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ABSTRACT

Arterial spin labeling (ASL) perfusion Magnetic Resnce Imaging (MRI) is a
noninvasive technique for measuring quantitative cerebral blood flow (CBF) but subject to
an inherently low signato-noiseratio (SNR), resulting in a big challenge for data
processing. Traditional peprocessing methods havedneproposed to reduce artifacts,
suppress notfocal noise, andemoveoutliers However, these methods are based dreeit
implicit or explicit modelsf the data, which may not be accurate and may change across
subjects. Deep learning (DL) is an emergmgchine learning technique that can learn a
transform function from acquired data without using any explicit hypotlamst that
function. Such flexibility may be particularly beneficial for ASL denoising. In this
dissertation, three differemachine ¢arningbasedmnethodsareproposed to improve the
image quality of ASL MRI: 1) a learniafjom-noise method, which doest require noise

free references for DL training, was proposed forlizised ASL denoising and BOLiD-

ASL prediction 2) a novel deefearningneural network that combines dilated convolution
and wide activation residual blocks was proposed to improvertage quality of ASL

CBF while reducing ASL acquisition tim8) a priorguided and slicevise adaptive outlier

cleaning algorithm wadeveloped for ASL MRI.

In the first part of this dissertation, a learningm-noise method is proposed for Ebased

methodfor ASL denoising. The proposed learnifigm-noise method shows that BL
based ASL denoising models can be trained using only moisge pairs, without any
deliberatepostprocessing fobbtainingthe quasnoisefree reference during the training

process. This learninfjom-noise method can also be applied to-lRdsed ASL perfusion



prediction from BOLD fMRI as ASL referensare extemely noisy in this BOLEio-ASL
prediction. Experimental results demonstrate that this leafrong-noise method can
reliably denoise ASL MRI and predict ASL perfusion from BOLD fMRésult in
improved signato-noiseration (SNR) of ASL MRI Moreover, by usingthis method
more training data can be generateslit requires fewer samples to generate guaisie

free rderence, which is particularly useful when ASL CBF data are limited.

In the second part of this dissertation, we propose a novel daemig neural network,

i.e., Dilated Wide Activation Network (DWAN}hat is optimizedor ASL denoising. Our
method pesens two novelties: first, we incorporated the wide activation residual blocks
with adilated convolutionneuralnetwork to achieve iproved denoising performance in

term of several quantitative and qualitative measurements; second, we evaluated our
proposed model given different inputs and references to show that our denoising model can
be generalized to input with different levels ™S and yield images with better quality

than other methods.

In the final part of this dissertation, a prguided and slicewise adaptive outlier cleaning
(PAOCSL)methodis proposed to improve the original Adaptive Outlier Cleaning (AOC)
method Priorinformation guided reference CBF nsagyeused to avoid bias from extreme
outliers in the early iterations of ouwdficleaning, ensuring correct identification of the true
outliers. Slicewise outlier rejection is adapted to reserve slices with CBF vatutse
reasonable range even they are within the outlier volumes. Experimental sesulthat

the proposed oudr cleaning methoanprovesboth CBF quantification quality and CBF

measurement stability.
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CHAPTER 1
INTRODUCTION

Analysis of human brain activity has drawn enormous attention botn clinical and
scientific researchMany technologies have been invented to analyze brain activities,
including electroencephalogram (EEG), positron emission tomography (PET), and
functional Magnetic Resonance Imaging (fMRI). With the help of thesaé&dages, brain
activity can be detected and analyzed based on different signal processing teclitiue
monitors brain activity by measuring voltage changes from ionic current produced by
neurons inside the braiEG has the highest temporal resolnfibutthe lowest spatial
resolution compared with other methods. It is difficult for EEG to locate the signal source
as it can only measure electrical activity at the surface of the faile,not able to locate

the signal inside the braiRositronemissiontomography(PET) measures brain activity

by detecting high radioactivity areas of the brain usirggioactive tracelPET has higher
spatial resolution than EEG, but it requieasdioactive tracer to measure CBF, which can
cause safety concerrstieathy subjectsFunctional Magnetic Resonanieeaging (fMRI)
detects brain activity by measuring cerebral blood flow (CBF) or metabolism using strong
magnetic field and radiofrequency puls&RI is safe, noninvasive, and offers the
highest spatialesoluton compared to other technologies. Since the invention of fMRI, it
has become one of the most popular tools in human brain mapping researchidblg].

1.1 showsa summary of the spatial and temporal resioh of each technology.



Tablel.1. the summary of the spatial and tempaesiolution of EEG, PET and fMRI.

Technology EEG PET fMRI
Temporal Resolution| 10%to 1 sec 0.37 to 5 sec 1to 3 sec
Spatial Resloition 1-5cm 0.5to7.5cm 3to5mm

FMRI is simply MRI scanning that reflects tissue function rather tissue
structure. The signal induced by tissue function can be atttiboitmetabolism or blood
flow. Typically, suchasignal is only a few peent of overall signal intensity. Acquiring
sucha signal reliably in high resolution and a short amount of time is the major goal of
current fMRI techniques. Currently, there are two type of fMRI techniques: (1) Blood
OxygenationLevelDependent (BOLD) fNRI [1] and (2) Arterial Spin Labeling (ASL)
perfusion MRI[2]. BOLD fMRI offers higher spatial and temporal resolution than ASL
perfusion MRI but is only a rei@e measurement and fluates artifactually over space
and time. Different anatomical parametergy(vessel size and orientation), physiological
parametersg.g. oxygenation level and blood volume), and magnetic resorateted
parameterse.g.magnéic field and echo timegan affect BOLD signalg3]. Thus, BOLD
signal is not comparable across different brain regions and subjects, let alone between
healthy subjects and patients. Besides, it is also not suitagptudinal studies due to
large variations of BOLD signal changes. The most common practice for BOLD fMRI

study is to compare BOLD signals across different tasks in the same brain regions.



Figurel.1l: A demamstration of(A) asingle MRI scan; (B) a single BOLD fMRI scan; and
(C) anCBF mapgeneated from ASL MRI scarlhey are obtained at tlsame axial slice
from onerepresentative subject. An MRI scan only shows anatomical structure information
while BOLD fMRI and ASL CBF show thenetabolic activity withinthe anatomial
structure MRI has higler spatial resolutiorbut lower temporal resolutiorthan BOLD

fMRI and ASLMRI. ASL CBF offers quantitative measurement, in which the intesity

a voxel is in gphyscal unit of ml/100g/minBOLD fMRI has higher spatial and temporal
resolution than ASL MRI but is a relative measurement

In contrast, the disadvantages of BOLD fMRI can be overcome using ASL
perfusion MRI techniques. ASperfusion MRIcan guantitativelyneasure the Cerebral
Blood Flow (CBF) in a physical unit of ml/200g/min. The quantitative nature of ASL MRI
makes it independent to imaging parameters and magnetic field. Therefore, ASL perfusion
fMRI is very useful forcrosssectionalandlongitudinalstudies [4] [5]. In addition, ASL
MRI measurs signak from the capillary bed, which is potentially more accurate for
localizing brain functional activation than BOLD fMRI as BOLD signal is mainly
conributed by oxygen level change in venous vessels rather than the neural activation site

[4] [5]. Despite its advantageASL perfusion MRIis less populabecauseat haslower



signatto-noise ratioqSNR), poorertemporal resolutioand ismore difficult to implement
thanBOLD fMRI [4]. Amongthe limitations of ASL perfusion MR] the low SNR is the
most critical oneln order to improve the SNR and get reliable perfusi@asuremest
repeated ASL scans are requirBg averaging numerous repeated ASL scans, noises are
suppressednd signals are enhancétbwever,repeated ASL scans resultimpractical

long scanning timandincreased susceptibility to motion artifaf®$ [7].

To improve the SNR and reduce the number of repeated ASL,scanmber of
postprocessing methods have beproposed including ASL MRI specific motion
correction8], physiological noise correctidf], andspatial noise reductidiO] [11] [12].
Advarced methods have also been published to suppredscaimoise[13] andspatic
temporal nois§¢l4] [6] [15] [16]. Though these methods improved SNR of ASL MR, they
are based on either implicit or explicit models about the data, which may not be accurate
and may change acraossbjects

Machine learningespeciallyone of its branches, Deep Learni(@L), is now
dominating nearly every field it has reached such as image classification, computer vision,
auditory processing, information generation, and translational resear2®,31,35,36].

Deep learnings an emerging machine learning technique that can learn a transform
function from acquired data without using any explicit hypothesis about that function. Such
flexibility is particularly beneficial for ASlperfusion MRIsignalprocessing. Encouraged

by the outstanding performance as listed above, machine learning and deep learning have
been introduced into ASL signal processing, including adaptive outlier clefdmh.8]

[19] [20], ASL denoising21] [22] [23], and ASL quantfication [15]. However, current



machine learnindgpased ASL signal processing has several limitatioatsarediscusgedin

the next section.

1.1 Major Challenges

Onemajor limit for DL-based ASL denoising is that teeis no noisdree groundtruth
image as trainingeference. Whetraining a Deep Learning Neural Network (DLNN) for
image denoising, noisieee images were required as reference images for training. There
are abundant noisieee images in natural image aesing domain, but for ASL MRI, no
noisefree images can be obtained as AMRI scans have intrinsically low SNR. By
averaging of repeated ASMRI scans and deliberafgstprocessing, quasioisefree
reference can be obtained for training. However, gunagsefree reference is still of low
SNR and may affect the performance of trained DLNN, as it may introduce artifacts during
training. Besides, obtaining quamisefree reference is timeonsuming andeduces the
number of available training samplegrsficantly.

In addition, current network architectsréor DL-based ASL MRI denoising
methods, such assidual network22] and Dilated Network21], were not optimized for
image denoisg. These networks were originally proposed for Hegrel vision tasks such
as image segmentation and classificatjipd] [25] [26]. Applying these architégres
directly to lowlevel vision tasks such as denoising and supsolution can be suboptimal
[27] [28]. Furthermore, current studi§?] [21] are only trained othe limited size ofin
vivo dataset with limited validation. The fidelity and generalization ability oftiaked
ASL denoisingonin vivodatasets yet examined thoroughly.

One of the other challeng&s ASL perfusion MRI signal processing is in ASL

adaptive outlier cleanin@uuring the pairwise subtraction process to extract CBF map from



ASL MRI scan, extreme outliers may inéroduceddue to low signato-noiseratio (SNR)
and unavoidable head motmThus, removing outliers is a very important step in the post
processing pipeline for ASL MRI. Currestateof-art Adaptive outlier cleaning (AOC)
methods[18] hastwo issues one is thatcurrent AOC methodsliscard whole outlier
volumes (3D images) without considering whether they contairondrer slices (2D
images) or not. Discardirtheentire volume redusthe sample size and the SNR for non
outlier voxels. The othesithatcurrent AOC methoddid not @nsider prior information

(such as anatomical structure information) about CBF distribution.

1.2 Research Objectives

The main focus of this dissertation was to develop machine leamased methods to
overcome the majachallenges mentionad section 11, improving SNR of ASL MRland
reduéng ASL MRI acquisition time. We proposed three methodsatlressthese
challenges, respectivel¥irst, we proposed a learnifigm-noise method to address the
lack of noisefree referenceimages problem. Second, weoposed a novel deep learning
neural networkhat is optimized for ASL image denoising. Third, a pgoided adaptive
outlier cleaning algorithm was proposed for ASL MRI ppicessing. In what follows,

we give a briebverview of these proposed methods.

1.2.1A LearningFromNoise Methodor ASL Denoising And Prediction

In Chapter 3, a learniafjom-noise method is proposed to show that-lidsed ASL
denoising (ASLIN) models can be trained using only noisy impgé&s. The proposed
method does not requisny quasnoisefree reference during the training process. We

dub this new method as ASINSLFN (learningfrom-noise). This method can be applied



to denoising ASL images directly. Experimental ressh®w that ASLDN-LFN can
reliably denoise ASL images @rachieve improved SNR than ASDD Moreover, by
using ASLIN-LFN, more training data can be generated as it requires less ASL MRI scans
to generate reference mean ASL CBF maps, which is particularly useful wheG@BSL
data are limited.

In addition, ASLDNLFN can alsdbe applied to predict ASL CBF malirectly
from BOLD fMRI. BOLD fMRI offers higher spatial and temporal resolution than ASL
MRI while ASL MRI offers quantitative measurement. It would be ideal if we can extract
guantitative ASL CBF maps andtin highSNR andtemporal resolution from BAL
fMRI. However, predicting ASL CBF is a challenging task as a single ASL CBF image
has very low SNR, which makesuitsuitable to be used as a training reference. ASLDN
LFN shows it is feasible to use a DL d® to achieve this goal as the training precefs

DL modelconverge to mean or median of ASL CBF maps.

1.2.2Dilated Wide Activation NetworbasedASL Denoising

In chapter 4, we proposed a novel Diodelthat optimized for ASL denoising. Our
proposed méiod presents two noveltieirst, we incorporated wide activation residual
blocks [28] with a Dilated Convolution Neural Network (DilatedNg¢P5] to achieve
improved denoising performaea in term of several quantitative and qualitative
measurements; second, we evaluated our proposed model given different inputs and
references to show that ASLDN denoising model can be generalized twitipdifferent

levels of SNR and yielded imagestlwbetter quality than other methods.

1.2.3Prior-Guidedand SliceWise Adaptive Outlier Cleaning F&SL



In chapter 5, a prieguided and slicavise AOC method was proposed to address the
limitations of airrent AOC methaosl First, we adopt anatomical stture information as

prior information and use it to guidde outliers cleaningmethodin early iterations.
Second, we reject outliers slivgse instead of volumeise, which saves neoutlier slices

from the outlier volume and improse¢he SNR for noroutlier voxels. Compaad with
current outlier cleaning methods, the proposed method showed both improved CBF

guantification quality and CBF measurement stability

1.3 Contributions

Contributions have been made in the following aspects:

1 This is the first knen attempt to usthelearningfrom-noise method foDL-based
ASL denoisingand predictionwhich does not require any noifee reference
images improving SNR and increasing imang data samples

1 This is the first study to extract quantitative CBFnir®@OLD fMRI using deep
learning improving theSNRand temporal resolution of ASL CBF.

1 A new CNN architecture that is optimized for image denoigiagdeveloped. The
method achiess better ASL image quality than current BlasedASL denoising
and reduceASL acquisition time by 75%WVe tested generalizabilityf our model
onalargein vivodataset with different input noise levels.

1 A prior-guided and slicevise adaptive outlier eaningmethodwas proposed to

improve CBF quantification quality.

1.4 Orgarzation of this Dissertation



The rest of this dissertation is organized as follows: chapter 2 introduces the necessary
background of fMRI and deep learning and revievetated works in machine learning
based ASL signal processinghe poposed learningrom-noise ASL signal processing
methodand its applicationaredescribed in Chapter 3. Chapter 4 presents ebiemodel

that is optimized for ASL denoising and extemsivalidation on largén vivo dataset. A
prior-guided slicewise adaptive outlier cleang method is proposed in Chapter 5.

Conclusions and future works are discussed in Chapter 6.



CHAPTER 2
BACKGROUND AND RELATED WORKS

In this chapter, a brief overview of fMRI and deep learning is provided. In addition, we

review relatedvorksin ASL MRI signalprocessing.

2.1 Functional MRI

Both MRI and fMRI are primarily measuring signals from protons (H) on water molecules
(H20). Dueto different imaging techniques and parameters, MRI shows the anatomical
structure while functional MRIfMRI) shows the tissuéunction. FMRI signal in each
voxel is an accumulation of signals from extravascular tissue, intravascular arterial blood,
intravascular venous blood, and cerebrospinal fluid. Their relative contributions to the
fMRI signal areweighted by different imagmtechniques and parameters. Typically, the
BOLD signal is 0.5 5% of the total signal intensityhile the ASL perfusion signals

about ongercentof the total signal intensitig] [5][16].

FMRI detects tissue function using either Blemd/genatioAeveldependent
(BOLD) contrast or Arterial Spin Labeling (ASL) perfusion contrast. The BOLD fMRI
was first invented by Seiji Ogawa et @] in 1990. This techniqueéetects tissue function
activation by measuring the oxygenation level in ven{283, i.e., the relative level of
oxyhemoglobin and deoxyhemoglobin in venules (As illustrated in Figure 2.1). When
neurons are in restirgates, theelative level of oxyhemoglobin is low in venules. When
neurons are in stimulated stgtéhe relative level of oxyhemoglobin in venules increases.
The difference in magnetic properties of oxyhemoglobin and deoxyhemoglobin can be
detected by BOD fMRI, producing an effective map of active and inactive areas of a brain.
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BOLD fMRI has higher spatiotemporal resolution and is easier to implement, making it a
more popular fMRI technique than ASL perfusion M&L However BOLD fMRI is only

a relative measurement as it is sensitive to physiological parameters, anatomical parameters,
and magnetic resonancelated parameters, which might not be suitable for egsessonal

study or longitudinal study. Besides, there is alsoncerrabou BOLD fMRI localization
accuracy. The goal of fMRI is to measure intravascular signals from capillary beds as
capillary beds are close to neuronal activation sites. But BOLD signals are mainly from

venules, which might affect localizationauracy.

venules

Resting
state

Stimulated HbO,

state HbO,  dHb HbO,
bO; HbO, HbO, ~ HbO,

Figure2.1: lllustration of hemodynamic process. When neurons are in resting states, the
relative level of oxyhemoglobin is low in venules. When neurons are in a stimulated state,
thevessel size, blood fle and the relative level of oxyhemoglobin in venules increases.
HbO, = oxyhemoglobin, dHb = deoxyhemoglobin.

Arterial spin labeling (ASL) measwseerebral blood flow (CBF) quatsitively by
magnetically labeling blood water as \s throughout the bira[2] [30]. ASL CBF is a
guanttative measuremerthathasa physical meaning, which is defined as an amount of

blood moving into capillaries within 100g tissue per e (unit ml /100y / min]). Based
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on the hemodynamic response, when the neural activity in certagiraresases, the CBF

in that area increaseBhus, a change in CBF is a good indicator of neural activity.

The process of ASperfusion MRIscanis as bllows: (1) arterial blood water is
labeled with radiofrequency (RF) pulses in locations proximal to the tissue of interest; (2)
a spin labeled imagie acquired after the labeled blood water regthe imaging place
and perfuse into brain tissud not only has CBF perfusieweighted signal but also
background tissue signals; (3) To remove the background tissue signal, a control image
without perfusionweighted signal is also acquired using the same ASL technique but
without labeling of flowing blood; (4 A perfusionweighted image is subsequently
determined by paiwise subtraction of the spin labeled image (the label image or L image)
and thespin untagged image (the control image or C image); (5) then, the peffusion

weighted image is converted into tipeantitative CBFmapin a unit of ml/100 g/mir7].

Limited by the longitudinal relaxation rat€X) of blood water, labeling efficiency,
and the poslabeling delay, the labeled blood signaklsoutone percet of total signal
intensity, resulting in a very low SNR1]. Thus, many pairs of L/C images areeoit
acquired to improve the SNR of the mean perfusion map (as illustratédure 2.2).
Because the total scan time is often arowdddins, only 1660 L/C pairs can be acquired,
resulting in a modest SNR improvement by averaging across the limited number of
measurementst should be noted that even for the best researgjests, head motion will
occur during the scan (e.g. due to swallowif8j) Head motion will significantly affect
the pairwise subtraction results, introducing excess outliers and noises to ASL CBF. Thus,

shorter scanningrtie ispreferred
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N repeated scans (3~5 mins)

ASL sequence

Label Control Label Control

Perfusion weighted image (AM) =
(Control - Label)

CBF = Quantification f(AM) |

Mean CBF image

Figure2.2: An example of the ASL acquisition process. In an ASL MRI scan, multiple
pairs of label and control images were acquired. Perfug@ghted images obtained by
pair-wise subtration and is subsequently quantified to CBF map in a unit of ml/200 g/min.

By averaging a series of CBF maps, moderate noises were removed in the mean CBF map.

2.2 DeepLearning

Deep learning (DL) is a subtype of machine learning (ML) algorifl@2jswhich has made
widespread impact on nearly every research field it has been applied (from image
classification[33] [34], video recognitin [35] [36] [37], voice recognition/generatid@8]

[39] [40] [41], medical image processiig2] [43] [44], to AlphaGo[45], AlphaGo Zero

[46], etc). The concept of DL can be traced backhteearly 1980447], but only became
practical untitthe advent of fast generplirpo® graphics processorstimelate 2000$33]

[48]. DL is now dominating nearly every field it has reachedhsas classification,
computer vign, auditory processing, informah generation, and translational research

[34] [42] [43] [49] [50][51].Usi ng hi erarchi cal mul tiple | a
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processing units) with a greedy layeise training, DL can reliably learn any nonlinear
function from the sampledath [49] [52] [9] [32]. Encouraged by the outstanding
performance as listed above, DL has beenothtced into many medical imaging
processing fields, including image segmmation43] [42], image recostructiong53] [54],
image synthesib5] [56] [57] [58], etc.

The most popular DL based denoising approach istaa cavolutional neural
networks (CNNs)34]. CNNs learn a hierarchy of features by a series of convolution,
feature pooling, and nelmear activation operations, presenting high flexibility and
capability for leaming distributions or manifold of imag§s9]. CNN achieves tremendous
success in both higlevel computer vision tasks such as image classificd8dh[36],
object detectiorf26] and lowlevel computer vision tasks such as image denoising and
image superesolution[28]. A typical CNN for highlevel computer visio tasks contains
four types of layers: convolution layers, activationelgysubsampling layersand fully
connected layers. Convolution layers are used to extract features while the activation layer
provides norinearity to the netwdt. Subsampling lagrs are used to reduce the size of
the input and extract dominant featsreFully connected layers are used for Higlel
reasoning, which is necesy for classification tasks. Aintroduction to each type of layer

is provided inthefollowing paragraphs

Input Convolution
kernel

3 15 | 64 | 22 | 55 | 62

92 |213| 7 | 32 |145| 34

17 |178 | 86 | 33 | 12 | 21

231| 87 | 48 | 5 | 23 | 234

50 | 56 | 55 | 45 | 3 |218

82 | 97 | 94 | 33 | 238 44
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Input Output

3 |15 | 64 | 22 | 55 | 62 291

92 (213 | 7 | 32 [145| 34

17 | 178 | 86 | 33 | 12 | 21

231 | 87 8 | 5 |23 (234

59 | 56 51|45 | 3 |218

82 | 97 4 | 33 | 238 | 44

Convolution

3x1 + 15x1 + 64x1 + 92x1+ 213x0 +7x2 +
17x1 +178x0 + 86x1 = 291

Figure2.3: An exanple of a convolution operation.

Convolution Layer: The convolution layer takes the convolution of the input
image with the convolution kernel and generates the ouysutigure 2.3 shows, inthe
convolution layerthe top left matrix is the input matrix, which can be regarded as pixel
values of a digital image, and the top right matrix is a convolution k@rhelconvalition
kernel is calledifter and the output is called filter response or feature.fgaph timea
block of pixels isconvolvedwith a filter and generates value in the filter response.
Convolution kernels are learnable weights that are updatethdoypadkpropagation
algorithm diring training.

Activation Layer: the output othe convolution layeiis further processed ke
activation layer, which provides nonlinearity to the neural network. The activation function

in the activation layer can be sigmoayperbolic tangent (tanfgndRectified Linear Unit
(ReLU), etc The Sigmoid function is defineds/&3 ——, which lounds the output to

(-1,1). Tanh is a variation ofhe sigmoid function Sigmoid and tanh have two
disadvantages when used as activation functionsey)ldoth havexponentiabperations

which is of high computational comgity 2) gradients of these fations tend to zerafter
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many layers of backpropagatiomntroducing vanishing gradient problems. These
disadvantages make trainiagieural network dficult.

Rectified Linear Unit ReLU) is an activation function that wagroposed to
overcomethe disagtantagesnentioned aboveRelLU is formulated adto | A @ .

It has very low computational complexitshile provides nonlinearity taneural network.
Besidesthe gradientf ReLUis alsonontrival whentheinputxis larger than zerd hus,
ReLU not only provides nonlinearityand low computationalcomplexity to a neural
networkbut alsceliminatesvanishing gradient problems. It hascomethe most common
activation function used in curre@NN architectures.

One poblem of ReLU is thathe gradienwill becomezero whenthe input x is
smaller tharzero, which cannot be updated by backpagation. This iheso-called dead
RelLU problem. To solve this problem, variations of ReLU, such as Leaky RelLU and
Parametric ReLU (PReLUJ60], were proposed. Leaky RelLU is defined &b
i A@ &, wherey is a small constant value (typically 0.01Ré®.U is also formulated
asA» | A@ &b, while| is a parameter updated by bagmopagation. These

variations allona small gradient when inputnegative, prevent dead Rélproblem.

3|15|62]| 22|55 8
92 |213| 7 | 32 | 1a5] 32 213 145
17 |178| 86 | 33| 12 | 21
231|874 5|23 |34

53 | 56 | 55 | 45 218
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Figure2.4: The example of the pooling layer.

Pooling layer: Thepooling layer or subsampling layeris an important layer ta
convolutional neural network. The most used methodtHerpoling layer in image
processing tds is maxpooling The maxpooling methd is shown inFigure 2.4. The
image is divided into blocks and the maximum value of each block is the corresponding
pixel value of the outputnage. The reason to ubee poling layer is as follows: First, the
pooling layer decreases the input matrix size, which reduces the computational power for
processing the data. Secondpaoling layer extragt dominant features, making CNN
invariant to small translation and rotation among the input pattern.

Fully Connected Laya: When a CNN is trained for higlevel vision tasks such
as image classification or object detection, fully connected layers are stacked after
convolution layers and pooling layefar high-level reasoning. Fully connected layers
make the neural networled forward into vectors with a predefined length. By doing so,
we could fit the vector into certain categories for classification tasks or take it as a
representation vector for fimtr processing. A fully connected layer has connections to all
activationsin the previous layer. Each of their outpistdefined a¥) = e cfwhere
e is the input vectorpthe is bias term, and isthelearnable weight vector corresponding
to '&h neuron and is updated by backpropagation.

Up-sampling layer: The (p-sampling layer is often used to recover regotufrom
max-pooling and other image dovwsampling layersThe yp-sampling layeis also used
for image superesolution tasks to improvehe resolution of input image3he nost

common upsampling layers arnedeconvolution layer and sydixel convoluton layers.
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Deconvolution, or transposed convolution, can be regarded as a product between each input
pixel and a filter elemenwisely with strider and add up the resulting output windows.

Batch Normalization: Batch Normalization{BN) [61] is a strategy toaccelerate
the training process and improve the training accuracy. BN was designed to prevent
internal covariance shift due to mibatch stochastic gradient descent (SGD) which
changes the distributions of intetmn-linearity inputs during training. BN is motited
by the fact that data whitening process improves performance. First, BN normalizes the
output of thepreviouslayer (Conv or ReLUWwith zero mean and unit variance within a
batch of training images; eBond, BN optimally shifts and scales these norradliz

activations.

2.3 RelatedWorks

In this sectioncurrentmachine learnindpasedASL denoising methaslare reviewedn

section 23.1. and elatedoutlier cleaningnethods are reviewad section 23.2.

2.3.1 ASL Denoising

Advanced methods have alseen published to suppress fooal nois€/13] andspatic

temporal noisg¢l4] [6] [15] [16]. Zhu et al[49] used Robust principal component analysis

to denoise the ASL CBF maps. The CBF images series were decomposed intogveo part
low-rank component which captures fusion patterns; and a sparsemgmnent which
captures spatially incoherent spiky variations. The sparse component was regarded as noise
and was subsequenttiscarded Wang[15] proposed to us&upport Vector Machine

(SVM) to suppress spatiotemporal noise during the CBF quantification process (dubbed as

SVMASLQ). SVM wasused to separate the label and control images of ASL MRI and
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then the perfusiomveighted image was subsequently extracted from the multivaiéwe
classifier. Zhu et a[16] further improved SVMASLQ by using a patehse classification
kernel to separate local signal and noise variations. Image patches centered at each voxel
wereextracted from both the laleel images and controlled images, and then input into
SVMASLQ to find the surrogate perfusion map. Though these methods improved SNR of
ASL MRI, they are based on either implicit or explicit models about the data, which may
not be accurate and may changeassubjects

By contrast DL-based denoising methods learn the denoising model directly from the
noisecontaminated dataOne journal papef21], one conference papg¢22], and a
conferenceabstrac{23] have been published in ASL denoising using DL. Kim efedl]
published the first paper on this research topic. Thewideag CNNs consist of two
parallel pathways to iegrate the multiscale contextual information. As an initial study,
the model was trained with a small dataset and the CNN architecture adapted therein was
originally designed for image segmentatif@2] [63], which may not be optimal for
denoising. Ulas et aJ22] trained a deep learning model with a customized loss function
based on the BuxtoKinectic mode[64], but with a simple CNN architecture. Gong et al.
[23] proposed a technique first usiagulti-lateral guided filter tpostprocess input data,
generating denoised ASL with different smoothing levels. Then they combined aftack
multi-contrast images as input to train a deep learning network for final CBF denoising.
However, the multiateral filter is a local filtethatcannot incorporate global information

for denoising. Generating a stack of mualtintrast imagecould be itme-consuming. While
encouraging, these studies were all based on small sam@arsizased a standard CNN

not specifically optimized for denoising.
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2.3.2 Outlier Cleaning

A series of ASL images are usually obtained to generate the mean perfusion timap so
final CBF quantification can have higher SNR. However, a small number of outlier images
can significantly affect the mean CBF map, causing sigisal or hypeiintensity areas.
Various outlier cleaning methods have been proposed to identify and remthiess.

Wang et at[65] identify outliers based on amplitude and successive differences of head
motions as well as the mean and standard deviation of the whole brain CBF time series.
Tan et al[66] used the mean and standard deviation of each CBF volume to determine
outlier volumesWant et al[17] proposedan adaptive outlier cleaning algorithm (AOC)
based on the correlation between grey madted CBF.Maumet et al[67] estimated
perfusionweighted maps using Hulie-estimator that is robust to outlier8. common

issue of these methods is that the reference CBF map used for identifying outliers is the
intermedate mean of the remaining CBF images, which may be initially contaminated by
the outliers and will favorutliers and reject nenutliers. Another issue is that they discard

the entire outlier volume even if the volume contahses that are neautlier. A third
concern is that the rejection criterion is purely distance (or correlation).Jdsethethod

by Tan et al[66] can reject outlier slices but the method is still subject to other concerns
as listed aboveDolui et al.[18] improved AOC based on an empirical assumption of high
correlations between outlieend the reference meamn,t left the volumenise rejection

issue alone.
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CHAPTER 3
A LEARNING -FROM-NOISE DEEP LEARNING METHOD FOR
ARTERIAL SPIN LABELING MRI DENOISING AND PREDICTION

Onemajor limit for DL-based ASL denoising is that thexeeno noisefree groundtruth
images astraining reference. Whentraining aDL modelfor image denoising, noiseee
images were required as reface images for training. There are abundant rfoese
images irthenatural image denoising domain, iluéreis no noisefree imagehatcan be
obtainedor ASL MRI as ASL scans have intrirsilly low SNR. By averaging of repeated
ASL scans and delibate postprocessing, quasioisefree reference can be obtained for
training. However, quasioisefree reference is still of low SNR and may affect the
performance of trained Dinode| as it mayintroduce artifacts durinthe signal averaging
and posiprocessing stepBesides, obtaining quasoisefree reference is timeonsuming
and reduces the number of available training samples significantly.

In this chapter, a learniAigom-noise method iproposed for DitbasedASL signal
processingdubbed as ASLDMNLFN). The proposed learniagom-noise method shows
that DL-based ASL denoising models can be trained using only noisy image pairs, without
any deliberat@ostprocessing for getting the quasdisefree reference during the training
process . Specifically we show thathis learningfrom-noisetraining process converges
exactly with thesignal averaging process &SL CBF maps. In other words, it is not
necessarto have a noiséee reference for ASLDNLFN. By using this methodye can
skip the step of lataining quashoisefree reference and obtaining equal or even better

performance than ASLDNMoreover,more training data can be generatedA&tDN-
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LFN does wmt need extra samples to generate gonasefree reference, which is
particularly useful wheASL CBF data are limited.

Besides, liis learningfrom-noise method can also be applied to-ldsed ASL
CBF prediction from BOLD fMRI ASL is quantitative, insesitive to lowfrequency drift
but has lower signab-noiseratio (SNR) and lower temporal reatibn than BOLD.
Currently, there still lacks a way to fuse the benefits providetdily i.e., to quantify
cerebral blood flow (CBF) like ASL MRI but with HigSNR as in BOLD fMRI. The main
challenge fousingDL-based metha&to predict ASL CBF from BOD fMRI is that the
CBF fromasingle scan of ASL MRIis too noisyto be used aareferencan this BOLD-
to-ASL prediction.However, oudearningfrom-noise method shows that it is possible to
achieve BOLDto-ASL prediction using extremely noisy ASL CBRaps as training
reference. Experimental results demonstrated that this learfrimig-noise method can

reliably predict ASLCBFfrom BOLD fMRI.

3.1 Introduction

DL-based denoising methetypically useanendto-end training scheme to train the DL
model A noisy image that we want to denoise is fed to the input end and the desired noise
free image is fed tthe output endas thetraining reference. By usingochastic gradient
based optimizatiof68, 69], the parameters of the DL modateautomatically adjusted so
thatgiven the input noisy imagthe DL model can predichautputimage that is asimilar

as possiblé¢o the noisdree training reference. The similaribetween output image and
thereference imgeis determined by a loss function (typically mean square error or mean

absolute error). Essentially, the fhlased denoising is a regression task.
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Formally, cenote the noisy image ly and its reference (noidese or less noisy
version) byyi, wherei=1...N, N is the total number of training samples. A parametric
regressiorDL model"Qhtypically a convolutional neural network (CNN), can be built to

learn the mappint(®w)  Yby yninimizing the following loss function:

ar g nmd Qo ho
(3.1)

, where'Oare the parameters of CNN and are adjusted through the training prodess
the loss functior..

Several groups have used DL in ASL MRI desiag [5, 17]. Different from other
denoising applications, Dbased ASL denoising netw@&@kASLDN) do nothave noise
free training references. Accordingly, its denoising performance might be uplimited by the
reference image SNR. However, the potentialmpldoesn't seem to exjsis several
studieg[70] [21] [22] showed that ASLDN could produce CBF images with even higher
SNR than the reference. iShapparent learninffom-noise capability could provide a
versatile ASLDN without deliberatpostprocesing for getting the quasioisefree
referencelehtinen et al[71] hasrecentlybeen explicitly investigatg this leaning-from-
noise capacity in natural image denoising. Inspired by their work in natural image
denoisingwe want to formallyntroducethis learningfrom-noise capability of DL on ASL
MRI signal processing and demonstrate that this learfog-noise capaibty is

particularlybeneficialfor ASL MRI where data are corrupted and limited.

3.2Methods
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When estimang a true valuey from a set of unreliable observatiofis, w, ...,® ), A
common strategy testimatethe true valuey is to find a valueUthat has the smallest
average deviation from all theareliableobservationsccording to some loss functian

This strategy can be formulated as:

P
arg é—ml nwhJ 8 3.2)

When the loss function is; loss i.e.,0 @U @& U ,theoptimal value taninimize

theloss functioncan be derived as follows

S
T w0

p
0 (3.3)

Thus, the optimal valu®to minimize the loss functioh is the expectation ofll
observationg® , @, ..., ). Optimal value can be derived for the loss0 6o

W wsusingthesame mdtod

ot e U (34)
where
\ pho U
i Q@ U Eg 88 (35)
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Thus, heoptimal value to minimizé, loss is the median of observatiqus, w, ..., ).

When the observations are corrupted3aussiamoise, i.e.aset of noisy observatiomyh
wh..,® ) that @ @ ¢& hwhere@ is the observation without noise ahdis an
independent sample draw from a zemean gaussian distributiod x 0 th, . When

minimizing the loss function:

ar g éEmi thohU 8

(3.6)
ForL2lossO iU -B & U ,the optimal valudJ can be derived as follows:
0 .
T—‘ > w U 7
Tw U
o2 o 2 oo 1
0 §
Y P - .
T %) o | Oe O= Oe 3.7)

Therefore, when the observations were corrupted byrneian gaussian noise, the optimal
value to minimize the loss function is the mean of the latent clean observabioos, ...,
), given infinite data sample3he moregeneraked class ofthis deviatiorminimizing
typeestimators arealled theM-estimatorg72].

This point estimation procedure can be generalized to training a neural network.
Given a setof inputreference pairs (x yi)) and a neural network function

"Q @ parameterized b¥), the training procedure of the neural network is
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If the networKQ doesnot dependon input data, and merely outputs a learned sdhlar,
wholetraining procedureeducedo the samegooint estimation proceduid (3.2) at every
trainingsample Thus, training a neural network usihgloss is to find the expectation of
referenceso.

When the referencds are drawn from a corrupted distribant of the latent clean
referencel such thatOU U, and are combined with corrupted inputs from the
equation (3.1), the learning process ofieural networkis equal to minimize the loss

function:

P .. -
arg é—m|mQ®HJ8 (3.9)

Whengiven infinitetraining samplesndthe loss function i, the solution iSQ @

ou U. When thetraining samplesire finite and mutually uncorrelatethe expected
squared differenceetweeriO U and’O &) isequalto—w @B U accoding to[71].
Thus, the varianceof minimizing L> loss given finite de is the meanvariance of the
corruptionsdivided by the number of samplé When thenumber of training data
increasesthe errortends tozero. The above derivation assumes scdlaia \Whendata

are imagesN is the total number gpixelsin the imags, i.e.the number oimages xthe

number opixelsperimage
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According tothe above derivation, we do not need clean insage referencewhen
training neural network for image denoising. Onlysyadmage pairs are needed for DL
based image denoisinghis is particularly useful when no absolute clean reference images

are available in ASL denoising.

3.3 Application onASL denoising

In this section, we proposed™._-basedearningfrom-noise methodor ASL denoising,
which does not require any delibet@a postprocessing for getting the quamisefree
reference during the training process. We dubbed this new method ASENN Figure
3.1 shows the difference between ASLDN and ASLDRN. ASLDN requires quasi
noise-free image as training reference while ASLIDRN only use noisy image as training

reference.

DL-based ASL denoising (ASLDN) ASLDN Learning-from-noise

Deep Learning

—))
training

A Yi

Reference Noisy Reference

Deep Learning

=

training

Deep Learning

—

testing

Deep Learning

=

testing

Output

Figure 3.1: An illustration of DL-based ASL denoising (ASLDN) and ASLDIDNFN.

ASLDN using quasnoisefree CBF images as training references whereas ASLBN

only use noisy image pairs to train the DL model.

Similar to[71], the assumption of ASLDINFN is that both the noisy referendeand the

noisy input CBF mapg are drawn from the same data distribution. When minimizing the
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Loloss function-B "Q @ U , theCNN regressoiQ @ is to find the optimum at

the arithmetic mean of thebservationsi.e."Q@ OU U, given enoughtraining
samplesThis process converges exactly with the method of averaging one subject's all
CBF maps to generate quasinoisefree mean CBF map as a psewoundtruth for
training n ASLDN. However, onsidering ASL CBFs have excessive outliers, training
with L1 loss ispreferred asraining withL; loss is to find the median of the observations
andthe median is moreobust to outliers than meawe also conducted experiments to

compare the effects of training withy loss versusraining withL loss
3.3.1 Materialsand Experiment Setup

ASLDN-LFN using the Dilated Wide Activation Network (DWAN) that wa®posed in
chapter 4As shown inFigure3.2, DWAN hastwo pathwayg. The difference betwedhe
local pathway andlobal pathway is that the first convolution layer of the 4 wide activation
residual blocks in the global pathway used a dilation rate of 2, 4, 8 and 16 respectively.
The local patlway extractsthe local features anthe global pathvay uses dilation
convolutionsto resene global data patterngzurthermore, thavide activation residual
blocksin DWAN are able to expand data features and pass more information through the
network, improving performares for lowlevel computer vision tasks thiout additional
parameters and computatif#28] [73]. By combiningthe twepathway structurand the
wide activation residual block, this newWN® structure (DWAN) improves the denoising
performance in ASLDN_FN.

ASL data were pooled from 280 subjectsalacal database. The data were acquired
with a pseudaontinuous ASL sequence (40 controldbddl image pairs with labeling time

= 1.5 sec, podabeling delay = 1.5 seEjeld of View FOV)=22x 22 cnt, matrix=64< 64,
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Repetition Time TR)/ Echo Time TE) = 4000/11 ms, 20 slices with a thickness of 5 mm
plus 1 mm gap).

ASLtbx [65] was used to preprocess AShdges using the following updated
procedures: 1) ASispecific motion correction method was applied to the raw ASL images
(C/L images) to correct systematic label/control labelingiced spurious motior8]; 2)
theaverage of all 40 C/L image pairs was calculated and used as a template for registering
the ASL C/L images to the higlesolution T1 image. Registration was performed with
SPM12 (Wdcome Department of Imaging Neuroscience, London, UK,
http://www:.fil.ion.ucl.ac.uk/spm); 3) simple regression was used to regress out residual
motions, mean CSF signahd global signal; an isotropic Gaussian kernel withviidith-
half-maximum = 3mm wassed to smooth ASL C/L images subsequently; 4) adjacent C
and L images we subtracted using simple subtraction to generate perfusahted
images which were then converted into quantitative CBF using the same methf@bas in
MO is approximated by the control image in each labeltol image pair and MO
calibration is performed at each voxel separately using the value at the corresponding voxel

location of the control imag@utlier CBF image timepoints weiidentified and removed
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Figure3.2: Schematic illustration of the architecture of our proposed DWAN network. The
first layer consists of 3x3x32 convolutional filters for the input image. Then the output of
thefirst layerwasfed totheboth local pathway and global pathw&gach pathway atdains

4 consecutive wide activation residual blocks. Each wide activation residual block sontain
two convolutional layers (3x3x128 and 3x3x32) and one activation function layer. The
3x3x128 convolutional layers theglobal pathway werdilated convoltional layers with

a dilation rate of 2, 4, 8, 16, respectively. The outputtbé local pathway and global
pathway were concatenated and fed to another 3x3x1 convolutional filter. The 3x3x1
convolutional layer was attached to the end tb the predictedoutput image with
additional input from the input image with 3x3x1 convolution. (axbxc indicates the
property of convolution. axb is the kernel size of one filter and c is the number of the filters).
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using the prioiguided slicewise adapive outlier ckaning algorithn{19] [20]; 5) each
subjectdés structur al MR | was spatially nor
(MNI) standard brain using SPM12. The satransform was then applied to the CBF

image series

CBF image slices from 200 subjects were used as the training dataset. CBF images
from 20 different subjects were used for validation. The remaining 60 subjects were used
as the testing set. Input to ABN-LFN was the axial slicéAll CBF maps were spatially
normalized into the Montreal Neurological Institute (MNI) spdteery 3 slices from the
35th to the 59th axial slices were extracted from each of the 3Dn@&RE The 40 ASL
CBF images of each subjegere divided into 4 time segments, each with 10 successively
acquired images. The mean maps of the 1st segment and the 2nd segment were taken as
the input and the corresponding reference for DL model training. Another set of input
reference image paitwas obtained from the mean CBF maps of the 3rd and the 4th
segment. During model testing, the mean CBF image slices of the first 10 L/C pairs (in the
first time segment) were used as the input.

Due to intrinsic low SNR of ASL MRI, the input and referenceFGBaps were
already contaminated with severe noise E&gire3.3 A. shows). Therefore, no additional
artificial noises were added ttheinput and reference CBF maps. Mean CBF maps of the
entire 40 L/C image pairsith Gaussian smoothing (FWHM = 3mm) anatsbf-art
outlier cleaning[20] were used agseudegroundtruh . Compaed with the previous
method ASLDNJ[74] using pseudegrourdtruthw as training references, the proposed
ASLDN-LFN only used noisy datd as the training reference-Net[24] and DilatedNet

[21], two popular CNN structusavidely used in medical imaging, were implemented as a
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comparison to our DWAMased ASLDNLFN. Additional experiments were conducted
to compare the effects tifedifferent loss functios(L1 and L2) on denoising performance.

We used Kerag75] and Tensorflow[76] platforms to implement all the DL
algorithms. Network training was through the adaptive moment estimation (ADAM)
algorithm with a learning rate of 0.001 and a batte ®f 64. All experiments were
performed on a PC with Intel(R) Core(TM)-5B20k CPU @3.30GHz anah Nvidia
GeForce Titan Xp GPU.

We used Peagignalto-NoiseRatio (PSNR) an@tructureSimilarity Index (SSIM)
to quantitatively compare the performanceDdWAN with U-Net and DilatedNet. When
computing PSNR and SSIMseudegroundtruth(mean CBF from eire 40 L/C pairs)
was used as groundtruth. SNR and Grey Matter/White Matter (GM/WM) contrast
calculated to measure the image quality of ASL CBF. The 4R calculated by using
the mean signal of a grey matter (GM) regadrinterest (ROI) divided byhe standard
deviation of a white matter (WM) ROI in slice 50. The GM/WM contrast was calculated
as the mean value of GM masked area divided by the meanofai® masked area.

The Correlation coefficient between the Edroduced CBF values armbeude
growndtruthwas calculated to measure the similarity of the-ploduced CBF values to
those processed with ndl methods. This process was performed at eackelvimx
ASLDN and ASLDNFLN separately. The correlation coefficient maps were thresholded

by r>0.3 for the purpse of comparison and display.

3.3.2 ExperimentaResults
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Figure3.3: Mean CBF images of a regentative subject. The rows from top to bottom are:
A. mean CBF maps generated from 10 Ipd&irs (input to ASLDNLFN); B. mean CBF
maps from all 40 L/C pairs with smoothing and outlier cleangsgdegroundtruth; C.
output ofASLDN; and D. output of ASDN-LFN. Only 5 axial slices were shown in each
row.

Figure 3.3 shows the mean CBF maps produced by different algorithms. Compared to
pseudegroundtruth(Figure 3.3.B.) and he output of ASLDN Figure3.3.C.), the CBF
maps produced by ASLDNFN (Figure3.3.D.) showed substantially improved quality in
terms of suppressed noise and better perfusmmirast between tissues. Moreover,
ASLDN-LFN recovered CBF signals in the -@rain boundaries and reduced partial

volumeeffects.
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Figure3.4: The notched box plot of the SNR (left) and GM/WM contragthi)i from 60
test subjects' CBF maps with different processing methods.

Figure3.4 shows the notched box plot of the SNR and GM/WM contrast from 60
test subjects’ mean CBF maps processed with different methodsawvérege SNR of
pseudegroundtruth the output of ASLDN andhe output of ASLDNLFN were 5.87, 6.36
and 8.06 respectively. The average GM/WM contragsefidegroundtruth the output of
ASLDN and the output of ASLDNLFN were 2.14, 2.15 and 2.32. ASLEINFN improved

SNR by 26.7% and improved GM/WM contrast by 7.9%mpared with ASLDN.
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Figure3.5: Correlation coefficient maps of ASLDN (top) and ASLEMRN (bottom).
Only 5 axial slices were shown. Correlation fficeents less than 0.3 were thresholded to
be 0.

Figure 3.5 shows the correlation coefficient maps of ASLDN and ASEDRN.
Correlation coefficient at each voxel was calculated betweepsiedegroundtruthand
network output. Outputs of ASLDN and ASLDNFN strongly correlated to theseude
groundtruth proving tha both networks can preserve individual subjects’ CBF patterns

while suppressing noise. Output of ASLE¥N showed less correlation to input in WM

becaus ASLDN-LFN removed more noises in WM than ASLDN.

Table3.1: The average PSNR and SSIM of mean CBF maps produced by different CNN
architectures in different training schemes.

ASLDN ASLDN Learning-from-noise
Model U-Net DilatedNet DWAN U-Net DilatedNet DWAN
PSNR 24.53 24.92 25.26 24.84 25.06 25.28

SSIM 0.796 0.793 0.803 0.798 0.797 0.803

Table3.1 lists the PSNR and SSIM performance of ASL[M] and the proposed
ASLDN-LFN with or without using the DWAN network structure. ASLEAN¥N showed
higher PSNR and SSIM than previous ASLDN. Using DWAN in ASLDN and ASLDN

FLN provided higher PSNR and SSIM than without.
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Figure3.6: Mean CBF maps of a representative subject (Only 3 axial slices were shown).
From left to right: input to ASLDNLFN (column A); pseudo gold standard (column B);
outputs of ASLDNLFN trained with L2 loss (column Cand outputs of ASLDNLFN

trained with L1loss (column D)

Figure 3.6 shows the result of ASLDMFN that was trained with different loss
functions. When input mean CBF maps contained langeunts of outliers, ASLDNLFN
trained with L2 loss was affected, resulting in deteriorated perfiuisigrey matter area
ASLDN-LFN trained with L1 loss, in contrast, remains unaffected due to its robustness to
outliers. PSNR and SSIM are used to quativgdy measure the denong performance of
ASLDN-LFN trained with L1 loss and L2 loss. PSNR and SSIM were 24.40 and 0.677
when ASLDNLFN was trained with L2 loss, whereas PSNR and SSIM were 25.28 and

0.803when ASLDNLFN was trained with L1 loss.
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