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ABSTRACT 

SAMPLE SIZE DETERMINATION FOR A THREE-ARM BIOSIMILAR TRIAL  

By 

Yu-Wei Chang 

    The equivalence assessment usually consists of three tests and is often conducted 

through a three-arm clinical trial. The first two tests are to demonstrate the superiority of 

the test treatment and the reference treatment to placebo, and they are followed by the 

equivalence test between the test treatment and the reference treatment. The equivalence is 

commonly defined in terms of mean difference, mean ratio or ratio of mean differences, i.e. 

the ratio of the mean difference of the test and placebo to the mean difference of the 

reference and placebo. In this dissertation, the equivalence assessment for both continuous 

data and discrete data are discussed. For the continuous case, the test of the ratio of mean 

differences is applied. The advantage of this test is that it combines a superiority test of the 

test treatment over the placebo and an equivalence test through one hypothesis. For the 

discrete case, the two-step equivalence assessment approach is studied for both Poisson 

and negative binomial data. While a Poisson distribution implies that population mean and 

variance are the same, the advantage of applying a negative binomial model is that it 

accounts for overdispersion, which is a common phenomenon of count medical endpoints. 

The test statistics, power function, and required sample size examples for a three-arm 

equivalence trial are given for both continuous and discrete cases. In addition, discussions 

on power comparisons are complemented with numerical results. 
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CHAPTER 1 

INTRODUCTION  

 

1.1  Motivation 

    Assessing equivalence and similarity between a biosimilar drug and its innovative 

drug has received much attention as patents of many biological products will expire in the 

next few years. Normally, biological treatments are expansive and there is a strong 

demand for lower-priced follow-on biologics. Figure 1 shows the patent expiration year 

for the top ten selling biologics in 2011.  

 

Figure 1. Patent cliff for the top ten selling biologics in 2011  
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    In this figure, the colored bar shows the patent period for a drug. The manufacturing 

company name for each drug is listed on the left hand side and the corresponding total 

global sale in 2011 is listed on the right hand side. Note that Ebrel has been granted a 

patent life extension for 17 years in 2011. This figure is adapted with permission from 

“Biosimilars: Company Strategies to Capture Value from the Biologics Market,” by 

Calo-Fernández & Martínez-Hurtado, 2012, Pharmaceuticals, 5(12), p. 1395. 

    Although the equivalence assessment has been well-established for generic drugs 

(EMEA, 2001; FDA, 2001; FDA, 2003a ; FDA, 2003b), due to several fundamental 

differences between generic and biosimilar drugs, it is not appropriate to adopt the testing 

requirement for generic drugs to assess biosimilar products. The Drug Price Competition 

and Patent Term Restoration Act, also known as the Hatch-Waxman Act, was enacted in 

1984. This act encouraged the development of the generic drug regulation in the US and 

the manufacture of generic drugs (Drug Price Competition and Patent Term Restoration 

Act, 2013). The cost for producing a generic drug is much lower than for developing a 

new patent drug, thus the drug price may be reduced dramatically, making the drug more 

affordable to users (Generic drug, 2013). In order to improve the medical care quality 

and increase the affordability of some lifesaving biologic drugs in the US, President 

Obama signed the Patient Protection and Affordable Care Act (PPCA Act) into law in 

2010, which authorized the US Food and Drug Administration (FDA) to approve generic 

versions of biologic drugs. In February 2012, the FDA published draft guidance for 

industry entitled “Scientific Considerations in Demonstrating Biosimilarity to Reference 
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Product.” This draft guidance recommends a step-by-step approach for assessing 

biosimilarity. However, a clear statistical requirement was not listed and several scientific 

factors and issues remain unresolved (Chow, Wang, Endrenyi, & Lachenbruch, 2013). 

The FDA declared that this draft document is being distributed for comment purposes 

only.  

1.2  Definition of Biosimilarity 

    Biologics Price Competition and Innovation Act (BPCI Act) passed by the US 

Congress in 2009 defined a biosimilar product as “a product highly similar to the 

reference product, notwithstanding minor differences in clinically inactive components, 

and for which there are no clinically meaningful differences in terms of safety, purity and 

potency from the reference product.” 

    This definition is quite vague as it does not explain in detail about what a clinically 

meaningful difference is. Thus, the question, “How similar is highly similar?” is still 

unsolved. There is no information available for the degree of similarity yet, i.e. slightly 

similar, generally similar and highly similar. In addition, there is no agreement on the 

biosimilarity testing procedure. Several new proposed statistical methods have been 

developed within the past few years, but the US FDA has not approved any standard 

procedures as of now. 
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1.3  Differences between a Generic Drug and a Biosimilar Drug 

    The statistical method for assessing bioequivalence for generic drugs is well 

developed. In most cases, bioequivalence can be evaluated by showing that the generic 

drug has the same pharmacokinetic properties as the reference drug. Both the US FDA 

and EMA of the European Union consider a one-size-fits-all criterion for bioequivalence 

that the two products are bioequivalent if the 90% CI of their relative mean (i.e. Cmax 

and AUC) lies in (80%, 125%). However, due to the fundamental differences between 

chemical and biological drugs, the criterion for assessing bioequivalence may not be 

enough for evaluating biosimilarity, as the one size-fits-all criterion focuses on average 

bioequivalence and could not be used for testing variability, i.e. inter-subject variability 

or intra-subject variability. 

    There are some major differences between a generic drug and a biosimilar product. 

First, a genetic drug is made by chemical synthesis, thus it has the same active ingredient 

as the reference drug. On the other hand, a biosimilar drug is made from living cells and 

usually the follow-on pharmaceutical companies do not have access to the original cell 

bank or molecular blueprint and the exact fermentation and purification process. Thus, 

the active ingredient for a biosimilar drug may not be exactly identical to the active 

ingredient in the reference drug (Chirino and Mire-Sluis, 2004; Roger and Mikhail, 2007; 

Schellekens, 2004; Chow, 2011). As a result, a biosimilar drug may have different safety 

issues from the reference drug. Also, because a biosimilar drug is made with living cells, 

i.e. recombinant protein molecules, they are less stable and have higher variability than a 

generic drug (Chow & Liu, 2010; Zhang, Yang, Chow, Endrenyi, & Chi, 2013) and may 
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have immunogenicity concerns which presents some difficulties in assessing biosimlarity 

(Schellekens, 2004; Chow et al., 2013). Moreover, the route of administration for a 

biological drug is usually via injection while a chemical drug normally has high oral 

bioavailability. Thus, biological drugs usually require higher purity and safety. The main 

differences between a generic drug and a biosimilar drug are summarized in Table 1. Due 

to all these fundamental differences, it is highly challenging to evaluate biosimilarity.  

 

Table 1- Differences between Generic and Biosimilar Drugs  

Generic Drug  Biosimilar Drug/ Follow-on Biologic  

Small molecule (<1,000 Da) Large molecule (4,000Da-140,000Da) 

Chemical synthesis –  

identical active ingredient  

Living cells -  

active ingredient may not be identical  

Relatively stable Less stable and variable 

Same safety issue as reference drug May have different safety issues as 

reference drug 

No immunogenicity issue Immunogenicity issue 

Short half-life – Cross-Over Design  Long half-life – Parallel Design 

Higher oral bioavailability Usually injected into human bodies  

Uniform equivalence margin (80%, 125%) in 

traditional bioequivalence test, i.e. AUC or 

Cmax of pharmacokinetics  

Clinical endpoints depend on drugs  

Relatively small sample size  Relatively large sample size 
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      This dissertation focuses on development of the equivalence test for a three-arm 

biosimilar trial and is organized in five chapters. In Chapter 2, several published 

statistical methods which are highly relevant to this research topic are listed and are 

summarized into three different categories: moment based method, probability based 

method and tolerance interval approach. In Chapter 3, equivalence tests for assessing 

biosimilarity based on the ratio of mean differences approach for normally distributed 

data are discussed. In Chapter 4, the two-step equivalence assessment approach is applied 

for both Poisson and negative binomial data. Suggested future research is provided in 

Chapter 5. 
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CHAPTER 2 

REVIEW OF LITERATURE 

    In this chapter, a summary of an extensive literature review on the hypotheses 

testing of non-inferiority and equivalence/similarity is presented. Normally, an 

equivalence test is a two-sided hypothesis and can be decomposed to two one-sided 

hypothses, which is similar to a one-sided non-inferiority test. In this section, a more 

simple one-sided non-inferiority test is introduced first and followed by the two-sided 

equivalence test. Although the statistical methods for evaluating bioequivalence may not 

be completely applied for assessing biosimilarity, some concepts can still be utilized. 

Thus, statistical methods for assessing bioequivalence are listed along with several newly 

proposed methods in recent years for demonstrating biosimilarity. These selected 

methods are classified into three categories: a moment based method, a probability based 

method, and a tolerance interval approach for individual bioequivalence and 

exchangeability. 

2.1 Moment Based Method  

To assess equivalence or similarity between two treatments in a two-arm parallel 

trial, one may consider comparing the means and/or the variances, since these parameters 

are the two main characteristics of the treatment responses, especially for normally 

distributed data. Additionally, biological products are very sensitive to minor changes 

during the manufacturing process, such as humidity, temperature, etc., which highly 
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affect both the mean and variance (Yang, Zhang, Chow & Chi, 2013). Thus, mean and 

variance equivalence are usually the two major concerns for evaluating similarity. In this 

section, the concept of non-inferiority tests based on mean is introduced first and 

followed by several traditional and newly proposed statistical methods for 

equivalence/biosimilarity based on the mean or variance.  

2.1.1 Non-inferiorit y Test based on Mean Difference or Mean Ratio 

    The purpose of a non-inferiority trial is to show that the effect of the test treatment is 

not worse than the reference treatment by more than a specified margin (Snapinn, 2000; 

Rothmann, Wiens, & Chan, 2012). In a two-arm parallel design, denote 
TX  and 

RX  

as the response in the test arm and the reference arm, respectively. Assume that
TX  and 

RX  are independently normally distributed with ),(~ 2

TTT NX sm and ),(~ 2

RRR NX sm . 

The hypothesis for a non-inferiority trial is often formulated as 

              vs.                                      (1)          

Usually   is negative. For a three-arm parallel trial including an additional placebo arm, 

let    be the response of a patient who took the placebo and assume that 

        𝜎 
  . Assume that TX , RX  and    are independent. Pigeot, Schafer, 

Rohmel, & Hauschke (2003) suggested choosing the non-inferiority margin,  , as a 

fraction of the difference between the reference mean and placebo mean and thus (1) can 

be rewritten as 
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                      vs.                           (2)    

where c is a number ranging from 0 to 1. Furthermore, assume that         and 

define      . Hypothesis (2) can be further rewritten as  

              q
mm

mm
¢

-

-

)(

)(
:0

PR

PTH   vs. q
mm

mm
>

-

-

)(

)(
:

PR

PT

aH .            (3)      

    The test treatment is claimed to be not worse than the reference treatment if the null 

hypothesis is rejected. Pigeot et al. (2003) studied the non-inferiority hypothesis using 

this ratio of mean differences approach under the assumptions of normality and variance 

homogeneity.  

    This ratio of mean differences approach is extended to evaluate equivalence and/or 

similarity in Chapter 3. It is more complicated to derive the test statistics and the power 

function for a two-sided equivalence test than for a one-sided non-inferiority test, as one 

has to consider the correlation between the two test statistics.  

    Instead of the mean difference in (1), the hypothesis for a non-inferiority trial can 

also be formulated by the mean ratio given below. 

                     vs.                                     (4)     

Both the mean difference test and the mean ratio test can be applied to continuous data 

and also to discrete data (Krishnamoorthy and Thomson, 2004; Miede and Muller-Cohrs, 

2005; Sato, 1990; Li et al., 2011). Lui (2005) investigated a non-inferiority test based on 
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the ratio of two Poisson rates. In addition, Stucke and Kieser (2013) presented an 

approximate sample size formula for a non-inferiority test based on both the mean 

difference and the mean ratio tests for Poisson distributed count data.  

2.1.2 Equivalence Test based on Mean Difference or Mean Ratio 

    In a two-arm parallel design, similar to a non-inferiority test, equivalence is 

commonly established by showing that either the mean difference or the mean ratio of 

two treatments is bounded within a pre-specified equivalence interval (Chow and Liu, 

2008; Kang and Chow, 2013). The corresponding hypotheses are given by   

RT

DH mmd -²*

10 :  or 
*

2dmm ²- RT  vs. *

2

*

1: dmmd <-< RT

D

aH          (5) 

 or  

10 : d
m

m
¢

R

TRH  or 2d
m

m
²

R

T    vs.  
21: d

m

m
d <<

R

TR

aH                (6) 

where ),( *

2

*

1 dd  and ),( 21 dd are the pre-specified equivalence intervals. These two-sided 

hypotheses (5) and (6) are equivalent to the following two one-sided hypotheses,
 

 
 

*

1:
01

dmm ¢- RT

DH  vs. 
*

1:
1

dmm >- RT

D

a
H                     (7)

 

 
*

2:
02

dmm ²- RT

DH  vs. 
*

2:
2

dmm <- RT

D

a
H                       (8)

 

 and  

            1:
01

d
m

m
¢

R

TRH  vs.  
1:

1
d

m

m
>

R

TR

a
H

                    (9)                            
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       2:
02

d
m

m
²

R

TRH  vs.  2:
2

d
m

m
<

R

TR

a
H .

                 (10) 

Schuirmann (1987) has demonstrated that a 5% level test of hypothesis (i.e. (5) or (6)) 

has the same decision rule as two 5% level test of hypotheses (i.e. (7) and (8) or (9) and 

(10)). The type I error rate is also controlled at 5% after the transformation based on 

union-intersection principle.  

    In the FDA bioequivalence guidance (2001), the mean ratio test (6), also called 

the average bioequivalence(ABE) test, is applied for testing the equivalence between a 

brand name drug and a generic drug. In addition, the FDA (2001) suggested preforming 

bioequivalence statistical analyses based on the logarithm of the bioavailability (BA) 

measures such as area under the curve (AUC) and peak concentration (Cmax). It is 

usually assumed that bioavailability measures follow a log-normal distribution as 

indicated in the FDA guidance. Thus by taking logarithm of (6), the hypothesis can be 

rewritten into the form of a mean difference equivalence test,  

    log  ≥log   log    𝑜𝑟  log   log  ≥log   vs 

     log  <log   log  < log  ,  

where (     ) is often defined as (0.8, 1.25) and its log-transformed value is symmetric 

about 0. The test treatment and the reference treatment are claimed to be equivalent if the 

null hypothesis is rejected. However, the clinical endpoints of follow-on biologics usually 

do not follow a log-normal distribution, and thus it is more difficult to derive the test 
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statistics and the power function for the mean ratio equivalence test of a follow-on 

biologic product. More detail on this topic will be discussed in Chapter 3. 

    There are a few papers available on equivalence test for discrete data. Lui (2005) 

applied the mean ratio equivalence test problem to Poisson data. In 2014, Zhu and Lakkis 

investigated sample size calculation of the mean ratio equivalence test by comparing two 

negative binomial rates. However, equivalence is defined as 
  

  
   in the null 

hypothesis, in the alternative hypothesis, non-equivalence is 
  

  
   . Due to the high 

variability of biosimilar drugs, it is more appropriate to claim equivalence using a pre-

specified interval. In addition, the choice of this interval may be different from that of a 

generic drug.   

2.1.3 Equivalence Test based on Relative Distance 

    There are several ways to define the difference and/or distance between two 

treatments, i.e. |     |, |     | or        
 . Kang et al. (2013) considered the 

following relative distance approach to assess biosimilarity. 

𝑟  
      

        
 
|     |

|       |
 
|              |

|       |
 

This setting is a three-arm parallel design with one treatment arm and two reference arms 

instead of the placebo arm. The two reference arms denoted by    and    represent the 

reference products from two different batches, and    and    denote the population 

means for responses in patients who receive the reference products    and   , 
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respectively. It is assumed that        , otherwise the denominator is 0, which makes 

the ratio invalid. The hypotheses of the equivalence trial are given by 

                                      𝑟 ≥   vs.     𝑟 < .                          

The absolute value symbol in 𝑟  can be removed by rewriting the one-sided hypothesis 

into two one-sided hypotheses:  

                    
              

       
    or 

              

       
≥   vs.               (11) 

             <
              

       
< .                    

The test treatment and the reference treatment are claimed to be equivalent or biosimilar 

if the null hypothesis is rejected. 

2.1.4 Equivalence Test based on Linearization Method 

    Based on the relative distance method, Kang and Chow (2013) proposed another 

linearization method by multiplying both sides of the inequality in hypotheses (11) by the 

denominator,           After this multiplication, it is easier to derive the test statistics, 

since the ratio becomes a linear combination of parameters. However, the equality signs 

depends on the sign of the denominator,        , and one needs to consider the 

following two situations:           and        < . Thus, before assessing 

equivalence, the following preliminary hypothesis is required for checking the sign of 

       . 

               <      vs.                                    (12) 

    When        , the linearized hypothesis becomes 
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                           vs. 

                          
 

 
                      . 

    When    <   , the linearized hypothesis becomes 

                             
 

 
                    ≥      vs. 

                             
 

 
                    < . 

In both cases, the test treatment and the reference treatment are claimed to be equivalent 

or biosimilar if the null hypothesis is rejected. In Chapter 3, the derivation of the test 

statistics for the ratio of mean differences test is very similar to this linearization method.    

2.1.5 Equivalence Test Based on Variance Ratio 

    Besides considering the mean difference between a biosimilar treatment and an 

innovative treatment to claim biosimilairty, Yang et al. (2013) proposed the adapted F-

test by comparing the variances between the test and the reference treatments because of 

the high variability in biological products (Chow and Liu, 2010; Hsieh, Chow, Liu, Hsiao 

& Chi, 2010). The hypothesis of this adapted F-test is very similar to the format of the 

hypothesis (6). As opposed to using the mean ratio in (6), the variance ratio is applied to 

assess the homogeneity of variability for the follow-on biological products. Assume that 

the responses for both the test treatment,   , and the reference treatment,   , follow a 

certain distribution with means    and    and variances    and   , respectively. The 

hypotheses for testing variability between these two treatments is given by 
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 or  vs. ,

           
(13) 

where   and    are the biosimilarity limits for the ratio of variances. Let    √      

and    √     , where     is the response of the jth individual in the reference arm. 

Then         and        . The two test statistics for hypothesis (13) follow the 

F-distribution and are given as  

                  
∑      ̅ 

        
  
   

∑ (    ̅)
 
       

  
   

  
  
 

  
               

and              

     
∑      ̅ 

        
  
   

∑ (    ̅)
 
       

  
   

 
  
 

  
                 

One may claim that the variances of the test treatment and the reference treatment are 

similar with the significance level of   if the null hypothesis is rejected, namely, 

                  and   <              .  

2.2 Probability Based Method 

In this section, several equivalence hypothesis tests based on probability statements 

are briefly reviewed. Chow and Liu (2010) suggested applying a probability-based 

criterion to assess biosimilarity because this approach is sensitive to variability. 

RTL VVH /:0 ²q URT VV q²/ URTLa VVH qq << /:
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2.2.1 Equivalence Test Based on Mean Ratio 

    Tse, Chang, Su, Chow Hsiung & Liu (2006) proposed a probability based criterion 

called a consistency index for assessing the quality control of the consistency of products 

manufactured at two different sites. Let U and W be any meaningful measurements of a 

drug from two different sites. The consistency index, p, is given as 

              (   <
 

 
<

 

   
)    where  < < .              (14) 

  is a pre-specified limit that allows for consistency. For a given  , if p is close to 1, the 

products U and W are considered to be similar and/or identical. When U and W follow 

log-normal distributions, the random variables X and Y, where X=logU and Y=logW, 

follow normal distribution with mean    and    and variance    and   , 

respectively. Then p can be rewritten as                        

                            (   <
 

 
<

 

   
)  

          log     <log  log𝑊< log       

                = Φ(
 log        𝑋  𝑌 

√𝑉𝑋 𝑉𝑌
)  Φ 

𝑙𝑜𝑔        𝑋  𝑌 

√𝑉𝑋 𝑉𝑌
 ,           (15) 

where Φ(  ) is the cumulative distribution function of the standard normal distribution. 

To test the equivalence, consider the following hypotheses: 

                         vs.       >   .                       (16) 

The two products manufactured from two different sites are claimed to be equivalent 

and/or similar if the above null hypothesis is rejected. 
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2.2.2 Equivalence Test Based on Ratio of Variances 

    Hsieh et al. (2010) proposed an equivalence test using the probability method based 

for the ratio of variances. This method is very similar to the idea of the consistency index 

discussed in the Section 2.2.1. 

    The authors defined the probability based criterion for assessment of biosimilarity in 

variability as                                                       

              (   <
𝑉𝑋̂

𝑉𝑌̂
<   )                             (17) 

                              (
  ̂

  ̂
<   )  (

  ̂

  ̂
<   ) 

                             (  ̂        ̂< )     ̂        ̂<  , 

where  < <   ̂  
 

  
∑      ̅ 

   
       ̂  

 

  
∑      ̅ 

   
   . Note that  ̂  and 

  ̂  are the MLEs of    and   . Similar to the hypothesis listed in (16), the hypothesis 

of     can be written as                                          

                                 vs.         >   .                         (18) 

The test treatment and the reference treatment are claimed to be similar or equivalent in 

variability if the null hypothesis is rejected.  

2.2.3 Biosimilar Index based on Reproducibility Probability  

    The US FDA requires at least two clinical trials to be conducted for marketing 

approval of a new drug. The first trial is to demonstrate the effectiveness of the test 

treatment and the second trial is to guarantee that the clinical result from the first trial is 
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reproducible. In order to determine whether the second trial is required conditioning on 

the result of the first trial, Shao and Chow (2002) defined reproducibility probability as 

the probability that two reference products are claimed to be equivalent/similar in the 

second trial. Reproducibility probability may provide regulatory agents useful 

information in deciding whether the second trial is necessary.  

     Adapting the same idea, Chow, Endrenyi, Lachenbruch, Yang & Chi (2011) 

proposed the biosimilar index which can be evaluated by the following steps. First, assess 

average biosimilarity, i.e. the average bioequivalence criterion in (5). If the reference 

treatment was claimed to be biosimilar to the test treatment, calculate the reproducibility 

probability (biosimilar index). Claim biosimilarity if the calculated reproducibility is 

larger than a pre-specified probability. In addition, Hsieh, Chow, Yang & Chi (2013) 

derived the biosimilar index using a Bayesian approach.  

2.3 Tolerance Interval Approach 

    Although it is more difficult and may require more work to claim biosimilarity than 

bioequivalence, some existing statistical tests for assessing bioequivalence may still be 

applied for evaluating biosimilarity, i.e. individual bioequivalence and exchangeability. 

Besides the average equivalence tests, it is often critical to show the exchangeability of 

two treatments. The concept of individual bioequivalence and exchangeability is similar. 

A test treatment is claimed to be exchangeable with its reference treatment if these two 

treatments are expected to produce the same result in any given patient. In this section, 
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several statistical tests for individual bioequivalence and exchangeability using the 

tolerance interval approach are presented.  

    A tolerance interval is defined as an interval that covers at least       of a 

population with confidence level    , where  < <  and  < < . For 

example, the 75/75 rule proposed by the FDA in 1980 is a specific case of this approach. 

This rule states that at least 75% of the individual ratios must lie within 0.75-1.25 with a 

95% confidence level. The individual ratio is defined as                , which is 

the ratio of measured bioavailability of formulation T to formulation R for the ith subject 

in a crossover trial where the carryover effects are assumed null. The probability 

statement used for the tolerance interval approach is similar to that which is discussed in 

the probability method section. 

2.3.1 Tolerance Interval Approach for Individual Bioequivalence 

    The individual bioequivalence is defined as the test formulation, T, being 

sufficiently close to that of the reference formulation, R, in most individuals of a 

population. The tolerance interval approach was suggested in several references (Brown, 

Iyer, & Wang, 1997; Esinhart & Chinchilli, 1994) for assessing individual bioequivalence 

based on the individual ratio. The goal of this approach is to construct a tolerance interval 

based on the sample,              , that contains at least    of individual ratios in 

the population with a       confidence level. Here            represent individual 

ratios from n subjects.  
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    This tolerance interval can be computed by either parametric or nonparametric 

methods. Under the normality assumption, the tolerance interval is in the form of 

  ̅    ̂  ̅    ̂ , with sample mean  ̅ 
∑   
 
   

 
 , sample variance  ̂ 

∑      ̅ 
  

   

   
, 

and C is the tolerance factor. One may refer to the paper by Wald and Wolfowitz (1946) 

for calculating the tolerance factor based on normally distributed data. 

    On the other hand, Wilks (1941) suggested a non-parametric tolerance interval in the 

form of                 using order statistics, where s is the largest integer less than 

 

 
     . However, Esinhart and Chinchilli (1994) pointed out that it is unlikely to 

conclude individual bioequivalence using the non-parametric tolerance interval approach. 

The authors argue that either this approach may be too conservative or that the traditional 

small sample size used in bioequivalence studies may not be adequate to conclude 

individual bioequivalence. 

    Another method, the test of individual equivalence ratio (TIER), was developed by 

Anderson and Hauck (1990) for assessing individual bioequivalence. Define    as  

                                      (   
   

   
   ),                            (19) 

which indicates the proportion of the population of subjects for whom the two 

formulations, T and R, are equivalent. Thus, the hypothesis test for individual 

bioequivalence can be given as   

                                   vs.            ,                      (20) 

where MINP represents the minimum proportion of the population in which the two 

formulations must be bioequivalent in order to claim individual bioequivalence. Note that 
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   can be treated as a binomial parameter, as it represents the probability that         

lies within    and     The authors applied an exact binomial test by constructing a 

      lower bound for    which is denoted as    . The null hypothesis is then 

rejected when          and T and R are claimed to be individual bioequivalent. 

    Liu and Chow (1997) proposed following two one-sided tests for testing the 

hypothesis of TIER by decomposing (20) as 

                                      ≥    vs.        <                         (21)                      

                                      ≥    vs.        <   ,                    (22) 

where      
   

   
    ,       

   

   
≥   ,                  , and both  

    and     are pre-specified limits which are less than or equal to 0.5. In the case of 

         0.5,                , the above hypotheses becomes the interval 

hypotheses for average bioequivalence. The hypotheses proposed by Liu and Chow 

(1997) were more stringent than the hypothesis of TIER (20). In (20), the hypothesis only 

concerns the proportion between         and has no requirement on the two tails of the 

proportion,    and   , while hypotheses (21) and (22) give further requirements on 

both lower-tail and upper-tail proportions. 

2.3.2 Tolerance Interval Approach for Exchangeability 

    Tsong and Shen (2007) defined exchangeability using the idea of a non-inferiority 

test and an equivalence test for the efficacy of a test treatment. The definitions for both 

one-sided and two-sided statements are given below. In a cross-over trial, 
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exchangeability can be defined by the one-sided statement “at least 100 P% of patients 

receiving the test treatment are expected to have a response no worse than    below the 

reference treatment.” The resulting hypothesis test is given below. 

      (          )≥    vs.      (          )<         (23) 

If the null hypothesis is rejected, one can claim that the test and reference treatments are 

exchangeable. 

    On the other hand, for a two-sided statement, exchangeability can be defined as 

“more than 100 P% of patients receiving the test treatment are expected to have a 

response no better or no worse than   away from the reference treatment,” and this 

hypothesis is given as 

                       vs.                       .   (24) 

    In addition, one can test for exchangeability using the tolerance interval approach. 

Consider a cross-over trial with sample size of n. Assume         𝜎 
   is independent 

of         𝜎 
  , then             𝜎

  , where           𝜎
  𝜎 

  𝜎 
  . A 

tolerance interval of         that covers at least 100 P% of the distributions of 

        with a confidence level of (1  ) is   ̂      ̂     , where  ̂ 

∑        
 
   

 
 , s is the sample standard deviation of         and k is the tolerance 

factor. For example, a two sided hypothesis statement (24) can be rejected if   < ̂ 

   < ̂    < . One can also obtain the tolerance interval for a parallel trial by a 

similar approach. 
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CHAPTER 3 

EQUIVALENCE TEST FOR CONTINUOUS DATA 

 

    When a clinical trial is designed to assess the equivalence of the test and reference 

products based on therapeutic endpoints, it often involves three arms, namely, placebo, 

test and reference arms. The purpose of including a placebo arm is to establish the 

efficacy of the test treatment as well as validate the assay sensitivity through the effect of 

the reference treatment (Pigeot et al., 2003; Wiens & Iglewicz, 2000).  

Conventionally, an equivalence test between the test and reference treatments is 

conducted only after showing the efficacy of both the test and reference treatments in the 

studies’ population (Koch and Rohmel, 2004). Such a three-arm trial has been discussed 

in Tsong, Zhang and Wang (2004) with the equivalence defined by the mean ratio. It can 

be shown that passing the equivalence test alone does not necessarily imply the positive 

effect of the test treatment or the reference treatment against the placebo as defined in a 

superiority trial. In addition, the results of a two-arm equivalence assessment by the mean 

difference or by the mean ratio provide little information about the relative efficacy of the 

test treatment and the reference treatment. To address the issues above, this chapter 

describes an equivalence assessment based on the ratio of mean differences, i.e. the mean 

difference of the test and placebo to the mean difference of the reference and placebo, and 

this approach combines both the superiority test of the test treatment over placebo and the 

equivalence test between the test treatment and the reference treatment. When assay 
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sensitivity is well established, one may determine the equivalence between the test and 

the reference as well as the superiority of the test treatment over placebo simultaneously 

by postulating a single hypothesis using the ratio of mean differences test. The objective 

of this research is to study the power and sample size of a three-arm equivalence trial 

based on the mean difference and the ratio of the mean differences. 

    In this chapter, a complete investigation of the ratio of the mean differences test for 

normally distributed data is presented. This chapter is given in five sections. Section 3.1 

introduces the two-arm equivalence clinical trial, in which the equivalence can be 

established based on the mean difference or the mean ratio. However, to establish the 

equivalence, one also has to demonstrate superiority of the test treatment over placebo. 

The equivalence based on the ratio of mean differences test is proposed, as it covers both 

the equivalence test and the superiority test of the test treatment. The test statistics and 

power function are given in Section 3.2. In Section 3.3, examples of the required sample 

size for the ratio of mean differences test are provided. In addition, the comparison of 

required sample sizes based on the mean difference equivalence test and the ratio of mean 

differences equivalence test are evaluated. Summary and conclusion remarks are wrapped 

up in Section 3.5. 
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3.1  Equivalence Test based on Comparison of Two Means 

    Before introducing the three-arm ratio of mean differences equivalence test, 

consider a simpler two-arm equivalence test based on both mean difference and mean 

ratio, as the concept of the power function derivation for the two-arm case can be applied 

for the three-arm ratio of mean differences test.  

To assess the equivalence by mean difference (5), the test statistics can be derived as 
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where TX  and RX denote the sample mean of the test and the reference arm, 

respectively. Under null hypotheses of    
             ,   

  follows central t-

distribution with degrees of freedom n, where n is approximated by the Satterthwaite 

approach (Satterthwaite, 1946) , 

)
1

/

1

/
(

)(

2424

2

22

-
+

-

+

=

R

RR

T

TT

R

R

T

T

n

n

n

n

nn

ss

ss

n . 

For equal variances with sss == RT
, the test statistics are  

      

)
11

(
)(

2

RT

pool

iRT

RT

iRTD

nn
S

XX

XXse

XX
T

i

+

--
=

-

--
=

dd
nt~ , 1=i or 2    (26) 



 26 

where 
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Equivalence in terms of mean difference can be concluded if na,1 tT D ²  and na,2 tT D -¢

where na,t  is (1-α)100th-percentile of the central t-distribution with degrees of freedom 

n. 

    Using the same notation as for testing the mean ratio (6), and assuming a positive 

treatment effect of the reference treatment (i.e. 0>Rm ), one can multiply
Rm on both 

sides. Then the two hypotheses can be expressed as a linear combination of treatment 

means,    and   : 
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RH mdm   vs.  0: 11
>- RT
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a
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The following test statistics can be applied for testing each null hypothesis.  
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Equivalence in terms of mean ratio can be concluded if na,1 tT R ²  and na,2 tT R -¢ . 

    Under the alternative hypothesis and with unequal variances, both D

iT and R

iT  

given in (26) and (27) approximately follow bivariate non-central t-distribution (Owen, 

1965). For the mean difference test (5), under the alternative parameter space 
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The degrees of freedom for both tests were 

derived earlier using the Satterthwaite approach. Hauschke, Kieser, Diletti and Burke 
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(1999) derived the test statistics and power function for the mean ratio equivalence test 

under the assumption of equal variance and equal sample size per arm.   

    Alternatively, one may use the confidence interval approach for decision making 

which gives the same conclusion as the hypothesis testing procedure. Let (  
    

  ) and 

   
    

   be the 95% confidence intervals of 
RT mm-  and 

R

T
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m
 respectively. Under the 

equal variance assumption, the confidence limits of the mean difference can be 
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confidence limits of D

iT and R

iT  can be easily generated based on the derivation above 

under the assumption of unequal variances. 

    Note that the equivalence between the test and reference treatments may be claimed 

if the null hypotheses of (5) or (6) are rejected at an α = 5% level while knowing that 

      and      . In order to establish the assay sensitivity of the reference 

treatment (i.e.      ) and the efficacy of the test treatment (i.e.      ) before the 
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equivalence test between the test and reference treatments, one often has to carry out a 

parallel clinical trial with three arms including the test, reference and placebo arms. In 

such a three-arm trial, conventionally, prior to the test for equivalence hypotheses (5) or 

(6), one has to test the following two superiority hypotheses at a 2.5% significance level  

(Koch & Rohmel, 2004; Rohmel & Pigeot, 2010), 

      0:0 ¢- pRH mm    vs.  0: >- pRaH mm                       (29) 

 0:0 ¢- pTH mm    vs.  0: >- pTaH mm .                     (30) 

The first superiority test is to validate assay sensitivity of the reference treatment. The 

second superiority test is to establish efficacy of the test treatment. After rejecting both 

superiority tests of (29) and (30), one may move on to the equivalence assessment based 

on mean difference (5) or mean ratio (6). From the historical data, if the reference 

treatment is consistently superior to placebo, one may assume that        , and 

skip the test in (29). Thus, the conventional three-step equivalence assessment can be 

reduced to the following two-step test (A) or test (B). 

(A)  0:0 ¢- pTH mm    vs.  0: >- pTaH mm                       
1a= 2.5%          

     RT
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(B)  0:0 ¢- pTH mm    vs.  0: >- pTaH mm                       
1a= 2.5% 
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One should note that in some cases, there is no placebo arm due to ethical reasons; the 

equivalence can only be established by the equivalence test, i.e. hypothesis (5) or (6). In 
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this case, one of the two one-sided hypotheses in the equivalence test needs to also serve 

as a superiority test. That is, the superiority may be established by rejecting 

*

101 : dmm ¢- RT

DH or 
101 : d

m

m
¢

R

TRH at a 2.5% level with a reasonable non-inferiority 

margin,   
  or   .  

3.2  Equivalence Test based on Ratio of Mean Differences 

    When the interest of an equivalence assessment involves whether the efficacy of the 

test treatment remains within given percentages of the efficacy of the reference treatment, 

one may consider assessing the equivalence based on ratio of mean differences, i.e. 

relative efficacy. With this objective, we can test the following hypothesis instead of (5) 

or (6).   
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    To simplify the notation, let M be the sample mean difference between the test 

treatment and placebo, and Q be the sample mean difference between the reference 

treatment and placebo. Assuming the responses from the test arm, reference arm and 

placebo arm are mutually independent, the joint distribution of M and Q is given by 
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The correlation coefficient between M and Q is  
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The two one-sided hypotheses of the equivalence test (31) are therefore  
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where         ,         . Assuming that      and multiplying by    

on both sides, (32) and (33) can be further rewritten as 

                    vs.                                      (34) 

                 ≥  vs.             < .                      (35) 

The test statistic for each hypothesis is  
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    Under the null hypotheses, when               ,    and    follow bivariate 
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To claim the equivalence of the test and the reference treatments, one needs to reject both 

null hypotheses,     and    , with    ≥
1,nat and    

2,nat- .  

    Under the alternative hypothesis,    and    approximately follow bivariate non-

central t-distribution with the non-centrality parameters 
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    With equal sample variance and equal sample size, the test statistics are given by  

])1(1[

)1(

)(
22

2

ii

pool

PiRiT

i

i
i

n

S

XXX

QMSe

QM
T

dd

dd

d

d

-++

---
=

-

-
= , 1=i  or 2                    (37) 

where
2

poolS = 
n

s n

22222

~
3

xSSS PRT ++
 and degrees of freedom 33 -= nn . Under the null 

hypothesis, when               ,    and    follow bivariate t-distribution with 

degrees of freedom 33 -= nn . The equivalence of the test and reference treatments can 

be claimed by rejecting both     and     by showing that   ≥        and 
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           . Under the alternative hypothesis,    and    follow bivariate non-

central t distribution and the non-centrality parameters can be simplified as 
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    The power function of this ratio of mean differences test under the assumption of 

equal variances and equal sample sizes is given below, and a detailed derivation is 

presented in Appendix A.  
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The required sample size for a given power can be solved by assigning the values of 

         𝜎       and  .  

    Alternatively, the confidence interval approach can be applied and the decision rule 

becomes   
  ≥   and   

      for  
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where 
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3.3  Numerical Example 

    In this section, the required sample size of the ratio of mean differences test (31) at a 

5% significance level under the condition of equal variance and equal sample size per 

arm is given. Based on the non-centrality parameters, the power function depends on the 

values of 𝜎 and      , and from the historical data, the confidence interval of 

      can be derived. In this example, we assume that the 95% confidence interval for 

      is (7, 13) with sample mean difference equal to 10. The required sample size is 

generated by solving the sample size per arm in the power function by assigning       

equal to 7, 10 or 13 and 𝜎 equal to 3, 4, 5 or 6. The results are generated using statistical 

software R, and the R code is available on the author’s website, 

https://sites.google.com/site/changvick/home/publication/r-code. The choice of values for 

the mean difference and the standard deviation is made by assuming that the proportion 

of  
 

     
 lies between 0.2 and 0.8. Also, the equivalence margin (       is given as 

(0.8, 1.25). Table 2 shows the required sample size per arm (test, reference and placebo) 

to attain a power of 0.8 while =
-

-
=

)(

)(*

PR

PT

mm

mm
d 0.95, 1, or 1/0.95. 

https://sites.google.com/site/changvick/home/publication/r-code
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Table 2: Sample size per arm for the ratio of mean differences test to attain 80% 

power at a given mean differences ratio ŭ*  with equal variance and equal sample 

size and (ŭ1 , ŭ2 )= (0.80, 1.25) at Ŭ = 0.05. 

 

α = 0.05 

95.0=*d   00.1=*d  95.0/1=*d  
𝜎 PR mm-  

3 

7 87 67 79 

10 43 33 39 

13 26 20 23 

4 

7 155 118 140 

10 76 58 69 

13 45 35 41 

5 

7 242 184 218 

10 119 90 107 

13 70 54 64 

6 

7 348 265 314 

10 171 130 154 

13 101 77 91 

 

    From the above table, one may notice that the required sample size is not symmetric 

about *d=1. When the test treatment mean equals the reference treatment mean, that is 

*d=1, the required sample sizes are smaller than the required sample size under the 

condition of *d=1/0.95 and 0.95. However, when the test treatment mean is larger than 

the reference treatment mean, that is when *d>1, the required sample size is much 

smaller than the condition in which the reference treatment mean is larger than the test 

treatment mean, that is when *d<1. 
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3.4  Sample Size Comparison 

    As discussed in Section 3.1, assuming that        , equivalence between the 

test and reference treatments may be claimed if both null hypotheses in (A) are rejected. 

Replace the mean difference equivalence test in (A) by the ratio of mean differences test, 

and one has 

(C)               vs.                                       %5.21=a  

   102
)(

)(
: d

mm

mm
¢

-

-

PR

PTH  or 2
)(

)(
d

mm

mm
²

-

-

PR

PT
 vs. 212

)(

)(
: d

mm

mm
d <

-

-
<

PR

PT
aH .

   %52 =a  

    To compare the sample size of test (A) and test (C), one may give the specific 

equivalence limit of (     ) for (C) and the corresponding values of (  
    
 ) for (A) can 

be derived. The relationship between the margins    and   
  is given by   

      

          . Thus, (A) tests whether the difference of the test treatment mean and the 

reference treatment mean lies within the interval of (    )      of       and 

     )      of      . Table 3 gives the required sample sizes for both test (A) 

and test (C) under the condition of (     ) = (0.80, 1.25) and Table 4 gives the required 

sample sizes under the condition of (     ) = (0.5, 2.0). See Appendix B for the power 

function derivation of test (A). 
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Table 3: Sample size per arm for the mean difference equivalence test (A) and the 

ratio of mean differences equivalence test (C) to attain 80% power at a given mean 

differences ratio ŭ* with equal variance and equal sample size where  

(                  and (  
    

                              .   

 

 

 

 

 

 

 

 

 

 

 

 05.0

025.0

2

1

=

=

a

a
 95.0=*d   00.1=*d  95.0/1=*d  

𝜎 PR mm -  (A) (C) (A) (C) (A) (C) 

3 7 102 88 66 67 67 79 

10 51 44 33 33 33 39 

13 30 26 20 20 20 24 

4 7 181 156 117 119 118 140 

10 89 77 58 59 58 69 

13 53 46 35 35 35 41 

5 7 282 243 182 184 184 219 

10 138 119 90 91 91 108 

13 82 71 53 54 54 64 

6 7 404 348 262 265 265 315 

10 199 171 129 130 130 154 

13 118 102 77 78 77 92 
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Table 4: Sample size per arm for the mean difference equivalence test (A) and the 

ratio of mean differences equivalence test (C) to attain 80% power at a given mean 

differences ratio ŭ* with equal variance and equal sample size where  

(       = (0.5, 2.0) and (  
    

                         . 

 

05.0

025.0

2

1

=

=

a

a
 75.0=*d  85.0=*d  95.0=*d  

 

00.1=*d

 

=*d  

  1/0.95 

=*d  

  1/0.85 

=*d  

  1/0.75 

 

𝜎 

 

      

 
(A) (C) (A) (C) (A) (C) (A) (C) (A) (C) (A) (C) (A) (C) 

 

3 

7 37 28 20 15 12 11 10 10 9 10 7 11 7 16 

10 19 14 10 8 7 6 6 6 5 6 4 6 4 8 

13 12 9 6 5 4 4 4 4 3 4 3 4 3 5 

 

4 

7 66 49 34 26 21 19 17 18 14 17 11 19 11 28 

10 33 24 17 13 11 10 9 9 8 9 6 10 6 14 

13 20 15 11 8 7 6 6 6 5 6 4 6 4 9 

 

5 

7 102 77 52 40 32 29 26 27 22 27 17 26 17 43 

10 50 38 26 24 16 15 13 14 11 13 9 15 9 22 

13 30 23 16 12 10 9 8 9 7 8 6 9 6 13 

 

6 

7 146 110 75 58 46 42 37 39 31 38 24 42 24 62 

10 72 54 37 29 23 21 19 19 16 19 12 21 12 31 

13 41 32 22 17 14 13 12 12 10 12 8 13 8 19 

 

    As the results show, the ratio of mean differences test (C) requires a smaller sample 

size than the mean difference test (A) when *d<1. When *d=1, the sample sizes for 

both methods are almost identical. However, when *d>1, the sample size for test (C) is 

larger than test (A). The relationship of power for both test (A) and test (C) is illustrated 

in Figure 2.  
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Figure 2: Power versus mean differences ratio ŭ*ranging from 0.85 to 1.15 under 

the condition of       = 13,   = 3 with sample size per arm of 20  

 

    This figure shows that the power of test (C) is higher than test (A) when   < , but 

test (A) is more powerful than test (C) when      for the given sample size 20, 

      = 13 and 𝜎 = 3. This result can be generalized for different parameter values. 

    Also, one may notice that in Table 3 the required sample size of test (C) is almost 

identical to the required sample size given in Table 2, which means that adding one more 

superiority test of the test treatment over placebo to (31) does not have a great impact on 

the power of the ratio of mean differences equivalence test. This may be because by 
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rejecting the null hypothesis of (31), it is concluded that 21
)(

)(
d

mm

mm
d <

-

-
<

PR

PT , and this 

result also implies         because of the assumption that         while 

using a positive   . This implication is made at a 5% level of α, which is not as stringent 

as the superiority test at 2.5 %. The power of ratio of mean differences test (31) also 

depends on the value of     Thus, if the ratio of mean differences test is conducted with a 

smaller   , then the power of the test will increase and the 2.5% superiority test may have 

some impact on the ratio of mean differences test. One should always choose an 

appropriate    with care; otherwise, the equivalence test may not be validated because 

the equivalence interval may be too wide to conclude equivalence.  

    We further examined the sample size power relationship for (                . 

The relationship between the sample size requirement and    remains the same as for   

(                  as shown in Table 4. 

    In order to test both superiority of the test treatment over the placebo and 

equivalence by using only one hypothesis test, one may remove the first superiority test 

from (C) and change the   level of 10
)(

)(
: d

mm

mm
¢

-

-

PR

PTH   vs. 10
)(

)(
: d

mm

mm
>

-

-

PR

PTH   

from 5% to 2.5%. By doing so, the lower equivalence margin could also serve as a more 

stringent superiority test margin. Not only does the following test (D) serve as the 

equivalence test, but it also serves as the superiority test of the test treatment over the 

placebo. 
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(D)   101
)(

)(
: d

mm

mm
¢

-

-

PR

PTH   vs.   11
)(

)(
: d

mm

mm
>

-

-

PR

PT
aH              %5.21=a  

      202
)(

)(
: d

mm

mm
²

-

-

PR

PTH   vs.   22
)(

)(
: d

mm

mm
<

-

-

PR

PT
aH              %52 =a              

     

    Table 5 gives the sample size of test (C) vs. test (D). Test (D) requires a larger 

sample size than test (C) to attain the same power of 0.8. However, the sample size is 

comparable when the true ratio of mean differences is larger than 1.  

 

Table 5: Sample size per arm of test (C) and test (D) to attain 80% power at a given 

mean differences ratio ŭ* with equal variance and equal sample size where  

(       = (0.8, 1.25) 

 

 

 

05.0

025.0

2

1

=

=

a

a
 95.0=*d   00.1=*d  95.0/1=*d  

𝜎 PR mm -  (C) (D) (C) (D) (C) (D) 

 

3 

7 88 109 67 75 79 81 

10 44 54 33 37 39 40 

13 26 32 20 23 24 24 

 

4 

7 155 193 118 133 140 143 

10 77 95 59 66 69 71 

13 46 56 35 39 41 42 

 

5 

7 242 301 185 207 219 224 

10 119 148 91 102 108 110 

13 71 88 54 61 64 65 

 

6 

7 349 433 265 298 315 322 

10 171 213 130 146 154 158 

13 102 126 77 87 92 94 
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3.5  Summary 

    An equivalence test is often carried out with a clinical trial of three parallel arms 

(test, reference, and placebo). The conventional approach consists of testing superiority 

and equivalence. The superiority test part of the process involves analyzing the test 

treatment and the reference treatment over placebo, while the equivalence test part of the 

process is to demonstrate whether the test treatment and the reference treatment are 

equivalent. With continuous responses, the equivalence of the treatments are commonly 

assessed in terms of either mean difference, mean ratio, or ratio of mean differences, 

where the test mean and the reference mean are adjusted by the placebo mean. 

    When assay sensitivity is validated by showing superiority of the reference over 

placebo, one may only focus on assessment of superiority of the test treatment over 

placebo and equivalence between the test and the reference treatments. It is also 

interesting to know that testing for equivalence using the ratio of mean differences may 

be more efficient than mean difference between the test and the reference treatments 

when the true ratio of mean differences is less than 1, i.e. when        <       .  

    When the ratio of mean differences,                , is greater than any 

positive value, it directly implies that the test treatment is superior to placebo. One may 

waive the superiority test and apply a single ratio of mean differences test, but in order to 

satisfy the superiority test requirement, one has to perform two one-sided tests with 2.5% 

level for the lower side and 5% level for the upper side. Comparing the equivalence test 

by mean difference, the ratio of mean differences test is more powerful when the 

reference treatment is known to be superior to placebo. In addition, the power of the ratio 
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of mean differences test can be improved by assigning an appropriate lower equivalence 

margin.  
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CHAPTER 4 

EQUIVALENCE TEST FOR DISCRETE DATA 

 

  Clinical endpoints are not always continuous and can be discrete. Poisson or 

negative binomial distributions are common in many clinical trials such as treatments of 

asthma, migraines or chronic obstructive pulmonary disease. This chapter focuses on the 

equivalence test for both Poisson and negative binomial data. As mentioned in Chapter 3, 

the equivalence assessment is often conducted through a three-arm clinical trial with a 

placebo arm, a reference arm and a test arm. Such an assessment usually consists of three 

tests (Pigeot et al., 2003). The first two tests are to show the superiority of both the test 

and the reference treatments to the placebo, followed by the equivalence test between the 

test and the reference treatment. When assay sensitivity is well established based on 

historical data, one may focus the interests only on the superiority test of the test 

treatment over placebo and the equivalence test.  

 The equivalence and non-inferiority tests for Poisson or negative binomial clinical 

endpoints have been investigated by several authors with the limitation of considering 

only two arms. For instance, Lui (2005) investigated the required sample size for both the 

non-inferiority and equivalence tests based on ratio of two Poisson rates. Stucke and 

Kieser (2013) presented sample size formulae for non-inferiority trials with Poisson data 

for a test formulated in terms of mean difference and mean ratio. Zhu and Lakkis (2014) 

discussed the sample size calculation of an equivalence trial for two negative binomial 
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rates. The equivalence in Zhu and Lakkis (2014) is defined as an equal incidence rate 

between the two treatment groups. However, it is more practical to define the equivalence 

by an interval for the equivalence evaluation of biological products, since a biosimilar 

treatment and its original biological treatment may be similar but may not be identical.  

 This chapter is organized into four sections. In Section 4.1, the hypothesis of the 

equivalence, the test statistics and the power function are discussed. In Section 4.2, the 

restricted variance estimations under the null hypothesis for both Poisson and negative 

binomial models are given. The calculation of the required sample size is presented in 

Section 4.3. In addition, numerical results are shown in Section 4.4 to demonstrate the 

relationship between the power and parameters, followed by a discussion on the issue of 

model misuse. 

4.1  Hypotheses, Test Statistics and Power Function  

 Let     denote the number of incidences during the exposure time period,    , for 

the  th subject in group  . Assume that       𝑜        , where    is the mean incidence 

rate of group  . Throughout this chapter,       or 2 represents the placebo group, the 

reference treatment group or the test treatment group, respectively. Let       and       

the corresponding sample sizes per arm and           be the number of Poisson 

incidence of the i-th subject in the j-th group. The probability mass function of     is 

                 (        ) 
 
         

   

    
                            (39)             

      For a three-arm clinical trial with the responses following Poisson distributions,  
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the data from different arms are independent with mean incidence rate   ,       or 2.    

In order to compare these incidence rates, it is natural and appropriate to consider the 

regression model where the link function is given as follows,  

 

 𝑜      𝑜                                                       .      (40)      

 

In this formula,  𝑜     is the offset term and     is the treatment group indicator for 

subject   in group  . That is,     takes the value of 1 if and only if the subject   is 

from the group  , otherwise it takes the value of 0. If a subject is from the placebo arm, 

both     and     are 0. Otherwise, if a subject is assigned to the reference treatment 

group,       while      . Finally, if a subject is assigned to the test treatment 

group,       while      . Based on model (39) and (40), the mean incidence rate 

per arm becomes:     
        

      and     
     .  

 

      Throughout this chapter, assume a lower incidence rate indicates a more favorable 

outcome, i.e. the frequency of severe migraines or adverse events. Also, similar to the 

setting in Chapter 3, assume that the reference treatment is consistently superior to the 

placebo based on historical data. To claim equivalence or similarity between the test 

treatment and the reference treatment, one has to demonstrate the superiority of the test 

treatment over the placebo and the equivalence between the test treatment and the 
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reference treatment. These two issues can be summarized by the following two 

hypotheses: 

    
  

  
≥     vs.          

  

  
<                                 (41)            

     
  

  
   

  or 
  

  
≥  

     vs.        
  

  

  
   

 .                    (42) 

The first hypothesis is the superiority test of the test treatment over the placebo. The 

second hypothesis is the equivalence test by showing that the mean ratio of the test 

treatment over the reference treatment lies within a pre-specified equivalence 

interval    
    
  . The above two hypotheses are equivalent to the following three 

hypotheses:   

      ≥     vs.           <                                  (43)        

                   vs.                                       (44) 

           ≥     vs.             <  ,                        (45) 

where     𝑜   
   and     𝑜   

 . The two sided hypothesis (42) is replaced by the 

two one-sided hypotheses (44) and (45). If one sets the level of significance   at 5% for 

both (44) and (45), the union-intersection principle guarantees that the type I error based 

on these two one-sided hypotheses is the same as that based on the two-sided testing.   

      Let   ̂,   ̂ and   ̂ be the maximum likelihood estimators of   ,    and    

based on model (39) and (40),     be the variance of   ̂ under    , and      and 

      be the variances of   ̂   ̂under       and      , respectively. Define the 

following test statistics for assessing the equivalence test problem (43), (44) and (45), 

                
  ̂

√𝑉  
,      

  ̂   ̂   

√𝑉  
  and     

  ̂   ̂   

√𝑉  
. 
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Based on asymptotic theory of generalized linear models, these three test statistics all 

follow standard normal distributions asymptotically under the null hypothesis. One may 

claim equivalence between the test treatment and the reference treatment if  

  <          <       and         . For a given set of parameters 

(              )    where         and    
  

  
   , the power function for 

hypotheses (41) and (42) is given as 

 

Power                  

     <          <                 |                         

                 (  <
       √𝑉     

√𝑉  
     
     √𝑉             

√𝑉  
<  <

      √𝑉             

√𝑉  
)         (46) 

  

where    
  ̂   

√𝑉  
,    

  ̂   ̂        

√𝑉  
, and    ,     are the variances of   ̂ and 

  ̂   ̂ under this parameter setting. See Appendix C for the derivation of power 

function (46). The           and       are derived in Section 4.2 by restricted 

maximum-likelihood estimation for both the Poisson and the negative binomial model. 

Based on equation (46), the power can be written as a probability of an event of a 

bivariate normal distribution (     ) where          ((
 
 
) ( 
 
 
 
)) with  

  
𝑉  (  ̂)  𝑜    ̂   ̂ 

√𝑉  (  ̂) 𝑉     ̂   ̂ 

. 
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      A similar calculation of the power function can be done for the negative binomial 

model. Let     be the negative binomial random variable   (       ) where    is the 

mean incidence rate of group  . The probability mass function of     is  

                 (       ) 
 (     

  )

       (     )
(

 

        
)

 

 
(
      

        
)
   

                 (47) 

  

As in the Poisson model,       is equivalent to the notation of    . Throughout this 

paper, assume the dispersion parameter,  , is the same for all subjects. Under this 

setting, the mean of     is       and the variance is                . Note that when 

  approaches 0, the negative binomial distribution is reduced to the Poisson distribution. 

Under the negative binomial model (40) and (47), one can estimate the coefficient of    , 

   and    by   ̂ ,   ̂  and   ̂ according to MLE principle. To test the equivalence 

hypotheses (41) and (42) for negative binomial data, the power function is in the same 

form as in (46) for the Poisson model. The difference lies in the calculation of the 

variances under the null and alternative, which will be given in Section 4.2.   

4.2  Variance Estimation  

  In this section, the variances of the estimator   ̂   ̂ and   ̂ under the null 

hypotheses are given. The derivations are presented separately for the Poisson model and 

the negative binomial model. 
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4.2.1  Poisson Model 

      For the model ((39) and (40)), the coefficients   ̂   ̂ and   ̂ can be estimated 

by maximum likelihood estimation, and the asymptotic variance-covariance matrix is the 

inverse of the Fisher information matrix. Without loss of generality, assume that the 

exposure times of all subjects within each treatment group are the same, but may be 

different across different treatment groups. Let   ,    and    be the exposure time of 

the subjects in the placebo arm, the reference arm and the test arm, respectively. The 

inverse of Fisher information matrix for the three-arm Poisson model is given as 

    
 

 
[

     

  
   

 
 

   
   

 

], where        
  ,        

      and 𝑟      
     . 

Thus, the variances of   ̂,   ̂ and   ̂   ̂ are  

  𝑟(   ̂)  
       

 

      
 

 

      
 

  𝑟(   ̂)  
   𝑟   

 

      
 

 

      
 

  𝑟(   ̂    ̂)  
   𝑟   

 

      
 

 

      
  

     To calculate the sample size, one has to estimate   𝑟(   ̂) under     and 

  𝑟(   ̂   ̂) under       and      . These three variances, denoted as    ,       

and       , respectively, can be estimated by the restricted maximum-likelihood 

estimation.  
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     Note that the maximum likelihood estimators of both    and    are the same 

under     because       when     . Let   ̂,   ̂ and   ̂ be the maximum 

likelihood estimate of   ,    and   . After some algebraic manipulation, the restricted 

maximum likelihood estimators of    and    are 

  ̂̂   ̂̂ 
    ̂       ̂  
         

 

             and                     𝑟(  ̂)|    
         

    ̂       ̂  
(
 

    
 

 

    
)  

By applying the Lagrange multiplier, the maximum likelihood estimator of    and    

under the restriction of       can be derived as  

                   ̂̂ 
    ̂       ̂  

            
,     ̂̂ 

        ̂       ̂   

            
 

and                                    𝑟(  ̂   ̂)|      
       

       
 

                ̂       ̂   
  

Similarly, under       that         ,    ̂̂ ,   ̂̂  and     are in the same form as 

above by replacing    by   . See Appendix D for more detail. 

4.2.2  Negative Binomial Model 

     Similar to the approach of the Poisson regression model, one can derive the 

variance estimators for negative binomial model. The inverse of Fisher information 

matrix of the negative binomial regression model, (40) and (47), has the same form as 
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that based on the Poisson model, (39) and (40). Namely,     
 

 
[

     

  
   

 
 

   
   

 

]. 

However, the quantity p, q, and r are different and given as   
     

  

      
  

,  

  
     

     

      
     

 and 𝑟 
     

     

      
     

. 

Thus the variance of   ̂,   ̂ and   ̂   ̂ are  

  𝑟(   ̂)  
       

       
      

 
       
      

 

  𝑟(   ̂)  
   𝑟   

       
      

 
       
      

 

  𝑟(   ̂    ̂)  
   𝑟   

       
      

 
       
      

 

See Appendix D for the derivation of inverse of Fisher information matrix for both the 

Poisson and negative binomial models.  

      It is more complicated to derive the restricted maximum likelihood estimators for 

the negative binomial model than for the Poisson model. Under    , after some 

algebraic manipulation,   ̂̂ can be derived by solving the positive root of the following 

quadratic equation 

   ̂̂
 
    ̂̂      

where               ,              ̂               ̂    and 

        ̂       ̂   . Since          and    < , this quadratic equation 

has one positive root, thus      
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  ̂̂   ̂̂ 
   √      

  
 

and                                                 𝑟(  ̂)|    
       ̂̂

      ̂̂
 
       ̂̂

      ̂̂
. 

Similar to the derivation above, the maximum likelihood estimators of    and    under 

      can be derived by solving the positive root of the following quadratic equation 

   ̂̂
 
    ̂̂      

where        
          ,              ̂       

           ̂    and 

        ̂       ̂   . Again, this quadratic equation has one positive root, thus      

  ̂̂ 
   √      

  
 

  ̂̂  
    ̂̂ 

and                                           𝑟(  ̂   ̂)|      
       ̂̂

      ̂̂
 
       ̂̂

      ̂̂
. 

The estimators   ̂̂ and   ̂̂ under       can be derived by replacing    with   . See 

Appendix E for the derivation of the variances with details for both the Poisson and 

negative binomial models. 

4.3  Numerical Example  

For a specific parameter setting, the required sample size of both the Poisson and 

negative binomial models to attain power of 80% are calculated based on the power 

function (46). In both models, the values of    and    are given as log    and log    , 

respectively. Let a/b be the sample size allocation ratio for the reference arm and the test 
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arm to the sample size of placebo arm. Namely,      and      are the sample size of 

the reference arm and the test arm, respectively. For the purpose of simplicity, the 

required sample sizes presented in Table 6 and Table 7 for both the Poisson and negative 

binomial models are calculated under the condition of the same exposure time, T, among 

all the subjects. 

 

Table 6: Total required sample size of the Poisson model under different assigned 

parameter values and (ŭ1 , ŭ2 )= (log0.80, log1.25).  

 

T             (a,b)    Total 

3 3 2.4 0.9 (1,1) 132 396 

    (1,2) 95 380 

    (2,2) 66 330 

   1 (1,1) 56 168 

    (1,2) 42 168 

    (2,2) 34 170 

   1/0.9 (1,1) 160 480 

    (1,2) 125 500 

    (2,2) 107 535 
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Table 7: Total required sample size of the negative binomial model under different 

assigned parameter values and (ŭ1 , ŭ2 )= (log0.80, log1.25).  

 

T             (a,b) k    Total 

3 3 2.4 0.9 (1,1) 1 1023 3069 

     1.2 1201 3603 

    (2,2) 1 512 2560 

     1.2 601 3005 

   1 (1,1) 1 469 1407 

     1.2 552 1656 

    (2,2) 1 295 1475 

     1.2 348 1740 

   1/0.9 (1,1) 1 1452 4356 

     1.2  1710 5130 

    (2,2) 1 991 4955 

     1.2 1168 5840 

 

      As illustrated in the two tables above, under the same value of         and 

     , the required sample size for the negative binomial model is much larger than the 

Poisson model when the overdispersion parameter is either 1 or 1.2. 

4.3.1 Power for Different Parameter Values 

      In this section, power curves for both the Poisson and negative binomial models 

under different parameter settings are given in order to illustrate how parameters or 



 56 

sample size allocation ratio affect power for both distributions. Figure 3 shows the power 

versus the sample size of the placebo arm with different lines representing different 

placebo means. In both cases, power increases when placebo mean increases. The power 

increases faster with lower placebo mean incidence rate. This result can also be illustrated 

by Figure 4. 

 

 

Figure 3: Power versus placebo sample size of both Poisson and negative binomial 

data for                         , and dispersion parameter  

k =1.  

       

          Poisson  
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Figure 4: Power versus placebo incidence rate of both the Poisson and negative 

binomial data for                      and dispersion parameter k =1.  

     

  Figure 4 shows the relationship of power versus placebo mean incidence rate with 

different sample sizes. For both Poisson and negative binomial equivalence trials, the 

power increases with respect to   . However, the increment becomes negligible when 

   is large enough.  

  There are two parts of equivalence assessment: the superiority test of the test 

treatment versus placebo and the equivalence test of the test treatment and the reference 

treatment. The result of Figure 4 indicates that the power of a three-arm equivalence 

assessment is affected greatly by the superiority test when the placebo mean is very close 

to the reference mean and the test mean. However, if the placebo mean is much larger 

than the other two treatment means, the power is dominated by the equivalence test and 

the superiority test does not add much information. In Figure 4, the increment of the 
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          Poisson 
 

      



 58 

power becomes negligible when    is larger than some constant around 2.6 for the 

Poisson data, and for the negative binomial data, the power increases very slowly when 

   is larger than 3. 

 

      Figure 5 illustrates the relationship between the power and the ratio of the test 

incidence rate to the reference incidence rate. In this graph, the reference incidence rate is 

given as 2 and the test treatment incidence rate ranges from 1.8 to 2.2. This figure also 

demonstrates how the sample size allocation ratio, a/b, affects the power. In this example, 

the sample size of the placebo arm is assigned to be 200 and the sample size of the 

reference arm is a    , while the sample size of the treatment arm is b    , where 

a+b=6 for all power curves. For both distributions, when assigning equal sample size for 

both the test treatment and the reference treatment, the power is globally superior to any 

other allocation ratios. This figure only shows the result when (a,b) = (3,3), (1,5) and 

(5,1). For the Poisson trial, if it is an unbalanced design, the power is larger when 

assigning a larger sample size to the better treatment with a lower incidence rate. This 

phenomenon is not very clear for the negative binomial trial. 
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Figure 5: Power versus incidence rate of test treatment of both Poisson and negative 

binomial data for                       00 and dispersion parameter k 

=1 for negative binomial model.  

4.3.2 Misuse of Poisson Model 

    From Tables 6 and 7, it is obvious that the required sample size for the negative 

binomial model is much larger than the Poisson, especially when k, the overdispersion 

parameter, is large. In this section, the price of misusing a Poisson model to calculate 

sample size for negative binomial data is discussed. Figure 6 shows how the power 

changes with different k values. Each line is generated in the following two steps. First, 

the required sample size to attain power of 80% for a Poisson model was calculated under 

certain parameter values. Next, this sample size was assigned to a negative binomial 

model under the same parameter values, except the dispersion parameter k, which ranges 
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from 0.0001 to 2. Thus, each power curve starts from 80% power when k is close to 0, 

and decreases while k increases. When k is 1, the power may range from 30% to 60%, 

depending on different assigned parameter values. The power decreases fastest when 

        because the required sample sizes for equal means are smaller than that of any 

other allocation ratios. 

 

 

Figure 6: Power versus k for different assigned parameter values with required 

sample size calculated based on the Poisson Model.  

 

In addition to Figure 6, Figure 7 also illustrates the relationship between the power 

and dispersion parameter k, but under the condition of equal total sample size. In this 

example,        and (a,b)=(2,2), thus the total sample size of each power curve is 

             

    ⁄                      =(2,2) 
    ⁄                      =(1,2) 
    ⁄                     =(2,2) 
    ⁄                     =(1,2) 
    ⁄                  =(2,2) 
    ⁄                  =(1,2) 
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500. Each line represents the result of a different mean ratio,      . As expected, when 

       , the power is globally superior to the power of other ratios. The powers for all 

three conditions drop about 30% when k equals 1.  

In summary, a wrong model may cause a very low power and incorrect interpretation 

of the data. Additionally, if a negative binomial model is applied for Poisson data, the 

efficiency of the trial may suffer. Consequently, it is important to find an approximate 

model for real world scenarios. 

 

 

Figure 7: Power versus k for different assigned parameter values. Each power curve 

is generated under the condition of total sample size = 500. 
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CHAPTER 5 

FUTURE RESEARCH 

 

    In this dissertation, the sample size requirements for a three-arm equivalence trial of 

both continuous data and discrete data are presented. For the continuous case, the ratio of 

mean differences test is applied, while for the discrete case, a two-step approach 

combining both superiority and equivalence testing is studied. As illustrated in previous 

chapters, a complete equivalence assessment to demonstrate equivalence and/or similarity 

between two treatments consists of (i) evaluating superiority of both reference and test 

treatments over placebo and (ii) assessing equivalence between the test treatment and the 

reference treatment. The focus of this research is on the superiority of the test treatment 

and equivalence between the test and the reference treatments. Thus, all proposed tests 

are studied under the assumption of well-established assay sensitivity. In some cases 

when historical data may not be sufficient to address assay, i.e. the data are out of date, 

inconsistency among the historical data sets, or the historical data is collected from 

different target groups, it may be appropriate to consider superiority of the reference 

treatment over placebo as well. To this end, the superiority test of the reference over 

placebo can be added to all proposed equivalence tests presented in Chapter 3 and 

Chapter 4 and/or other more powerful approaches may be developed. 
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      In Chapter 3, one of the conclusions was that the choice of two equivalence 

interval limits should be made with care for evaluating biosimilar drugs. The default 

equivalence limit of (0.8, 1.25) for mean ratio bioequivalence test based on 

bioavailability data may not be suitable for assessing biosimilarity, due to some 

fundamental differences between a generic drug and a follow-on biologic. Biological 

products are subject to larger variability, and different margins may be needed for 

different kinds of reference products or endpoints. Thus, in addition to choosing an 

appropriate hypothesis, selecting the equivalence margin is another key point for 

evaluating biosimilarity. Hauck et al. (2005) studied the equivalence margin for bioassay 

potency data but not for clinical endpoints. The equivalence limit should be defined based 

on scientific knowledge about the product and variability of response, length of 

therapeutic window and/or practical sample size. This topic is worthy of further 

investigation.  

      In addition, most of the literature on biosimilarity focuses either on the mean or 

on the variance separately. The proposed tests for both continuous data and discrete data 

in this research are based on the mean. In the FDA’s Guidance to Establishing 

Bioequivalence (2001), two approaches are listed in addition to average bioequivalence:  

the population bioequivalence (PBE) and the individual bioequivalence (IBE). The 

individual bioequivalence is only applicable to pharmacokinetic data using a repeated 

crossover trial. The population bioequivalence may be applicable to therapeutic endpoints 

with a parallel arm trial. These two approaches considered both the mean and the 

variance in the statistical model; however, they are not often used for evaluating 
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bioequivalence by pharmaceutical companies for two reasons. First, a repeated crossover 

trial is difficult to carry out without substantial dropouts. Second, neither IBE nor PBE 

assures ABE. Therefore, the regularity authority may still need to carry out ABE to make 

sure bioequivalence in mean. Due to the high variability of biological products, it may be 

meaningful to investigate approaches other than IBE and PBE. Alternative approaches 

include segregate approaches of testing both mean difference and variance difference 

(Chow, Hsieh, Chi & Yang, 2010; Chow, 2013) or testing probability of 

interchangeability (Tse et al., 2006) for assessing biosimilarity. Dong, Tsong and Shen 

(2014) also proposed two one-sided tests of interchangeability based on tolerance interval 

method which links the probability based approach to the moment based approach. In 

addition, most of the publications on interchangeability in bioequivalence or biosimilarity 

were based on normally distributed assumption. There is a need to extend the proposed 

biosimilarity methods to discrete endpoints.  
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APPENDIX A  

      Power Function of the Ratio of Mean Differences Test 
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APPENDIX B 

Power Function of the Mean Difference Equivalence Test (A) 

 

There are three test statistics,       and   , for the mean difference equivalent test (A). 

They all follow non-central t distribution under the alternative hypothesis. However, it is 

not easy to derive the sample size based on the multivariate t-distribution because    
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APPENDIX C 

Power Function for Hypotheses (41) and (42) 

 

      The following three test statistics are for testing hypotheses (41) and (42), which 

are equivalent to (43), (44) and (45). These test statistics all follow a standard normal 

distribution asymptotically under the null hypothesis: 
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APPDENDIX D 

Variances Derivation for Both the Poisson and Negative Binomial Models 

 

 

(1) Poisson Model 

 

 (       ) 

 ∏       
  
   ∏       

  
   ∏       

  
         

  ∏
              

   

    

  
   ∏

              
   

    

  
   ∏

              
   

    

  
    

 

The log-likelihood function is  

 

  ∑ ∑            log(     )  𝑜      
  

   

 

   
 

    ∑             log         𝑜      
  

   

 ∑             log          𝑜      
  

   

 ∑             log         𝑜      
  

   
 

     ∑ [            log( 
     )  𝑜     ]

  

   

 ∑ [               log( 
        )   𝑜     ]

  

   

 ∑ [               log( 
        )  𝑜     ]

  

   
 

 

and its partial derivatives with respect to different parameters are given by  
  𝑜  

   
 ∑ [           ] 

  

   
∑ [              ]
  

   
 ∑ [              ]

  

   
  

   𝑜  

    
  ∑ [      ] 

  

   
∑ [         ]
  

   
 ∑ [         ]

  

   
 

  𝑜  

   
 ∑ [              ]
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   𝑜  

    
 
   𝑜  

      
  ∑ [         ]

  

   
 

  𝑜  

   
 ∑ [              ]

  

   
 

   𝑜  

    
 
   𝑜  

      
  ∑ [         ]

  

   
 

   𝑜  

      
   

 

      Assume that the exposure times of each subject within each treatment group is the 

same and denoted as   ,    and    for the placebo arm, reference arm and test arm, 

respectively. Thus,  

 

     
  

   
       =[

    𝑟  𝑟
   
𝑟  𝑟

]   and 

 

    
 

 
[

     

  
   

 
 

   
   

 

], where        
  ,        

      and 𝑟      
     . 

 

Thus, 

  𝑟(   ̂)  
       

 

      
 

 

      
 

  𝑟(   ̂)  
   𝑟   

 

      
 

 

      
 

  𝑟(   ̂    ̂)  
   𝑟   

 

      
 

 

      
 

and 

 𝑜 (    ̂   ̂)  
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(2) Negative Binomial Model 
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  )

       (     )
(
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  )

       (     )
    ( 𝑜    𝑜    )     𝑜 (      ) 

 

 
log   

  

   

 

   

      ] 
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   ∑ [             
 

 
 log         
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 ∑ [                  
 

 
 log         

      ]

  

   

 

 ∑ [                  
 

 
 log         

      ]

  

   

 

 

and its partial derivatives with respect to different parameters are given by  

 𝑙𝑜𝑔 

   
 ∑ [         

 

 
 
     

  

       
  
] 

  
   ∑ [         

 

 
 
     

     

       
     

]
  
    

              ∑ [         
 

 
 
     

     

       
     

]
  
       

  𝑙𝑜𝑔 
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] ∑ [

            
     

(       
     )

 ]
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]
  
   

  
     

 𝑙𝑜𝑔 
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]
  
     

  𝑙𝑜𝑔 

    
 
  𝑙𝑜𝑔 
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]
  
     

 𝑙𝑜𝑔 
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Assume that the exposure times of each subject within each treatment group is the same 

and denoted as   ,    and    for the placebo arm, reference arm and test arm 

respectively. Thus,  

 

     
  

   
       =[

    𝑟  𝑟
   
𝑟  𝑟

]   and 

 

    
 

 
[

     

  
   

 
 

   
   

 

], where   
     

  

      
  

,   
     

     

      
     

 and 𝑟 
     

     

      
     

. 

Thus, 

Then the variance of   ̂,   ̂ and   ̂   ̂ are  

  𝑟(   ̂)  
       

       
      

 
       
      

 

  𝑟(   ̂)  
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APPENDIX E 

Variances Under the Nulls for Both the Poisson and Negative Binomial Models 

 

 

      Variances    ,     and     can be derived by solving the maximum likelihood 

estimators of   ,    and   , under    ,       and      , respectively. 

 

(1) Poisson Model 

 

a. Under     that      which implies        
   and     

      

 
 𝑙

   
|                         + ∑       

  
   ∑       

  
   ∑      

  
        (E1) 

 𝑙

   
|            ∑      

  
   .                                        (E2) 

 

Letting (E1) and (E2) equal 0, and we have     

 

{
   ∑       ∑      

  
      ̂̂           

  
   

  ̂̂     ∑      
  
   

   

 

and   ̂̂,   ̂̂ and   ̂̂ can be isolated, leaving 

 

  ̂̂   ̂̂ 
∑       
  
   

∑      
  
   

         
=
  ̂       ̂    

         
                                 

  ̂̂ ∑      
  
   /      =   ̂.                                             

 

Thus 

 

      𝑟   ̂ |    
 

      ̂̂
 

 

      ̂̂
 

         
    ̂       ̂  

(
 

    
 
 

    
)  

 

 

b. Under       that          which implies     
  ,     

      and 

    
            

 

Apply the Lagrange Multiplier to solve RMLE,   ̂̂,   ̂̂ and   ̂̂. 
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Let 𝑓                and                        and let 

                 +λ               . The partial derivatives are 
 

 
  

   
|                             + ∑       

  
   ∑       

  
   ∑      

  
      (E3) 

  

   
|             + ∑       

  
   λ                                     (E4) 

  

   
|              + ∑       

  
   λ                                     (E5) 

  

 λ
|              .                                               (E6) 

 

Letting (E3), (E4), (E5) and (E6) equal 0, we have    

 

{
  
 

  
 
∑       
  
   ∑       

  
   ∑      

  
                         

   
∑       
  
   λ

    

   
∑       
  
   λ

    

    
    

  

 

  

 

and   ̂̂ and   ̂̂ can be isolated, leaving 

 

  ̂̂ 
∑       

       ∑ [   ]     ∑ [   ]
  
   

  
   

            

  
   

    
=
∑       
  
   

∑      
  
   

            
 

 

  ̂̂  
    ̂̂ . 

 

Thus 

      𝑟   ̂   ̂ |      
 

      ̂̂
 

 

      ̂̂
 

       
       

 

                ̂       ̂   
 

 

 

Similarly, under       that         ,    ̂̂ ,   ̂̂  and     are in the same form as 

above by replacing    by   .  
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(2) Negative Binomial Model 

 

 

a. Under     that      which implies        
   and     

      

 
 𝑙

   
|    ∑ ∑ [         

 

 
 
     

       
]

  
   

 
                               (E7) 

 𝑙
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]

  
                                   (E8) 

 

Letting (E7) and (E8) equal 0, we have     

{
∑      
  
    ∑      

  
    ∑      

  
    ∑

    ∑ [   ]        
  
   

       

 
   

∑      
  
    

    ∑              
  
   

       

  

   

 

Replace    by    and   ̂̂ can be derived by solving the positive root of the following 

quadratic equation 

   ̂̂
 
    ̂̂     

where                ,              ̂               ̂    and 

        ̂       ̂   . Thus,      

  ̂̂   ̂̂ 
   √      

  
 

and                                                 𝑟(  ̂)|    
       ̂̂

      ̂̂
 
       ̂̂

      ̂̂
. 

 

 

 

 

b. Under       that          which implies     
  ,     

      and 

    
           . 

 

Apply the Lagrange Multiplier to solve   ̂̂,   ̂̂ and   ̂̂. 
 

Let 𝑓                and                        and let 

                 +λ               . The partial derivatives are 
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 λ
|              .                                              (E12) 

 

Letting (E9), (E10), (E11) and (E12) equal 0, we have   

{
  
 

  
 ∑      
  
    ∑      

  
    ∑      

  
    ∑

    ∑ [   ]        
  
   

       

 
   

∑      
  
    λ 

    

       
( ∑      

  
      )

∑      
  
    λ 

    

       
( ∑      

  
      )

    
    

  

  

  

Similar to the derivation in (a), the maximum likelihood estimators of    and    under 

      can be derived by solving the positive root of the quadratic equation 

   ̂̂
 
    ̂̂      

where        
          ,              ̂       

           ̂    and 

        ̂       ̂   . Again, this quadratic equation has one positive root, thus      

  ̂̂ 
   √      

  
 

  ̂̂  
    ̂̂ 

and                                              𝑟(  ̂   ̂)|      
       ̂̂

      ̂̂
 
       ̂̂

      ̂̂
. 

Similarly, under       that         ,    ̂̂ ,   ̂̂  and     are in the same form as 

above by replacing    by   .  


