2007) and Martin
et al. (2018) found that speakers who have better auditory
acuity showed greater adaptive responses to perturbations of F1,
and other researchers have shown that sensorimotor adaptation
can result in changes in the speech perception of the adapted
speech sound in addition to non-adapted but coarticulatory-
dependent speech sounds (Shiller et al., 2009; Lametti et al., 2014;
Schuerman et al., 2017).

Most studies of sensorimotor adaptation in speech have
involved neurologically normal adult speakers. More recently, the
sensorimotor adaptation paradigm has been used to investigate
sensorimotor adaptation in children and individuals diagnosed
with communication disorders. Evidence of adaptation has been
shown in children as young as three; however, the magnitude
of the adaptive response is not as great as adults (Scheerer
et al., 2016) and adaptation does not appear to have a reliable
effect on their perceptual representations (Shiller et al., 2010).
In the realm of communication disorders, the paradigm has
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FIGURE 1 | A schematic of a typical sensorimotor adaptation paradigm with four phases. During the baseline phase, participants receive normal auditory feedback
(magnitude of perturbation = 0). The perturbation is gradually increased from 0 to its maximum value during the ramp phase. The maximum perturbation is held
constant during the hold phase. Auditory feedback immediately returns to normal during the after-effect phase.

been used to assess speech motor control of individuals with
Parkinson’s disease (PD; Mollaei et al., 2013; Abur et al., 2018),
hyperfunctional voice disorder (Stepp et al., 2017), cerebellar
degeneration (Parrell et al., 2017), apraxia of speech (Ballard et al.,
2018), autism (Demopoulos et al., 2018), developmental dyslexia
(van den Bunt et al., 2017), and stuttering (Daliri et al., 2018).
The findings of these studies have important implications for
uncovering the underlying neural mechanisms of these disorders
and may shed light on future treatment strategies.

As the studies reviewed above have demonstrated, the speech
sensorimotor adaptation paradigm provides an informative
window into learning in the speech motor system. However,
it is important to realize that speech output under perturbed
auditory feedback is a combination of online sensory feedback
control processes (i.e., motor corrections based on sensory errors
detected within the ongoing production) and adaptive processes
that affect future productions whether or not they are perturbed.
This makes it difficult to determine the true level of adaptation
(in the sense of trial-to-trial learning) from the experimental
data since this adaptive component is “corrupted” by online,
within-trial contributions from sensory feedback control.

The widely used Directions Into Velocities of Articulators
(DIVA) model of speech production (Guenther, 2006, 2016)
proposes that the overall motor command to the speech
articulators consists of three main components: (1) an auditory
feedback control component that is invoked when errors are
detected in auditory feedback, (2) a somatosensory feedback
component that is invoked when errors are detected in
somatosensory feedback from the speech articulators, and
(3) a feedforward component that utilizes stored motor programs
for the sounds being produced. Furthermore, the model posits
that the feedforward command for future productions is updated
based on sensory errors detected in the current trial. This
adaptation process has been shown to be capable of accounting
for compensatory responses seen in a prior sensorimotor
adaptation experiment (Villacorta et al., 2007), though the
relative contributions of the three different control processes
could not be uniquely determined due to the relatively high
number of free parameters in the full DIVA model.

Relatively complex models, such as the full DIVA model, are
important for expanding our understanding of the neural bases
of speech and providing theoretical frameworks to unify findings
from a wide range of experimental paradigms. However, they
are limited in their usefulness as a tool for characterizing the
impaired speech of individuals in the clinic. Specifically, their
complexities and parameter redundancies preclude a unique,

meaningful model “fit” for the individual. The purpose of the
current article is to describe a simple 3-parameter model based
on DIVA that can be used to dissociate the contributions
of the auditory feedback-based, somatosensory feedback-based,
and feedforward control processes in experimentally measured
sensorimotor adaptation responses. We will refer to this model
as SimpleDIVA throughout the article. The overarching goal
of SimpleDIVA is to distil a complex model into its most
fundamental components so it can be used to derive a meaningful
characterization of function/dysfunction in each of the three
main sub-controllers for speech in individuals with speech
disorders. The first step in this process is to verify that the
model provides adequate fits to existing group datasets. As
detailed in the next section, the model’s parameters characterize
the gains of the auditory and somatosensory feedback control
systems as well as the trial-to-trial adaptation rate of the
feedforward control system. Given a sensorimotor adaptation
dataset, optimal values of these parameters for fitting the data are
derived (i.e., are data-driven); the resulting parameters provide
an estimate of the relative roles of the three different control
subsystems in the corresponding experiment. For the purposes
of the current article, we focus on adaptation experiments
involving auditory feedback perturbations, though in principle
the same model can be used to analyze the results of adaptation
experiments involving somatosensory perturbations applied to
the speech articulators (e.g., Tremblay et al., 2003; Nasir and
Ostry, 2006) as well as experiments involving perturbations to
both auditory and somatosensory feedback (Feng et al., 2011;
Lametti et al., 2012).

The remainder of the article is organized as follows. After a
description of the SimpleDIVA model, we report a series of 10
simulations in which the model is fit to existing sensorimotor
adaptation datasets. Simulations 1 and 2 examine adaptation
with perturbations applied to a single auditory dimension (F1).
Simulations 3 and 4 assess adaptation with perturbations applied
simultaneously to multiple auditory dimensions, specifically F1
and F2. Simulation 5 evaluates adaptation when applying a
perturbation to f o under two different experimental conditions,
first with an upward perturbation and then with a downward
perturbation. Simulations 6 and 7 model f o adaptation when the
measurement of f o is captured early as compared to late in the
trial. Simulations 8 and 9 model data from an F1 experiment
with a gradual perturbation onset condition and fit the resulting
parameters to a second experimental condition with a sudden
perturbation onset. The final simulation models all included F1
data in a single simulation to derive optimal model parameters
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for predicting responses to future F1 adaptation studies. We then
summarize the contribution of the work to the literature and
suggest future directions for using the SimpleDIVA model.

MATERIALS AND METHODS

The following equations characterizing the SimpleDIVA model
capture the key aspects of the DIVA model in a simplified
form that involves only three free parameters that can be
adjusted to fit a particular dataset. For the sake of readability,
the equations will assume that the adaptation experiment being
modeled involves F1, though the same equations apply to other
auditory parameters, as illustrated in the simulations described
in the next section. We will denote the target value of F1 for
the experimental stimuli as F1T and define it to be equal to
the mean of the F1 values produced by the participant during
the baseline portion of the experiment. We assume that F1T
remains constant over the course of the experiment; i.e., the
participant does not change what they consider to be a correct-
sounding production.

In effect, SimpleDIVA focuses on the subspace of the high-
dimensional motor space that corresponds to changes in F1. This
allows us to replace a high-dimensional motor command vector
with a single variable corresponding to the effect of that motor
command on F1. In this way, the overall motor command to
the speech articulators becomes an F1 value that we will call
F1produced. Equation 1 defines F1produced on a given trial or block
(indexed by n) as:

F1produced (n) = F1FF (n)+1F1FB(n) (1)

Simply stated, the F1 value produced on a trial is a combination
of a feedforward command (F1FF) and a sensory feedback-
based correction (1F1FB) that kicks in if/when the auditory
and somatosensory feedback controllers detect production errors
on the current trial. At the start of each simulation (i.e., for
n = 1), F1FF is initialized to F1T corresponding to the assumption
that participants have previously learned feedforward commands
that successfully produce the target value of F1 under normal
feedback conditions.

In the full DIVA model, feedback control consists of
two components that are summed together: an auditory-
feedback-based component and a somatosensory-feedback-based
component. The auditory feedback control component is formed
by (i) calculating the difference (error) between a multi-
dimensional auditory target and the current auditory feedback,
(ii) transforming this auditory error into the motor space,
and (iii) scaling the result by an auditory feedback control
gain factor. Similarly, the somatosensory feedback control
component is formed by calculating the difference between
a multi-dimensional somatosensory target and the current
somatosensory feedback, transforming this somatosensory error
into the motor space, and scaling the result by a somatosensory
feedback control gain factor. Again, in SimpleDIVA we focus on
only the components of the multi-dimensional somatosensory
and auditory spaces that correspond to changes in F1, which
means that the auditory and somatosensory targets are both equal

to F1T , and the feedback-based correction on a given trial is
characterized by the following equation:

1F1FB (n) = αA ∗ (F1T − F1AF (n))+ αs ∗ (F1T − F1SF (n)) (2)

where F1AF is the value of F1 heard by the participant (including
the perturbation, when one is applied) before feedback control
mechanisms kick in on that trial (i.e., F1AF = F1FF + perturbation
size) and F1SF is the F1 value corresponding to the current
somatosensory feedback before feedback control mechanisms
kick in. Since no somatosensory feedback perturbations are being
considered herein, F1SF on a given trial is simply equal to F1FF
for that trial in the simulations that follow. The free parameters
aA and aS are the gains of the auditory and somatosensory
feedback control subsystems, respectively. When an auditory
perturbation is applied, the auditory feedback controller will
attempt to compensate for the perturbation. This compensation
will be partially counteracted by the somatosensory feedback
controller, which is attempting to keep the vocal tract in
the normal somatosensory configuration for the sound. Thus,
if all else is equal, increasing αA will lead to an increase
in the compensatory response to an auditory perturbation
commanded by the feedback controller, whereas increasing αs
will lead to a decrease in the compensatory response to an
auditory perturbation.

The equation for updating the feedforward command from
trial to trial is:

F1FF (n+ 1) = F1FF (n)+ λFF ∗1F1FB(n) (3)

where λFF is a learning rate parameter for the feedforward
command. That is, the feedforward command for the next trial
is updated by adding some fraction (characterized by λFF) of the
feedback-based corrective command from the current trial, as in
the full DIVA model.

To fit the SimpleDIVA model to a particular dataset, a particle
swarm optimization procedure was used to find optimized values
of the three free parameters of the model (αA, αS, and λFF)
to fit the mean data for each trial/block in each condition. In
this procedure, the system is initialized with a population of
1000 random sets of parameter values (“particles”) and iterated
until convergence to obtain an optimized parameter set. In each
iteration, all parameter sets are evaluated by computing the root
mean square error (RMSE) of their fits to the data, and a fraction
of all sets is replaced by random linear combinations of those
parameter sets currently producing the best fits. The procedure
stops when all 1000 parameter sets converge within a 1% range of
the optimal solution or after 100 consecutive iterations without
any improvement in the optimal fit to the data. When the
procedure stops, the optimal parameter set among the remaining
1000 sets is selected as the solution. Parameter values were limited
to the range [0,1] except where noted, in keeping with their
mechanistic interpretations in the model2. For each model fit,
the optimization procedure was run 10 times in order to evaluate
any potential residual variability due to initial conditions or local

2For example, it does not make sense within the model for the auditory feedback
gain to be less than 0 (which would exacerbate rather than correct auditory errors)
or greater than 1 (which would overcompensate for auditory errors).
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FIGURE 2 | A schematic of the time-course of a single perturbed trial within a sensorimotor adaptation paradigm. The upper panel shows the auditory domain: the
auditory perturbation is applied from the beginning of the trial, and the auditory feedback-based correction is evident ∼100 ms post-perturbation onset. The lower
panel shows the somatosensory domain: somatosensory feedback-based correction is evident ∼50 ms following auditory feedback-based correction. Across
panels, the vertical lines (t1, t2) indicate that the contribution of auditory versus somatosensory feedback control varies depending on when the acoustic
measurement of F1 is made within a trial.

optima. The resulting parameter estimates were highly robust to
initial conditions of the swarm procedure (that is, all 10 runs
typically converge on the same optimal parameter set), indicative
of reaching the global minimum of the RMSE measure. The
minimum-RMSE solution across all 10 repetitions was chosen as
the optimized parameter set, and Pearson’s r was calculated for
this solution to characterize fit quality.

The SimpleDIVA model can also be fit to data from multiple
datasets. In these cases, RMSE is first calculated for each dataset
individually (using the same parameter values for all datasets),
and then the individual dataset error measures are summed to
obtain the overall error used in the optimization procedure. This
has the effect of weighting the datasets equally regardless of
the number of trials in each dataset when determining optimal
parameter values. Pearson’s r is then calculated across all trials in
all datasets, with this measure more heavily influenced by datasets
with more trials (simulation 10 in the current article).

An important assumption of the model is that the
measurement of F1 in a given trial occurs at a point in time when
the auditory feedback controller has already had time to detect
and correct for errors, ideally 150 ms or more after perturbed
auditory feedback is available to the speaker. This assumption is
in place because the model is implicitly expecting contributions
from both feedforward and feedback control systems, and
it will thus underestimate the influence of feedback control
and (consequently) overestimate the amount of trial-to-trial
adaptation3 if the measurement occurs before feedback control
has had time to contribute on the current trial (see simulations
6 and 7). The neural delays associated with sensory feedback
processing are approximately 100–150 ms for auditory feedback
(Burnett et al., 1997, 1998; Hain et al., 2000) and 20–75 ms for
somatosensory feedback (Ludlow et al., 1992; Larson et al., 2008).
Figure 2 is a schematic illustration of a hypothetical within-trial

3The model will still typically identify an auditory feedback gain that is greater
than zero because such a gain is needed to account for trial-to-trial changes in the
acoustic parameter being perturbed (see Eq. 3).

time course of a perturbed trial (prior to any adaptation) based
on the delays noted above. The auditory perturbation begins
with the onset of the trial and remains on for the duration
of the trial. An error is detected by the auditory feedback
controllers early in the trial and the associated correction is
evident starting around 100 ms. This auditory-based correction
causes the articulators to change their configuration and, as
a result, an error is detected by the somatosensory feedback
controller, which begins to correct for the error ∼50 ms later
(in the opposite direction of the auditory-based correction). In
a typical sensorimotor adaptation experiment, a single measure
is taken for each production, typically near the midpoint of a
prolonged vowel (e.g., Mollaei et al., 2013; Daliri et al., 2018). If
this measurement is taken at 120 ms (t1 in Figure 2), it is likely
to underestimate the contribution of feedback control compared
to using a later timepoint (e.g., 220 ms, t2). Unless otherwise
noted, the studies modeled in this article all involved acoustic
measurements that were made more than 150 ms after perturbed
auditory feedback was provided.

Across datasets, the optimized model parameters are directly
comparable when the experimental and data processing protocols
are the same. However, parameters are likely to vary somewhat
in response to changes in task, length of utterance, auditory
dimension being perturbed, and the timepoint of the acoustic
measurement. Random variation associated with recording data
from different samples of participants may introduce some
degree of uncertainty in the precision of the parameters
estimates, but this does not preclude comparisons across
datasets assuming the experimental protocols are comparable
(see simulations 8 and 9).

RESULTS

The SimpleDIVA model was used to fit experimental data
collected from six prior speech sensorimotor adaptation studies,
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as detailed in the following subsections. Prior to model fitting,
outlier data points greater than two standard deviations from
the participant’s mean production in each experimental phase
were removed. The mean value of the measured acoustic
feature (e.g., F1) across participants was then calculated for
each trial in the experiment. All simulations were performed
using MATLAB 2018a on a Macintosh computer (macOS
Mojave, Version 10.14.3) and replicated on Windows and
Linux platforms. Compiled MATLAB code for the SimpleDIVA
model is available at http://sites.bu.edu/guentherlab/software/
simplediva-app, including a graphical user interface that allows
the user to enter new datasets to fit with the model. The graphical
user interface is a freely accessible program that does not require
a MATLAB license to run.

Simulation 1: Upward F1 Perturbation
The first simulation involved fitting a dataset was from a classic
implementation of the sensorimotor adaptation paradigm as
illustrated in Figure 1 that involved an upward perturbation to
F1 (Haenchen, 2017). In this study, a group of young healthy
speakers of American English (N = 18; aged 18–29) produced 60
blocks of trials, with each block including three trials in which
the participant produced the word “bed,” “dead,” or “head” in
pseudorandom order (180 total individual word trials). For each
block, the mean F1 value across the three individual word trials
was calculated; this blocked data was used for the model fit.
Blocking in this way reduces variability in data plots but has a
minimal effect on derived optimal parameters compared to fitting
all individual trials. Participants were instructed to say the words
slowly and clearly, with an utterance duration between 400 and
600 ms and intensity between 72 and 88 dB SPL. A baseline of 19
blocks (57 individual word trials) was followed by a short ramp
phase (1 block) where auditory feedback of F1 was incrementally
shifted from 0 to 30% over three trials. The hold and after-effect
phases had a further 20 blocks each. Mean F1 was extracted for
60% of the duration of the word, starting from 10% after voice
onset time. On average, participants compensated for 31.6% of
the perturbation (calculated as change from the baseline to hold
phase as a percentage of the maximum perturbation magnitude).

Figure 3 shows the model fit to the experimental data.
This figure and subsequent figures in this section follow the
same format. In the left panel, the mean and standard error
of the experimental data are shown in blue and model fits
are shown in red. In the right panel, a Pearson’s correlation
coefficient (r) describes the relationship between the data and
model fits, and the parameter estimates are given for αA, αs,
and λFF . The parameter estimates for all 10 optimization runs
(see section “Materials and Methods”) are plotted here; however,
they typically appear as a single point due to minimal differences
between runs, suggesting unique, optimal solutions for these
datasets. The reported optimized parameter values and Pearson’s
r are from the best fit obtained from the 10 optimization runs.
The model provided an excellent fit to the data (r = 0.96), falling
within the standard error of the sample mean for all but one
block (the ramp block). Optimized values for the three model
parameters (model interpretation given in parentheses) were
αA = 0.23 (indicating an auditory feedback control gain in which

FIGURE 3 | Simulation 1: model fits of a dataset with upward perturbations to
F1 (data from Haenchen, 2017; Scott et al., 2019). (Left) Mean and standard
error of experimental data in blue; model fit in red. (Right) Fit quality and
optimized parameter values (r = correlation coefficient; αA = auditory feedback
control gain, αs = somatosensory feedback control gain, and λFF = learning
rate).

23% of the detected auditory error for a trial was corrected within
that trial), αs = 0.17 (indicating a somatosensory feedback control
gain in which 17% of the detected somatosensory error for a
trial was corrected within that trial), and λFF = 0.09 (indicating
a feedforward command learning/update rate in which 9% of the
correction from one trial was added to the feedforward command
for the next trial).

Simulation 2: Upward F1 Perturbation
With Noise-Masked Trials
The second dataset was from a study involving an upward
perturbation to F1 in a group of young healthy speakers of
Australian (N = 9) and Canadian (N = 1) English (mean
age = 25.3 ± 3.74 years) (see Supplementary Material, Ballard
et al., 2018). A key difference in this experimental paradigm was
the use of masking noise to block auditory feedback on certain
trials as a way to gauge adaptation in the absence of online
auditory feedback-based corrections. On each trial, participants
said the word “pear,” “bear,” “care,” or “dare,” pseudorandomly
distributed. Productions of “paw” were also recorded but not
perturbed and were therefore not included in the current
simulation. Participants were instructed to say the words with
a clear voice quality, minimal pitch variation, constant speaking
volume, and to prolong the vowel for approximately 500 ms. An
initial baseline phase consisted of 40 trials with masking noise
randomly played on half of the trials, followed by an additional
33 baseline trials with normal auditory feedback. No blocking
of trials was performed due to the uneven distribution of noise-
masked trials over the course of the experiment. A linear increase
in F1 was applied over 59 ramp trials up to the maximum
perturbation of 30%. During the hold phase, the maximum
perturbation was maintained for a total of 115 trials. After every
15 hold trials, masking noise was played for the following 10
trials. The after-effect phase consisted of 40 noise-masked trials.
F1 trajectories were extracted and averaged over the duration
of the vowel. Average compensation was 36.5% during the hold
phase on trials with unmasked auditory feedback.
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FIGURE 4 | Simulation 2: model fits of a dataset with upward perturbations in F1 and noise-masked trials (indicated with gray shading) interspersed during baseline
and hold phases (data from Ballard et al., 2018). (Left) Mean and standard error of experimental data in blue; model fit in red. (Right) Fit quality and optimized
parameter values (r = correlation coefficient; αA = auditory feedback control gain, αs = somatosensory feedback control gain, and λFF = learning rate).

As shown in Figure 4, the model again provided an excellent
fit to the data (r = 0.90), and the model fits fell within the standard
error of the data on 273/287 (95.1%) of trials, including both
unmasked and masked trials. The optimized parameter values
were αA = 0.33 (higher than in simulation 1, indicating a higher
compensatory response to the perturbation), αs = 0.48 (higher
than in simulation 1, indicating more resistance to compensatory
responses that moved the production away from its normal state),
and λFF = 0.27 (a bit higher than in simulation 1, indicating more
adaptation of the feedforward command). Further, the higher αs
value compared to αA indicates that, according to the model, the
somatosensory feedback controller has a larger influence than
the auditory feedback controller in this experimental protocol
compared to simulation 1.

An interesting aspect of this simulation is the fact that the
model captures a characteristic of the masked trials during
the hold phase that was somewhat unexpected. At first glance,
one might expect the F1 values produced during a sequence
of consecutive noise-masked trials to remain steady since no
auditory perturbation is detected. Instead, as captured by the
model, there is a tendency for F1 to increase gradually during
such noise-masked sequences. This occurs in the model because
somatosensory feedback control remains active during the
noise-masked trials, and the somatosensory feedback control
system attempts to move the production closer to the normal
(pre-perturbation) configuration, in effect counteracting the
compensatory adaptation that occurs during unmasked trials
in the hold phase.

Simulations 3 and 4: F1 and F2 Perturbed
Simultaneously
Simulations 3 and 4 provide fits to data from an experiment in
which young healthy American English speakers (N = 14; mean
age = 23.7 ± 6.92 years) underwent an adaptation paradigm in
which both F1 and F2 were perturbed simultaneously (Daliri
et al., 2018; data from only the adult non-stuttering group
included here). The experiment involved a total of 90 trials;

18 baseline, 18 ramp, 36 hold, and 18 after-effect trials. The target
words were “bed,” “Ted,” and “head,” randomized within each
block of three trials, and participants were instructed to produce
word durations between 300 and 700 ms and intensities between
72 and 88 dB SPL. The ramp phase was characterized by a gradual
increase in F1 to a max perturbation of 25% and a gradual
decrease in F2 to a max perturbation of −12.5%. The other three
phases followed the standard paradigm. F1 and F2 trajectories
were extracted using a custom-written MATLAB script. Mean F1
and F2 were estimated at the center of the vowel (40–60% of the
vowel duration) and blocked data (mean of every three trials)
were used for model fitting. In response to the F1 perturbation,
participants compensated by an average of 21.3%, whereas for the
F2 perturbation, they compensated by 3.87%.

In simulation 3, parameters were optimized to fit both the F1
and F2 data simultaneously with one set of model parameters
for both auditory dimensions. The model fit (Figure 5) had
an r of 0.95, and the model fit for every block fell within the
standard error of the data. The optimized parameter values were
αA = 0.10, αs = 0.00, and λFF = 0.10. While λFF is within
the range of simulations 1 and 2, the relatively low values
of αA and αs indicate, within the SimpleDIVA interpretation,
smaller sensory feedback-based corrections that, in turn, lead
to lower compensation in this experiment compared to the
prior experiments.

In simulation 4, the formant data were first normalized
by dividing by the baseline average, then projected into a
single dimension corresponding to the direction in F1/F2
space produced by the perturbation. This means that only the
component of compensatory changes in F1/F2 that directly
counteracted the perturbation were considered; this is similar
to simulations 1 and 2, which only considered changes in
F1 (the perturbed dimension) and ignored any changes in F2
that may also have occurred. The results for simulation 4,
illustrated in Figure 6, are very similar to those of simulation
3 (r = 0.94; αA = 0.07, αs = 0.00, λFF = 0.10; model fit within
the standard error of the data for every block), suggesting that
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FIGURE 5 | Simulation 3: model fits of a dataset with perturbations applied to
both F1 and F2; F1 and F2 data are fit simultaneously (data from Daliri et al.,
2018). (Left) Mean and standard error of experimental data in blue; model fit
in red. (Right) Fit quality and optimized parameter values (r = correlation
coefficient; αA = auditory feedback control gain, αs = somatosensory
feedback control gain, and λFF = learning rate).

FIGURE 6 | Simulation 4: model fits of a dataset with perturbations applied to
both F1 and F2; F1 and F2 data are projected to a single vector (data from
Daliri et al., 2018). (Left) Mean and standard error of experimental data in
blue; model fit in red. (Right) Fit quality and optimized parameter values
(r = correlation coefficient; αA = auditory feedback control gain,
αs = somatosensory feedback control gain, and λFF = learning rate).

projection of the results into a single dimension aligned with the
perturbation is unnecessary as it produces essentially the same
fit as fitting both the F1 and F2 datasets with a single set of
parameter values.

Simulation 5: Upward and Downward
Perturbations of fo
Simulation 5 involves a dataset in which all participants
underwent the adaptation paradigm under two counterbalanced
conditions: one involving an upward shift in f o and one involving
a downward shift in f o (Abur et al., 2018; data from only
the healthy controls included here). Healthy older speakers of
American English (N = 19, mean age = 65.3 ± 4.6 years) were
instructed to vocalize a sustained/a/for three seconds while the
stimulus appeared on a computer monitor. Both the shift-up and
shift-down conditions followed a standard adaptation paradigm:
20 baseline, 60 ramp, 40 hold, and 40 after-effect trials. During
the shift-up condition, f o was increased by 1.69 cents for each
ramp trial, reaching a maximum perturbation of 100 cents (a cent

FIGURE 7 | Simulation 5: model fits of a dataset with perturbations applied to
fundamental frequency in both shift-up and down directions; shift-up and
down data are fit simultaneously (data from Abur et al., 2018). (Left) Mean
and standard error of experimental data in blue; model fit in red. (Right) Fit
quality and optimized parameter values (r = correlation coefficient;
αA = auditory feedback control gain, αs = somatosensory feedback control
gain, and λFF = learning rate).

is a logarithmic unit of measure of changes in frequency, where
100 cents = 1 semitone). During the shift-down condition, the
perturbation was applied in the same manner in the opposite
direction reaching a maximum perturbation of−100 cents by the
end of the ramp phase. Mean f o was calculated for the duration of
each 3-s trial using an autocorrelation method in Praat software
(Boersma, 2001). The mean f o across every block of three trials
was estimated and the blocked data were used for model fitting.
On average, participants compensated 83.8 and 86.7% in the
shift-up and shift-down conditions, respectively.

In simulation 5, a single set of parameters was used to fit both
the shift-up and shift-down data simultaneously, as in simulation
3. The resulting fit fell within the standard error of the data
in 96.2% of the experimental blocks (shown in Figure 7). The
quality of fit and optimized parameter values were: r = 0.96,
αA = 0.93, αs = 0.00, and λFF = 0.02. This simulation resulted
in much higher values of αA than prior simulations. Within the
SimpleDIVA interpretation, a higher αA is expected here since
the long analysis window allowed for an unnaturally long amount
of time for speakers’ auditory feedback correction to compensate
for the perturbation. However, the very low value of αs in these
simulations was not expected; see section “Discussion” for further
treatment. The next two simulations directly tested the effect of
varying the analysis window on model parameters.

Simulations 6 and 7: Late Versus Early
Measurements of Perturbed fo
Similar to the previous dataset, the dataset modeled in
simulations 6 and 7 involved an f o perturbation experiment
(Heller Murray, 2019; Heller Murray and Stepp, under review).
The key feature of this dataset was that f o was measured during
two time periods – early and late in vocalization. Twenty young
healthy speakers of American English (mean age = 21.0 ± 2.29)
were asked to vocalize a sustained/a/for 3 s while the stimulus
appeared on screen. They completed the task under three
conditions: shift-up, shift-down, and control. The shift-up and
down conditions followed the standard paradigm and each
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included a total of 60 trials: 15 baseline, 15 ramp, 15 hold,
and 15 after-effect trials. No blocking of trials was performed
due to the small number of total trials in the experiment. The
ramp phase was characterized by a gradual change from 0 to a
maximum perturbation of 100 cents (+ 100 cents in the shift-up
condition and −cents in the shift-down condition). The control
condition included a total of 60 trials without any perturbation
and was used to account for the natural drift that occurs in f o
over time in the shift-up and down conditions. Median f o was
calculated using Praat software and custom MATLAB scripts, and
each participant’s shift conditions were divided by their control
condition to normalize the values. The two analysis time periods
were: (1) between 20 and 120 ms after voicing onset (early);
and (2) between 200 and 1500 ms after voicing onset (late).
Note that in the early time window, feedback control will have
had little time to “kick in” and thus lower values of αA and
αs are expected compared to the later time window. The early
time window also allows examination of model behavior in the
near-absence of auditory feedback control (see Figure 2). When
measured at the early timepoint, participants showed 19.1% (up-
shift) and 50.9% (down-shift) compensation. When measured
at the late timepoint, participants showed 29.8% (up-shift) and
51.5% (down-shift) compensation.

In simulation 6, the model was fit to data measured at the late
timepoint, which is in keeping with the model’s assumption that
auditory feedback control has had a chance to contribute by the
time the acoustic measurement is taken (i.e., that measurements
occur 150 ms or more after perturbation onset). As before, a
single set of parameters was used to fit both the shift-up and
shift-down data simultaneously, with the resulting fits shown in
Figure 8. The model fit fell within the standard error of the
data on 68.3% of trials across both directions, and the resulting
estimates were: r = 0.93, αA = 0.36, αs = 0.45, and λ FF = 0.20.

In simulation 7, the model was fit to data measured at the
early timepoint (Figure 9), in violation of its implicit assumption

FIGURE 8 | Simulation 6: model fits of a dataset with perturbations applied to
fundamental frequency in both shift-up and down directions [normalized by an
unshifted control condition; data from Heller Murray (2019)]. Shift-up and
down data are fit simultaneously. Measurement of fundamental frequency was
taken late in the trial (200–1500 ms after voicing onset). (Left) Mean and
standard error of experimental data in blue; model fit in red. (Right) Fit quality
and optimized parameter values (r = correlation coefficient; αA = auditory
feedback control gain, αs = somatosensory feedback control gain, and
λFF = learning rate).

FIGURE 9 | Simulation 7: model fits of a dataset with perturbations applied to
fundamental frequency in both shift-up and down directions [normalized by an
unshifted control condition; data from Heller Murray (2019)]. Shift-up and
down data are fit simultaneously. Measurement of fundamental frequency was
taken early in the trial (20–120 ms after voicing onset). (Left) Mean and
standard error of experimental data in blue; model fit in red. (Right) Fit quality
and optimized parameter values (r = correlation coefficient; αA = auditory
feedback control gain, αs = somatosensory feedback control gain, and
λFF = learning rate).

of a measurement 150 ms or more after perturbation onset. For
this simulation, we allowed the parameter λFF to go above 1 in
order to achieve the optimal fit. The model still gives a reasonably
good fit, though significantly poorer than in simulation 6, falling
within the standard error of the data on 63.3% of trials. The
overall quality of the fit and the optimized model parameters
were: r = 0.81, αA = 0.08, αs = 0.13, and λFF = 1.17. Simulation
7 resulted in relatively low α values, which were expected within
the SimpleDIVA interpretation due to the limited time for
feedback control mechanisms to contribute to the production.
This pattern likely resulted because the dataset violated the
model’s assumption that feedback control mechanisms have
kicked in by the time f o is measured; the early time window
used in simulation 7 results in unrealistically low α values and a
small feedback-based correction according to Eq. 2, which in turn
requires an unrealistically high value of λFFin Eq. 3 to account for
trial-to-trial changes.

Simulations 8 and 9: Model Parameters
From a Gradual Onset Perturbation Fit to
a Sudden Onset Perturbation
The following simulations provide fits to data from an F1
experiment conducted under two counterbalanced conditions:
one involving a gradual ramp phase (gradual) and one involving
no ramp phase (sudden) (Chao and Daliri, unpublished data; see
Supplementary Material for detailed methods). Fifteen young
healthy speakers of American English (mean age: 21.7 ± 4.09)
were instructed to produce the words “heck,” “head,” and “hep”
with a word duration of 400–600 ms and loudness intensity of
72–82 dB SPL. Both conditions had a total of 180 trials with
a maximum perturbation of 30% in F1. The gradual condition
followed the standard paradigm, with 45 baseline, 45 ramp, 45
hold, and 45 after-effect trials. F1 was linearly increased during
the ramp phase up to the maximum perturbation. The sudden
condition had 45 baseline, 90 hold, and 45 after-effect trials.
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FIGURE 10 | Simulation 8: model fits of a dataset with perturbations applied
to F1 and with a gradual ramp phase (data from Chao and Daliri, unpublished
data). (Left) Mean and standard error of experimental data in blue; model fit in
red. (Right) Fit quality and optimized parameter values (r = correlation
coefficient; αA = auditory feedback control gain, αs = somatosensory
feedback control gain, and λFF = learning rate).

The maximum perturbation was introduced on the first trial of
the hold phase. F1 trajectories were extracted using Audapter (Cai
et al., 2008), which tracks formants based on linear predictive
coding and dynamic programing. The average F1 was estimated
in a window placed on the center of the vowel (40–60% of the
vowel duration). Blocked data (mean of every three trials) were
used for model fitting. Average compensation was 24.2% for the
gradual condition and 23.7% for the sudden condition.

For these simulations, the goal was to first fit the model to
one of the experimental conditions and then to use the resulting
parameters to model the second condition, thus assessing how
well the model could predict responses for a given experimental
variation. In simulation 8, the model was fit to data from the
gradual condition. The model fit fell within the standard error
of the experimental data on all trials (Figure 10) and the quality
of fit and optimized model parameters were: r = 0.97, αA = 0.19,
αs = 0.38, and λFF = 0.08. These parameter values were then used
to fit the data from the sudden condition (rather than finding
optimal parameters for this condition). With αA, αs, and λFF
fixed, the simulation predicted the same participants’ response to
a variation of the adaptation paradigm (i.e., with no ramp phase).
Figure 11 shows the resulting fits to the experimental data; the
model fit is within the standard error on 98.3% of trials and
estimates of fit quality indicated an excellent overall fit (r = 0.96).

The opposite was also true when the model was first fit to
the sudden data (r = 0.97, αA = 0.16, αs = 0.21, and λFF = 0.07)
and the resulting model parameters were used to fit the gradual
data (r = 0.95). Together, these simulations highlight a strong
predictive ability of the model across experimental conditions
employing different patterns of perturbation.

Simulation 10: Identifying Representative
Parameter Values Across F1 Adaptation
Studies
In the final simulation, we fit F1 data from all of the formant
studies described above (simulations 1, 2, 3, 8, 9) using a single

FIGURE 11 | Simulation 9: model fits of a dataset with perturbations applied
to F1 and with a sudden ramp phase. Model parameters were fixed using the
parameters in simulation 9 (data from Chao and Daliri, unpublished data).
(Left) Mean and standard error of experimental data in blue; model fit in red.
(Right) Fit quality (r = correlation coefficient).

FIGURE 12 | Simulation 10: model fits across all included F1 adaptation
studies. From top to bottom: data from Haenchen (2017), Ballard et al. (2018),
Daliri et al. (2018), and Chao and Daliri (gradual and sudden conditions;
unpublished data). Noise masked trials indicated with gray shading. (Left)
Mean and standard error of experimental data in blue; model fit in red. (Right)
Fit quality and optimized parameter values (r = correlation coefficient;
αA = auditory feedback control gain, αs = somatosensory feedback control
gain, and λFF = learning rate).

set of parameters. Figure 12 shows the resulting fits. The fit
quality and optimized parameter values were: r = 0.86, αA = 0.18,
αs = 0.29, and λFF = 0.14. These model estimates provide
representative values that can be used to predict responses in
future formant adaptation studies.

To assess the possibility that these representative parameter
values are overfitting our particular datasets, we performed a
leave-one-out cross-validation procedure in which the model was
fit to four of the five datasets, with the optimized parameters
then used to fit the fifth (test) dataset (repeated five times,
with each dataset acting as the test set once). The average r
for the test set in these five simulations was 0.91, indicating
that the model’s fit quality extends beyond datasets used in the
optimization procedure4. The parameter ranges obtained across

4The careful reader might note that this cross-validated r value is actually higher
than when all five datasets are used for fitting. This is possible because the
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the five simulations were 0.17–0.20 for αA, 0.25–0.32 for αs, and
0.11–0.15 for λFF .

To further assess the reliability of these parameters, we
utilized a percentile bootstrap estimation procedure (Efron and
Tibshirani, 1993) to obtain 95% confidence intervals for each
parameter. 1000 iterations were performed, with the data for
each iteration formed as follows. For each of the five studies, a
new dataset was formed by sampling subjects with replacement
from the original dataset, and the average of these data was
calculated. Then SimpleDIVA was used to simultaneously fit
these five averages using a single set of parameters. This resulted
in a distribution of 1000 estimates for each parameter, from
which the 95% confidence interval was drawn. The resulting
confidence intervals were 0.13–0.21 for αA, 0.17–0.38 for αs, and
0.06–0.38 for λFF .

DISCUSSION

The aim of this article was to describe and test a simple
3-parameter model, SimpleDIVA, that can disentangle the roles
of auditory feedback, somatosensory feedback, and feedforward
control processes during sensorimotor adaptation experiments.
We tested the model using six existing datasets collected in
different laboratories and with numerous variations in the
sensorimotor adaptation paradigm. The model provided close
fits to data from these studies, which spanned experiments:
of formant and pitch perturbations; with/without masking-
noise trials; with perturbations in single and multiple auditory
dimensions; with measurements made in different analysis
windows of the acoustic signal; and when predicting model
fits from one experimental condition to another. The model
simulations highlighted the effectiveness of the model in
estimating the relative contribution of feedback and feedforward
control systems to sensorimotor learning and providing excellent
fits to the data, with a mean Pearson’s r of 0.95 ± 0.02 across
the studies modeled here (excluding simulation 6 that was
included to illustrate the effect of analysis time window). In
addition, the simulations revealed properties of the model (and
of sensorimotor adaptation) that we will discuss in detail below.

Role of Somatosensory Feedback in the
Absence of Auditory Feedback
Previous studies have used noise-masked trials as a method of
assessing sensorimotor adaptation in the absence of auditory
feedback (e.g., Houde and Jordan, 1998; Ballard et al., 2018).
A residual compensatory effect is observed in noise-masked
trials during the hold phase, indicative of adapted feedforward
commands. However, prior studies typically did not consider the
effects of somatosensory feedback control during noise-masked
trials (but see discussion in Ballard et al., 2018). In simulation
2, the SimpleDIVA model was fit to the data from one such
study and revealed an interesting and somewhat unintuitive
finding: when producing speech under masking noise in the

optimization procedure minimizes RMSE as described in Section “Materials and
Methods” rather than maximizing r directly.

hold phase, participants show gradual de-adaptation despite the
fact that there is no auditory signal available. This aspect of the
data is captured by the model since masking noise does not
eliminate somatosensory feedback, and thus the somatosensory
feedback controller is attempting to move the vocal tract
back toward its pre-perturbation configuration; the resulting
corrective movements generated by the somatosensory feedback
controller lead to updating of the feedforward commands, in turn
resulting in the de-adaptation evident in the experimental data
and model fit. Thus, the model highlights a previously ignored
aspect of speech sensorimotor adaptation experiments that
involved masking noise during the hold phase, while at the same
time providing an explanation for this phenomenon. Notably,
this effect is analogous to findings in the visuomotor literature
showing de-adaptation toward baseline in the absence of visual
feedback (Hay et al., 1965; Scheidt et al., 2005; Smeets et al., 2006).

Optimized Model Parameters Change as
a Function of Experimental Protocol
Variation
Although the optimized parameters were often similar across
simulations, differences were observed that are likely at least
partially due to differences in experimental design. For example,
the model was sensitive to differences in the period of signal
selected for analysis. Simulations 6 and 7 demonstrated the effect
of varying the measurement window directly. In simulation 6 an
early time window of 20–120 ms after voice onset was used, thus
minimizing the contribution of feedback control mechanisms,
which do not start affecting movement until approximately
50 ms after perturbation detection for somatosensory feedback
control and over 100 ms after perturbation detection for auditory
feedback control (see Burnett et al., 1998; Guenther, 2016). As
expected, this resulted in much lower feedback control gains
in the optimal model fit (αA = 0.09, αs = 0.15) compared
to simulation 7, which used a later time window of 200–
1500 ms after voice onset and obtained optimized values of
αA = 0.39 and α s = 0.44.

In an f o perturbation experiment that had a very long
measurement window (∼3 s), the model estimated that
sensorimotor control was dominated by the auditory feedback
control system, with αA = 0.93 (simulation 5). Although
a high gain for αA is expected due to the measurement
window extending so long beyond perturbation onset, these
simulations identified no contribution of the somatosensory
feedback controller (i.e., αs = 0.00) rather than a higher than
normal contribution that might be expected due to the long
analysis time window. This unexpected finding indicates that,
unlike the formant perturbation studies involving shorter/earlier
time windows simulated herein where adaptation plateaus at
approximately 25–50% of the perturbation size, adaptation in
the f o perturbation study of Abur et al. (2018) was nearly
complete (85.3%); in terms of the model, this is because
somatosensory feedback control mechanisms are not acting to
limit the amount of compensation. This finding may reflect a
situation in which auditory feedback control dominates due to
the use of unnaturally long (3 s) steady state vowel productions,
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which may have allowed participants to consciously “pitch
match” their production to the target pitch, thereby overcoming
the natural tendency for somatosensory feedback to limit the
amount of compensation. Further study is needed to verify or
refute this interpretation.

Further experimental choices that could affect model
parameters include the loudness of the auditory feedback signal
(with a louder signal possibly resulting in more auditory error
detection and within-trial correction, evidenced by a larger
αA), the use of low levels of masking noise in combination with
normal and perturbed auditory feedback (possibly lowering the
amount of error detection and correction, evidenced by a smaller
αA), or the use of anesthesia on the speech articulators (which
should lead to a decrease in αs and a concomitant increase
in overall compensation to an auditory perturbation). Future
studies will investigate these possibilities.

Relationships Between Somatosensory
and Auditory Feedback Control Gains
An interesting finding in the simulations is that, in general,
within-trial corrections based on somatosensory feedback
seemed to be associated with the magnitude of compensation.
That is, lower somatosensory feedback control gains occurred
with lower auditory feedback control gains, and vice versa
(simulation 5 was the exception). This result is not unexpected
when one considers how the time window over which acoustic
measurements are made affects the model parameter estimates:
put simply, later time windows show evidence of more feedback
control, both auditory and somatosensory.

In the model, increasing both auditory and somatosensory
gains proportionally (e.g., going from αA = 0.2, αs = 0.4 to
αA = 0.3, αs = 0.6) has no effect on the maximum amount
of compensation that is achieved during a sufficiently long
hold phase. To see why, note that the extent to which the
auditory feedback control system opposes a perturbation directly
affects the extent to which the somatosensory feedback control
system will detect a mismatch from the normal configuration
for the sound, in turn affecting the amount the somatosensory
feedback control system opposes any corrective contributions
from the auditory feedback control system. Ultimately, this
competition between auditory and somatosensory feedback
controllers determines the maximum compensation that can
occur as a percentage of the perturbation size according to the
following equation:

Max Compensation = αA/(αA + αS) (4)

For example, if the auditory and somatosensory feedback
gains are equal, the maximum compensation achieved by the
model will be 0.5, or 50% of the perturbation size. This equation
also helps explain why model fits to the data from Abur et al.
(2018), which showed near-complete compensation, resulted in
an optimized α s of 0.00.

Although increasing αA and αS proportionally does not
affect the maximum level of compensation, it does affect the
amount of within-trial compensation seen for trials shortly after
a perturbation is induced. This is because the feedback-based

correction calculated in Eq. 2 will be larger if αA and αS are
both larger. Furthermore, for a given value of λFF , increasing αA
and αSwill lead to faster adaptation of the feedforward command
according to Eq. 3.

Notably, if the ratio of αA to αS changes (as opposed to both
of them increasing/decreasing proportionally), then we expect
more adaptation (for greater αA/αS ratios) or less adaptation
(for smaller ratios) after many training trials. Indeed, it is
the ratio of these parameters that determines the degree of
maximal compensation that will occur in the model since it
captures the essence of the competition between the auditory
and somatosensory feedback controllers discussed above. Again,
different experimental paradigms may lead to somewhat different
αA/αS ratios, in part because the delays in the two feedback
control systems are different, which in turn means the relative
influence of αA compared to αS depends on the point in time
the acoustic measurement for the trial is made (see Figure 2 and
associated text). Following findings of individual preferences for
auditory or somatosensory feedback control reported in some
prior studies (e.g., Lametti et al., 2012), it is likely that the ratio
of αA to αS also differs considerably across individuals.

In sum, the relative values of αA and αS determine the
maximum amount of compensation that can occur in the model,
whereas the absolute values of αA and αS affect the rate at
which the model converges to this maximum compensation level
during the hold phase.

Predictive Power of SimpleDIVA
To test the predictive power of the model, we identified
optimal model parameters from data in one experimental
condition involving a gradual perturbation onset and applied
the parameters to a second experimental condition in which
the perturbation onset was abrupt (simulations 8/9). The quality
of the predicted fit was excellent (correlation coefficient of
0.96) and fell within the range of the other simulations in this
article. Not only can SimpleDIVA provide an insight into the
mechanisms underlying sensorimotor adaptation, but the model
can also predict responses for an experiment using data from a
prior experiment.

In the final simulation (simulation 10), we fit the model
simultaneously across five F1 datasets with variations in
the experimental design. The resulting parameters provide a
reference point for expected model parameters in F1 adaptation
studies and may be used to predict responses in future studies.
Using the model in this way supports the development of clear
hypotheses that can be tested empirically to ultimately advance
the field of speech motor control.

Limitations of the Model
In this article, we have demonstrated how SimpleDIVA can
be used across a number of different adaptation paradigms.
One experimental variation that is not currently supported by
SimpleDIVA is the setting of individually-derived perturbation
magnitudes (e.g., a 20% shift in an individual’s F1/F2 space
toward another vowel; Schuerman et al., 2017). In future
iterations, we plan to make it possible to specify the perturbation
magnitude at the level of the individual, rather than only at the
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group level. The model is also not yet designed to address the
results of studies involving unexpected perturbations rather than
the sustained perturbations used in the studies covered herein.

One important limitation of the model for fitting
sensorimotor adaptation data concerns the assumption that
feedback control mechanisms have started to contribute by
the time that the acoustic measurement is taken, ideally at
least 150 ms after perturbation onset. Most prior studies of
sensorimotor adaptation encourage participants to lengthen
their vowel productions in order to increase the amount of
adaptation under perturbed feedback, making the data amenable
to fitting by SimpleDIVA. However, the typical durations of some
vowels during normally produced sentences are less than 150 ms
(Jacewicz et al., 2007). For single-syllable stimuli with these
vowels, it is unlikely that auditory feedback control substantially
affects within-trial performance, though somatosensory feedback
control mechanisms are likely contributing. The model’s
applicability to such cases is thus questionable.

A potential issue involving non-uniqueness of solutions can
arise in the current version of the model when one of the
model parameters assumes a value that is very close to zero.
For example, if the optimal solution involves a value of λFF
equal to zero, the value of αS no longer has an effect on the fit
quality, and the model’s optimization routine may find a different
value of αS each time it is run despite achieving the same fit
quality each time. This is not a shortcoming of the model per
se; rather, it is an indication that the solution space is non-
unique in these cases, with many possible solutions (typically an
infinite number) providing the same optimal fit. This behavior is
not likely to occur for neurologically normal participant groups
(for whom the model parameters should not approach zero) but
could possibly occur in certain disordered participant groups or
when the individual trials of the perturbation experiment involve
unusually long, drawn out perturbed utterances as described
above with respect to simulation 5.

Another potential limitation of the model concerns an
inherent assumption that the relative contributions of the
auditory and somatosensory feedback controllers to adaptation
of the feedforward command is the same as their relative
contributions to online, within-trial corrections. This is
because only a single adaptation rate parameter (λFF) is used,
rather than separate rates for auditory and somatosensory
feedback contributions. This assumption has not yet been
experimentally verified; if it proves to be false, the model
may need to be modified to include separate adaptation rates
for auditory and somatosensory error-based updates of the
feedforward command.

Another potential limitation of the model is the inclusion
of only one form of learning: adaptation of feedforward motor
programs. The model can be extended to allow other forms of
learning, such as changing of the auditory and/or somatosensory
targets for a speech sound. Changes to these targets are expected
to occur on a much slower time scale – longer than the time
scale of a single adaptation experiment – according to the
model (see Guenther, 2016 for details). For example, targets
may change over the course of speech development in children
or over a longer period of speech therapy for those with

communication disorders. Some studies have shown changes to
perceptual category boundaries for speech sounds after speech
motor learning (e.g., Shiller et al., 2009). Although this might
be construed as evidence for changes to the production target
for the speech sound over the course of an experimental session,
this interpretation is tenuous since (i) the link between perceptual
category boundaries and the targets for speech production
remains unknown, and (ii) the production targets represent
idealized versions of speech sounds, whereas adaptation effects on
perception involve ambiguous stimuli at category boundaries. We
performed simulations of versions of SimpleDIVA that included
adaptation terms for auditory and/or somatosensory targets. If
λFF is set to 0 and only sensory targets are allowed to adapt,
the model’s fits are poorer than for the version described here. If
the sensory targets are allowed to adapt while still including λFF ,
model fits showed almost no improvement over the simpler
version included here, and solutions were often non-unique. For
these reasons sensory target adaptation was omitted from the
simulations included in this article.

Finally, the simulations herein have focused on fits to group
average data. The cross-validation and bootstrap confidence
interval estimation analyses performed as part of simulation
10 indicate reliable ranges for each parameter when fitting F1
perturbation group datasets (N of 10 or more for each of the five
studies analyzed here). They do not address questions regarding
parameter stability within a single study, such as how many
subjects are necessary in a group to obtain stable parameter values
(a complex topic beyond the scope of the current article). Thus,
significant caution is warranted when interpreting differences
in parameter values across studies; the interpretations presented
here are based on the model’s theoretical foundations rather than
direct statistical comparisons.

Future Directions
The current set of simulations focused on modeling data
primarily from young healthy adult speakers (only simulation
5 included data from older adults). A key next step will be to
expand this work to examine the contribution of feedback and
feedforward control to sensorimotor learning across the lifespan
and in those living with communication disorders. Model
parameter values derived from multiple participant groups, for
example, a neurotypical group and a group with a disorder,
can be compared to illuminate the between-group differences in
speech motor processing. This line of research has the potential
to identify underlying mechanisms of communication disorders
with a sensorimotor basis and to subsequently pave the way for
the development of future treatments. An important step in the
model development process for this purpose will be the creation
of statistical tests of the reliability of parameter value differences
between participant groups.

Another important future direction is to investigate the
model’s capabilities for reliably characterizing speech motor
control processes in individuals. The current simulations were
all fits to group average data, which does not capture individual
variation in the relative use of auditory feedback, somatosensory
feedback, and feedforward control processes. Previous studies
of adaptive responses have shown increased variation among
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disordered populations (e.g., Abur et al., 2018) as well as
individual preferences for one sensory modality over another
(Lametti et al., 2012). Future studies examining parameters
derived from individual subjects will be necessary to assess how
robust the model estimates are at the level of an individual,
including individuals with speech motor disorders. Specific issues
of importance are whether individual subjects can be fit reliably
from a single experimental session and the degree to which the fits
are unique and stable (e.g., could a near-optimal fit be achieved
with wildly different parameter values even though the optimal
fit is unique?).

A third future direction concerns testing of model predictions
in order to better verify its assumptions. Unfortunately, direct
verification through physiological, structural, or behavioral
measures is not possible. One reason for this is that, in terms of
physical aspects of the brain, the model parameters correspond
to rather large-scale and difficult (if not impossible) to measure
characteristics such as number of synaptic projections between
areas, strengths of these synapses, plasticity of these synapses, and
neural sensitivity of the auditory and somatosensory periphery.
Model predictions regarding the relationship between adaptation
and online corrections can be tested, but it is noteworthy that
even the within-trial, online response to an auditory perturbation
depends on factors other than the auditory feedback control gain
since these within-trial responses are, like adaptive responses, also
dependent on feedforward and somatosensory feedback control
mechanisms. For this reason, we are currently formulating a
version of SimpleDIVA that is aimed at within-trial responses
to unexpected perturbations. This requires the addition of
parameters representing the temporal delays in the auditory and
somatosensory feedback control loops, which are not considered
in the current version of the model. Adding these new parameters
presents challenges regarding finding unique fits that we are
currently addressing. Upon completion of this version of the
model, it should be possible to test the model’s ability to account
for within-trial time courses as well as adaptation over many
trials within the same subject. However, this topic is beyond the
scope of the current manuscript, which has a primary aim of
demonstrating how a simple model characterizing the three main
motor control processes in speech can provide excellent fits to a
wide range of auditory sensorimotor adaptation data.

Finally, SimpleDIVA is not the only computational model
used to examine sensorimotor adaptation. For example, state
space models have been widely used in studies of limb motor
adaptation (Thoroughman and Shadmehr, 2000; Smith et al.,
2006; Galea et al., 2015; Huberdeau et al., 2015) and such
a model was recently applied to speech (Daliri and Dittman,
2019). While the state space model provides good fits to speech
sensorimotor adaptation data, it is limited by the fact that the
two model parameters (an internal estimate forgetting factor and
a sensory error weighting factor) cannot differentiate auditory
and somatosensory feedback control processes from feedforward
control processes. SimpleDIVA’s third parameter (compared
to only two for the state space model) gives it this ability
without adversely affecting the model’s ability to find a unique
optimal solution. Furthermore, the adaptation process captured
by SimpleDIVA is, in essence, the same process that is used

in the full DIVA model to develop accurately tuned speech
motor programs in the first place; no such connection exists for
state space model parameters. Further treatment of the relatively
advantages and disadvantages of SimpleDIVA and state space
modeling approaches is beyond the scope of the current article;
we plan to address this important topic in a future study.
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