
INFORMATION-UPDATE SYSTEMS: MODELS,
ALGORITHMS, AND ANALYSIS

A Dissertation
Submitted to

the Temple University Graduate Board

in Partial Fulfillment
of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

by

Yu Sang
August, 2019

Examining Committee Members:

Dr. Bo Ji, Advisor, Dept. of Computer and Information Sciences
Dr. Jie Wu, Dept. of Computer and Information Sciences
Dr. Xiaojiang Du, Dept. of Computer and Information Sciences
Dr. Liang Du, Dept. of Electrical and Computer Engineering

ABSTRACT

Information-Update Systems: Models, Algorithms, and Analysis

by

Yu Sang

Age of information (AoI) has been proposed as a new metric to measure the staleness

of data. For time-sensitive information, it is critical to keep the AoI at a low level. A

lot of work have been done on the analysis and optimization on AoI in information-

update systems. Prior studies on AoI optimization often consider a Push model,

which is concerned about when and how to “push” (i.e., generate and transmit)

the updated information to the user. In stark contrast, we introduce a new Pull

model, which is more relevant for certain applications (such as the real-time stock

quotes service), where a user sends requests to the servers to proactively “pull” the

information of interest. Moreover, we propose to employ request replication to reduce

the AoI. Interestingly, we find that under this new Pull model, replication schemes

capture a novel tradeoff between different levels of information freshness and different

response times across the servers, which can be exploited to minimize the expected

AoI at the user’s side. Specifically, assuming Poisson updating process for the servers

and exponentially distributed response time with known expectation, we derive a

closed-form formula for computing the expected AoI and obtain the optimal number

of responses to wait for to minimize the expected AoI. Then, we extend our analysis

to the setting where the user aims to maximize the utility, which is an exponential

function of the negative AoI and represents the user’s satisfaction level about the

timeliness of the received information. We can similarly derive a closed-form formula

of the expected utility and find the optimal number of responses to wait for. Further,

we consider a more realistic scenario where the updating rate and the mean response

time at the servers are unknown to the user. In this case, we formulate the utility

ii

maximization problem as a stochastic Multi-Armed Bandit (MAB) Problem. The

formulated MAB problem has a special linear feedback graph, which can be leveraged

to design policies with an improved regret upper bound.

We also notice that one factor has been missing in most of the previous solutions

on AoI mimization, which is the cost of performing updates. Therefore, we focus on

the tradeoff between the AoI and the update cost, which is of significant importance

in time-sensitive data-driven applications. We consider the applications where the

information provider is directly connected to the data source, and the clients need

to obtain the data from the information provider in a real-time manner (such as the

real-time environmental monitoring system). The provider needs to update the data

so that it can reply to the clients’ requests with fresh information. However, the

update cost limits the frequency that the server can refresh the data, which makes it

important to design an efficient policy with optimal tradeoff between data freshness

and update cost. We define the staleness cost, which reflects the AoI of the data and

formulate the problem as the minimization over the summation of the update cost and

the staleness cost. We first propose important guidelines of designing update policies

in such information-update systems that can be applied to arbitrary request arrival

processes. Then, we design an update policy with a simple threshold-based structure,

which is easy to implement. Under the assumption of Poisson request arrival process,

we derive the closed-form expression of the average cost of the threshold-based policy

and prove its optimality among all online update policies.

In almost all prior works, the analysis and optimization are based on traditional

queueing models with the probabilistic approaches. However, in the traditional prob-

abilistic study of general queueing models, the analysis is heavily dependent on the

properties of specific distributions. Under this framework, it is also usually hard to

handle distributions with heavy tail behavior. To that end, in this work, we take an

alternative new approach and focus on the Peak Age of Information (PAoI), which

iii

is the largest age of each update shown to the end users. Specifically, we employ a

recently developed analysis framework based on robust optimization and model the

uncertainty in the stochastic arrival and service processes by uncertainty sets. This

robust queueing framework enables us to approximate the steady-state PAoI perfor-

mance of information-update systems with very general arrival and service processes,

including those exhibiting heavy-tailed behavior. We first propose a new bound of

the PAoI under the single-source system that performs much better than previous

results, especially with light traffic. Then, we generalize it to multi-source systems

with symmetric arrivals, which is involves new technical challenges.

It has been extensively investigated for various queueing models based on the

probabilistic approaches. However, in the traditional probabilistic study of general

queueing models, the analysis is heavily dependent on the properties of specific dis-

tributions, such as the memoryless property of the Poisson distribution. Under this

framework, it is also usually hard to handle distributions with heavy tail behavior.

To that end, we take an alternative new approach and focus on the Peak Age of

Information (PAoI), which is the largest age of each update shown to the end users.

Specifically, we employ a recently developed analysis framework based on robust op-

timization and model the uncertainty in the stochastic arrival and service processes

by uncertainty sets. This robust queueing framework enables us to approximate

the steady-state PAoI performance of information-update systems with very general

arrival and service processes, including those exhibiting heavy-tailed behavior. We

first propose a new bound of the PAoI under the single-source system that performs

much better than previous results, especially with light traffic. Then, we general-

ize it to multi-source systems with symmetric arrivals, which involves new technical

challenges.

iv

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor Prof. Bo Ji

for the continuous support of my Ph.D. study and related research, for his patience,

motivation, and immense knowledge. Since my first day in graduate school, Prof. Ji

encouraged me like nobody else, and gave me endless support. Under his supervision,

I learned how to creatively think and find a solution to a research problem and finally

publish the results.

I am also grateful to dozens of people who have helped me with my research and

study. Besides my advisor, I would like to thank the rest of my thesis committee:

Prof. Jie Wu, Prof. Xiaojiang Du, and Prof. Liang Du, for their insightful comments

and encouragement.

I also wish to express my thanks to my lab members, Gamal, Zhongdong, Fengjiao,

and Yanlong for their kindness and friendship. Thanks, are also due to the Depart-

ment of Computer and Information Sciences in Temple University for the financial

support that I otherwise would not have been able to develop my scientific discoveries.

Last but not least, I would like to express my deepest gratitude to my dearest

parents Guiqin and Pengcheng and my love Qiuting for supporting me spiritually

during tough times for pursuing the Ph.D. degree. Their love and encouragement

have always been important to me.

v

TABLE OF CONTENTS

ABSTRACT : ii

ACKNOWLEDGEMENTS : v

LIST OF FIGURES : viii

CHAPTER

1. INTRODUCTION : 1

1.1 Metric of the Data Freshness . 2
1.2 AoI Minimization on the Client Side 4
1.3 Tradeoff for the Information Provider 6
1.4 PAoI Analysis with Uncertainty 7

2. AOI MINIMIZATION UNDER THE PULL MODEL : : : : : : : 9

2.1 Introduction . 9
2.2 System Model . 11
2.3 AoI Minimization . 14

2.3.1 Expected AoI . 15
2.3.2 Optimal Replication Scheme 18
2.3.3 Extensions . 20

2.4 Utility Maximization . 21
2.4.1 Utility Function . 22
2.4.2 Case with Known System Parameters 23
2.4.3 Case with Unknown System Parameters 27

2.5 Numerical Results . 35
2.5.1 Simulation with Known System Parameters 35
2.5.2 Simulation with Unknown System Parameters 38

2.6 Conclusion . 40

3. TOWARDS OPTIMAL TRADEOFF BETWEEN DATA FRESH-
NESS AND UPDATE COST : 42

3.1 Introduction . 42
3.2 System Model and Problem Formulation 45
3.3 Algorithm Design . 48

3.3.1 Conservative Policies . 49
3.3.2 Capped Conservative Policies 51

vi

3.3.3 Threshold-based Policies 54
3.4 Optimality of the Threshold-based Policy 58

3.4.1 Properties of Capped Conservative Policies 59
3.4.2 Proof of Theorem 3.9 . 63

3.5 Numerical Results . 66
3.6 Conclusion . 71

4. AOI ANALYSIS VIA ROBUST QUEUEING : : : : : : : : : : : : : 72

4.1 Introduction . 72
4.2 Single Source System . 75

4.2.1 System Model . 76
4.2.2 The Worst-Case Approach 77
4.2.3 Worst-Case Performance 80

4.3 Multi-Source System . 83
4.3.1 System Model . 83
4.3.2 Worst-Case Performance 85

4.4 Numerical Results . 89
4.4.1 Single Source Information-updating Systems 91
4.4.2 Multi-source Information-updating Systems 92

4.5 Conclusion . 92

5. CONCLUSIONS AND FUTURE WORK : : : : : : : : : : : : : : : 93

5.1 Summary . 93
5.2 Future Work . 94

BIBLIOGRAPHY : 95

vii

LIST OF FIGURES

Figure

1.1 The evolution of AoI at the client side. 3
2.1 The Pull model of information-update systems. Note that the arrows

in the figure denote logical links rather than physical connections.
The updates, requests, and responses are all transmitted through
(wired or wireless) networks. 12

2.2 An illustration of the AoI evolution at server i 14
2.3 An illustration of the AoI at the user’s side and its two terms under

the (n; k) replication scheme . 17
2.4 Linear feedback graph where each node k 2 f2; 3; : : : ; ng has a di-

rected edge to every node in f1; 2; : : : ; k � 1g and node 1 does not
have any outgoing edge . 30

2.5 Simulation results of average AoI vs. the number of responses k for
three different types of response time distributions. 35

2.6 Impact of the system parameters on the optimal k� and the corre-
sponding improvement ratio. We consider the exponential distribu-
tion for the response time. In (a), we fix � = 1; n = 20; in (b), we fix
� = 1; n = 20; in (c), we fix � = 1; � = 10. 36

2.7 Average reward of (n; k) replication scheme 38
2.8 Performance comparison between Greedy, �t-Greedy-LP, UCB, UCB-

N, and UCB-LP. 39
3.1 The structure of the model we consider. 45
3.2 An illustration of the AoI evolution at the server. The server has 3

updates (at u1, u2, and u3) during the process of serving 6 requests
(at r1; r2; : : : ; r6). 46

3.3 This figure shows the advantage of a conservative policy �0 2 ΠR over
� 2 ΠnΠR. The dashed red line shows how the AoI evolves under
policy �0. 50

3.4 This figure shows the advantage of a capped conservative policy �0 2
ΠR+ over � 2 ΠRnΠR+. The dashed red line shows how the AoI
evolves under policy �0. 53

3.5 This figure shows the relation of different types of policies defined in
Section 3.3. 58

3.6 Simulation results of the average cost (total cost, staleness cost, and
update cost) under threshold-based policies with different thresholds. 67

3.7 Performance of naive policy, periodic policy, threshold-based policy,
and the optimal offline policy under different settings. 68

viii

3.8 Simulation results for uniformly distributed request inter-arrival times
in [0:1; 0:3]. Update cost p = 5. Local optimal period d� = 1:41 and
threshold � � = 1:32. 70

4.1 An information-update system with one source and one monitor. . . 76
4.2 An illustration of the AoI evolution at the monitor in single source

model. 78
4.3 Two source information-update system. 84
4.4 Peak AoI under different distributions in a single source network. . 90
4.5 Peak AoI under different distributions in a multi-source network. . . 90

ix

CHAPTER 1

INTRODUCTION

The last decades have witnessed the prevalence of smart devices and significant

advances in ubiquitous computing and the Internet of things. This trend is fore-

casted to continue in the years to come Cisco Visual Networking Index: Global Mobile

Data Tra�c Forecast Update, 2016-2021 (2017). The development of this trend has

spawned a plethora of real-time services that require timely information/status up-

dates. One practically important example of such services is vehicular networks and

intelligent transportation systems S. Kaul, Gruteser, et al. (2011); S. Kaul, Yates,

& Gruteser (2011), where accurate status information (position, speed, acceleration,

tire pressure, etc.) of a vehicle needs to be shared with other nearby vehicles and

road-side facilities in a timely manner in order to avoid collisions and ensure sub-

stantially improved road safety. More such examples include sensor networks for

environment/health monitoring Ko et al. (2010); Corke et al. (2010), wireless channel

feedback Costa et al. (2015), news feeds, weather updates, online social networks, fare

aggregating sites (e.g., Google Shopping), and stock quotes service.

For systems providing such real-time services, those commonly used performance

metrics, such as throughput and delay, exhibit significant limitations in measuring

the system performance S. Kaul et al. (2012). Instead, the timeliness of information

updates becomes a major concern. To that end, a new metric called the Age-of-

Information (AoI) has been proposed as an important metric for studying the time-

liness performance S. Kaul, Gruteser, et al. (2011). The AoI is defined as the time

elapsed since the most recent update occurred (see Eq. (2.2-1) for a formal definition).

1

Using the AoI metric introduced in S. Kaul, Gruteser, et al. (2011) for vehicular net-

works, the work of S. Kaul et al. (2012) employs a simple system model to analyze

and optimize the timeliness performance of an information-update system. This sem-

inal work has recently aroused dramatic interests from the research community and

has inspired a series of interesting studies on the AoI analysis and optimization (see

Kosta et al. (2017) and references therein).

1.1 Metric of the Data Freshness

One example of the information-update system is the vehicular networks. The

vehicles communicate with each other while moving fast on the road. They will

broadcast their location, speed, acceleration and other status. In this case, the most

critical concern is the freshness of the data. Because the data is used for other

vehicles to make decisions such as collision avoiding and navigation. Seconds of

staleness means several meters of error. Stale data is usually useless. Other examples

including financial services like stock quotes, sensor networks, news feed, weather

updates and the list goes on.

As we can see, for all these information-update systems, the most critical concern

is about the freshness of the data. AoI is the metric to measure the data freshness.

Here we use a simple example to illustrate this concept. We consider a model with

the information source, a server, and the client. After the data is generated at the

source, it is first sent to the server to be processed before sending to the client. In

this simple example, we care about the data freshness at the client. The AoI at the

client side is defined as the time elapsed since the generation of the latest update that

is delivered to it. Let t denote the current time. The generation time of the freshest

update received by the monitor is denoted by u(t). Then, the AoI is defined as

∆(t) , t� u(t): (1.1-1)

2

Time

AoI

Figure 1.1: The evolution of AoI at the client side.

Let Si and Di denote the generation and delivery time of the i-th update. Fig. 1.1

illustrate evolution of AoI at the client side. When there is no update received by the

client, the AoI increases linearly. Once the client receives the new update, the age

would drop. Therefore, it is typical to see the AoI evolves in a sawtooth shape.

AoI is particularly important for time-sensitive data-driven applications because

other commonly used metrics, such as throughput or delay, cannot reflect the per-

formance of such systems S. Kaul et al. (2012). The most critical metric of a time-

sensitive information-update system should be the freshness of the data. Based on this

concern, AoI is defined as the time elapsed since the most recent update occurred.

Since the metric was first proposed in the seminal work S. Kaul, Gruteser, et al.

(2011); S. Kaul et al. (2012), a lot of studies have been done on the minimization of

AoI, which provide important guidelines for the design of time-sensitive information-

update systems. Previous work has shown that throughput- or delay-optimal algo-

rithms may not minimize the AoI Sun et al. (2017). Therefore, new algorithms that

minimizes the AoI are proposed in different settings Huang & Modiano (2015); Chen

& Huang (2016); Kadota et al. (2016).

3

1.2 AoI Minimization on the Client Side

While all prior studies consider a Push model, which is concerned about when

and how to “push” (i.e., generate and transmit) the updated information to the user,

we introduce a new Pull model, under which a user sends requests to the servers to

proactively “pull” the information of interest. This Pull model is more relevant for

many important applications where the user’s interest is in the freshness of informa-

tion at the point when the user requests it rather than in continuously monitoring

the freshness of information. One application of the Pull model is in the real-time

stock quotes service, where a customer (i.e., user) submits a query to multiple stock

quotes providers (i.e., servers) and each provider responds with the most up-to-date

information it has.

To the best of our knowledge, however, none of the existing work on the timeliness

optimization has considered such a Pull model. In stark contrast, we focus on the Pull

model and propose to employ request replication to minimize the expected AoI at the

user’s side. Although a similar Pull model is considered for data synchronization in

Bright et al. (2004, 2006), the problems are quite different and request replication is

not exploited. Note that the concept of replication is not new and has been extensively

studied for various applications (e.g., cloud computing and datacenters Gardner et

al. (2015); Ananthanarayanan et al. (2012), storage clouds B. Li et al. (2016), parallel

computing Wang et al. (2014, 2015), and databases Pacitti (1999); Pereira & Araújo

(2010)). However, for the AoI minimization problem under the Pull model, replica-

tion schemes exhibit a unique property and capture a novel tradeo� between di�erent

levels of information freshness and di�erent response time across the servers. This

tradeo� reveals the power of waiting for more than one response and can be exploited

to minimize the expected AoI at the user’s side.

Next, we explain the above key tradeoff through a comparison with cloud com-

puting systems. It has been observed that in a cloud or a datacenter, the processing

4

time of a same job can be highly variable on different servers Ananthanarayanan et al.

(2012). Due to this important fact, replicating a job on multiple servers and waiting

for the first finished copy can help reduce latency Ananthanarayanan et al. (2012);

Gardner et al. (2015). Apparently, in such a system it is not beneficial to wait for

more copies of the job to finish, as all the copies would give the same outcome. In

contrast, in the information-update system we consider, although the servers may

possess the same type of information (weather forecast, stock prices, etc.), they could

have different versions of the information with different levels of freshness due to the

random updating processes. Hence, the first response may come from a server with

stale information; waiting for more than one response has the potential of receiving

fresher information and thus helps reduce the AoI. Hence, it is no longer the best to

stop after receiving the �rst response (as in the other aforementioned applications).

On the other hand, waiting for too many responses will lead to a longer total waiting

time and thus, also incurs a larger AoI at the user’s side. Therefore, it is challenging

to determine the optimal number of responses to wait for in order to minimize the

expected AoI at the user’s side. To make the problem more difficult, it is very common

in practice that the system parameters (the updating rate, the mean response time,

etc.) are not known in advance.

Therefore, a desirable policy should be able to learn the parameters without pre-

knowledge of the distributions. However, most of the previous works are based on

known system parameters. In our work, we reveal the connection between the utility

of AoI optimization problem under Pull model and the MAB problem in the sense

that they both need to deal with such uncertainty. In this case, we propose to ap-

ply two types of learning algorithms (�t-Greedy-LP and UCB-LP) motivated by the

MAB problem. The �t-Greedy-LP policy either plays the arm with best empirical

performance or explores other arms in each time slot. UCB-LP takes an “selection-

and-elimination” process and eliminates arms with bad empirical performance. The

5

insight is that the policies can have more accurate estimation of the performance of

the arms after enough time slots. Then, they can do exploration with lower proba-

bility (�t-Greedy-LP) or eliminate sub-optimal arms (UCB-LP). In our work, we will

address this problem in both cases with known and unknown parameters.

1.3 Tradeoff for the Information Provider

One particular tradeoff that previous studies considered is the queueing effect

introduced by service and communication delays. However, in many status-update

systems (e.g., temperature information or stock price), the data does not require any

processing, and the packet size can be quite small so that the packet transmission time

is negligible. On the other hand, retrieving the data from the information source often

requires certain system resources and introduces costs. In this work, we consider a

system with no communication or service delay and focus on the tradeoff between data

freshness and update cost. We want to point out that even under such simplification,

it is still non-trivial to design an efficient update policy as the scheduling needs to be

made in an online manner. Each update will change the evolution of AoI, which has

long term impact on the future requests.

Next, we briefly explain the key tradeoff in our problem. We consider the problem

from an information provider’s perspective. The main objective is to reply to the

requests of clients with fresh information. Therefore, the server needs to constantly

update the data. However, frequently updating the data will generate high update

cost. On the other hand, a policy that updates the data less frequently will increase

the AoI at the server. In this case, the information provider has to response with stale

data. Specifically, the update policy should consider both update cost and request

arrival rate. Note that every time the server updates the data, the AoI of the data

will decrease, and all future requests will benefit from that. The main challenge is

how to design a smart update policy that exploits this future effect of each update. In

6

this work, we propose several important guidelines for the design of update policies in

such information-update systems that are applicable to all request arrival patterns.

Under the assumption of Poisson request arrival process, a threshold-based policy is

provided, and we show its optimality over all online policies.

1.4 PAoI Analysis with Uncertainty

Here we want to point out that the analysis and optimization of most of prior

work takes a probabilistic approach which is based on the assumption that the inter-

arrival time and service time follow certain distributions. For example, the Poisson

process assumption has played a privileged role in modeling the systems Costa et al.

(2014); Sun et al. (2016); Sang et al. (2017a). In order to further simplify the model,

the random variables are assumed to be identically and independently distributed

(i.i.d.). Although these assumptions leads to a tractable theory, in contrast, general

distributions yields considerable difficulty for near-exact analysis of the systems. The

situation becomes even more challenging if the distributions of the interarrival times

and service times are heavy-tailed.

Therefore, in this work, we propose to take an alternative framework to model

queueing systems based on the robust optimization theory Bertsimas et al. (2011).

Under the new analysis framework, we model the uncertainty in the stochastic arrival

and service processes by uncertainty sets, and approach the problem using a robust

optimization formulation. In this case, we no longer need the assumption of certain

distributions. Only the first and second order data, i.e., mean interarrival/service

time and variance, is required for the analysis. We derive the upper bound of the

delay under the assumption of uncertainty sets, which will be used to approximate

the PAoI performance in steady state. We further generalize the analysis from single-

source case to the multi-source case, assuming that the sources are symmetric. Note

that for the multi-source scenario, the updates from different sources will be processed

7

by a single server, which makes it more challenging to characterize the performance

of the joint queueing system. To the best of our knowledge, not only are we the �rst

to apply the robust-queueing approach to the analysis of the PAoI performance, but

we are also the �rst to provide closed-form upper bounds.

8

CHAPTER 2

AOI MINIMIZATION UNDER THE PULL

MODEL

2.1 Introduction

Most works on AoI minimization consider the problem on the server side. Early

works usually consider simple models, such as M/M/1 with single server, and try

to get the closed-form expression of expected AoI under naive scheduling strategies

(FIFO or LCFS)S. Kaul et al. (2012); Kam et al. (2013); S. K. Kaul et al. (2012).

More complicated models with multiple sources and servers are considered in Yates

& Kaul (2012) and Sun et al. (2018). However, all of these works fall into the push

model. In Zhong et al. (2018a), a similar model is proposed that also uses replications

to reduce the AoI in a Dynamo-Style Storage Systems. Again, this work generalizes

our Pull model to the server side. Interested readers can also refer to the survey

paper Kosta et al. (2017) and the references therein for more related works on AoI

minimization problems.

For most of the previous works on the analysis and optimization of AoI, the

theoretical results are usually based on the assumption that the distribution types

of updating and service process and their expectations are known. For example, in

many previous works S. Kaul et al. (2012), the service time for updates is usually

assumed to be exponentially distributed with known parameter �. Most of these

results cannot be applied to the case where the system parameters are not known

in advance. Therefore, we propose to take a learning approach to deal with the

9

uncertainty. We notice that some recent works also mentioned that this model is

related to restless bandits problem Hsu (2018); Jiang et al. (2018). In these works,

the original problem is decoupled into subproblems and solved as a Markov Decision

Problem in a countable state space via the Whittle Index approach. The indexability

of the decoupled model is provided. However, the performance over the original

problem is not guaranteed.

We summarize our key contributions as follows.

� To the best of our knowledge, for the first time this work introduces the Pull

model for studying the timeliness optimization problem and proposes to employ

request replication to reduce the AoI.

� Assuming Poisson updating process at the servers and exponentially distributed

response time, we derive a closed-form formula for computing the expected AoI

and obtain the optimal number of responses to wait for to minimize the expected

AoI. We also discuss some extensions to account for more general replication

schemes and different response time distributions.

� We further extend our analysis to the setting where the user aims to maximize

the utility, which is an exponential function of the negative AoI and represents

the user’s satisfaction level about the timeliness of the received information. We

can similarly derive a closed-form formula of the expected utility and find the

optimal number of responses to wait for to maximize the expected utility.

� Note that the above results require the knowledge of the updating rate and the

mean response time at the servers, which is often difficult, if not impossible,

for the user to obtain. Hence, we consider a more realistic scenario where the

updating rate and the mean response time at the servers are unknown to the

user. In this case, we formulate the utility maximization problem as a stochastic

Multi-Armed Bandit (MAB) Problem. The formulated MAB problem has a

10

special linear feedback graph, which can be leveraged to design policies with an

improved regret upper bound.

� Finally, we conduct extensive numerical simulations to elucidate our theoretical

results. We also investigate the impact of the system parameters on the achieved

gain in the AoI reduction. Simulation results for other types of response time

distribution are also provided. Our results show that waiting for more than one

response can significantly reduce the AoI in most scenarios. In the case of un-

known updating rate and mean response time, we also perform simulations and

compare the performance of several online learning policies. The results show

that policies that exploit the special linear feedback graph indeed outperform

the classic policies.

The remainder of this chapter is organized as follows. We first describe our new

Pull model in Section 2.2. In Section 2.3, we analyze the expected AoI under replica-

tion schemes and obtain the optimal number of responses for minimizing the expected

AoI. In Section 2.4, we consider the utility maximization problem in the settings where

the updating rate and the mean response time are known and unknown, respectively.

Section 2.5 presents the simulation results, and we conclude our work in Section 2.6.

2.2 System Model

We consider an information-update system where a user pulls time-sensitive in-

formation from n servers. These n servers are connected to a common information

source and update their data asynchronously. We call such a model the Pull model

(see Fig. 2.1). Let i 2 f1; 2; : : : ; ng be the server index. We assume that the informa-

tion updating process at each server is Poisson with rate � > 0 and is independent and

identically distributed (i.i.d.) across the servers. This implies that the inter-update

time (i.e., the time duration between two successive updates) at each server follows

11

Servers

Information
Source

Replicated
Requests

Responses

User
 Updates 1

2

n

Figure 2.1: The Pull model of information-update systems. Note that the arrows
in the figure denote logical links rather than physical connections. The updates,
requests, and responses are all transmitted through (wired or wireless) networks.

an exponential distribution with mean 1=�. Here, the inter-update time at a server

can be interpreted as the time required for the server to receive information updates

from the source. Let ui(t) denote the time when the most recent update at server i

occurs, and let ∆i(t) denote the AoI at server i, which is defined as the time elapsed

since the most recent update at this server:

∆i(t) , t� ui(t): (2.2-1)

Therefore, if an update occurs at a server, then the AoI at this server drops to zero;

otherwise, the AoI increases linearly as time goes by until the next update occurs.

Fig. 2.2 provides an illustration of the AoI evolution at server i.

In this work, we consider the (n; k) replication scheme, under which the user sends

the replicated copies of the request to all n servers and waits for the first k responses.

Let Ri denote the response time for server i. Note that each server may have a

different response time, which is the time elapsed since the request is sent out by the

user until the user receives the response from this server. We assume that the time

for the requests to reach the servers is negligible compared to the time for the user to

download the data from the servers. Hence, the response time can be interpreted as

the downloading time. Let s denote the downloading start time, which is the same

12

for all the servers, and let fi denote the downloading finish time for server i. Then,

the response time for server i is Ri = fi � s. We assume that the response time is

exponentially distributed with mean 1=� and is i.i.d. across the servers. Note that

the model we consider above is simple, but it suffices to capture the key aspects and

novelty of the problem we study.

Under the (n; k) replication scheme, when the user receives the first k responses,

it uses the freshest information among these k responses to make certain decisions

(e.g., stock trading decisions based on the received stock price information). Let (j)

denote the index of the server corresponding to the j-th response received by the

user. Then, set K = f(1); (2); : : : ; (k)g contains the indices of the servers that return

the first k responses, and the following is satisfied: f(1) � f(2) � � � � � f(k) and

R(1) � R(2) � � � � � R(k). Let server i� be the index of the server that provides the

freshest information (i.e., that has the smallest AoI) among these k responses when

downloading starts at time s, i.e.,

∆i�(s) = min
i2K

∆i(s): (2.2-2)

Here, we are interested in the AoI at the user’s side when it receives the k-th response,

denoted by ∆(k), which is the time difference between when the k-th response is

received and when the information at server i� is updated, i.e.,

∆(k) , f(k) � ui�(s): (2.2-3)

Then, there are two natural questions of interest:

(Q1): For a given k, can one obtain a closed-form formula for computing the expected

AoI at the user’s side, E[∆(k)]?

(Q2): How to determine the optimal number of responses to wait for, such that

E[∆(k)] is minimized?

13

Figure 2.2: An illustration of the AoI evolution at serveri

The second question can be formulated as the following optimization problem:

min
k2f 1;2;:::;n g

E [�(k)] : (2.2-4)

We will answer these two questions in Section 2.3.

Further, we will generalize the proposed framework and consider a more general

problem of maximizing an AoI-based utility at the user's side. The utility maximiza-

tion problem will be studied in Section 2.4, where we consider both cases of known

and unknown updating rate and mean response time.

2.3 AoI Minimization

In this section, we focus on the AoI minimization problem under the Pull model.

We �rst derive a closed-form formula for computing the expected AoI at the user's

side under the (n; k) replication scheme (Section 2.3.1). Then, we �nd the optimal

number of responses to wait for in order to minimize the expected AoI (Section 2.3.2).

Finally, we discuss some straightforward extensions (Section 2.3.3).

14

2.3.1 Expected AoI

In this subsection, we focus on answering Question (Q1) and derive a closed-form

formula for computing the expected AoI under the (n; k) replication scheme.

To begin with, we provide a useful expression of the AoI at the user's side under

the (n; k) replication scheme (i.e., �(k), as de�ned in Eq. (2.2-3)) as follows:

�(k) = f (k) � ui � (s)

= f (k) � s + s � ui � (s)

= R(k) + � i � (s)

= R(k) + min
i 2K

� i (s);

(2.3-5)

where the second last equality is from the de�nition ofRi and � i (t) (i.e., Eq. (2.2-1)),

and the last equality is from Eq. (2.2-2). As can be seen from the above expression,

under the (n; k) replication scheme the AoI at the user's side consists of two terms: (i)

R(k) , the total waiting time for receiving the �rst k responses, and (ii) mini 2K � i (s)

(also denoted by � i � (s)), the AoI of the freshest information among thesek responses

when downloading starts at times. An illustration of these two terms and �(k) is

shown in Fig. 2.3.

Taking the expectation of both sides of Eq. (2.3-5), we have

E[�(k)] = E
�
R(k)

�
+ E

�
min
i 2K

� i (s)
�

: (2.3-6)

In the above equation, the �rst term (i.e., the expected total waiting time) can be

viewed as the cost of waiting, while the second term (i.e., the expected AoI of the

freshest information among thesek responses) can be viewed as the bene�t of waiting.

Intuitively, as k increases (i.e., waiting for more responses), the expected total waiting

time (i.e., the �rst term) increases. On the other hand, upon receiving more responses,

the expected AoI of the freshest information among thesek responses (i.e., the second

15

term) decreases. Hence, there is a natural tradeo� between these two terms, which is

a unique property of our newly introduced Pull model.

Next, we formalize this tradeo� by deriving the closed-form expressions of the

above two terms as well as the expected AoI. We state the main result of this sub-

section in Theorem 2.1.

Theorem 2.1. Under the (n; k) replication scheme, the expected AoI at the user's

side can be expressed as:

E[�(k)] =
1
�

(H (n) � H (n � k)) +
1

k�
; (2.3-7)

whereH (n) =
P n

l=1
1
l is the n-th partial sum of the diverging harmonic series.

Proof. We �rst analyze the �rst term of the right-hand side of Eq. (2.3-6) and want

to showE[R(k)] = 1
� (H (n) � H (n � k)). Note that the response time is exponentially

distributed with mean 1=� and is i.i.d. across the servers. Hence, random variable

R(k) is the k-th smallest value ofn i.i.d. exponential random variables with mean 1=� .

The order statistics results of exponential random variables give thatR(j) � R(j � 1) is

an exponential random variable with mean 1
(n+1 � j)� for any j 2 f 1; 2; : : : ; ng, where

we setR(0) = 0 for ease of notation Arnold et al. (2008). Hence, we have the following:

E
�
R(k)

�
= E

"
kX

j =1

(R(j) � R(j � 1))

#

=
kX

j =1

E
�
R(j) � R(j � 1)

�

=
kX

j =1

1
(n + 1 � j)�

=
1
�

(H (n) � H (n � k)) :

(2.3-8)

Next, we analyze the second term of the right-hand side of Eq. (2.3-6) and want

16

Figure 2.3: An illustration of the AoI at the user's side and its two terms under the
(n; k) replication scheme

to show the following:

E
�
min
i 2K

� i (s)
�

=
1

k�
: (2.3-9)

Note that the updating process at each server is a Poisson process with rate� and is

i.i.d. across the servers. Hence, the inter-update time for each server is exponentially

distributed with mean 1=� . Due to the memoryless property of the exponential

distribution, the AoI at each server has the same distribution as the inter-update

time, i.e., random variable � i (s) is also exponentially distributed with mean 1=� and

is i.i.d. across the servers Nelson (2013). Therefore, random variable mini 2K � i (s) is

the minimum of k i.i.d. exponential random variables with mean 1=� , which is also

exponentially distributed with mean 1
k� . This implies Eq. (2.3-9).

Combining Eqs. (2.3-8) and (2.3-9), we complete the proof.

Remark. The above analysis indeed agrees with our intuition: while the expected

total waiting time for receiving the �rst k responses (i.e., Eq. (2.3-8)) is a monoton-

ically increasing function ofk, the expected AoI of the freshest information among

thesek responses (i.e., Eq. (2.3-9)) is a monotonically decreasing function ofk.

17

2.3.2 Optimal Replication Scheme

In this subsection, we will exploit the aforementioned tradeo� and focus on an-

swering Question (Q2) that we discussed at the end of Section 2.2. Speci�cally, we

aim to �nd the optimal number of responses to wait for in order to minimize the

expected AoI at the user's side.

First, due to Eq. (2.3-7), we can rewrite the optimization problem in Eq. (2.2-4)

as:

min
k2f 1;2;:::;n g

1
�

(H (n) � H (n � k)) +
1

k�
: (2.3-10)

Let k� be an optimal solution to Eq. (2.3-10). We state the main result of this

subsection in Theorem 2.2.

Theorem 2.2. An optimal solution k� to Problem (2.3-10) can be computed as:

k� = min

(&
2�n

p
(� + �)2 + 4��n + � + �

'

; n

)

: (2.3-11)

Proof. We �rst de�ne D(k) as the di�erence of the expected AoI between the (n; k+1)

and (n; k) replication schemes, i.e.,D(k) , �(k +1) � �(k) for any k 2 f 1; 2; : : : ; n �

1g. From Eq. (2.3-7), we have the following:

D(k) =
1

(n � k)�
�

1
k(k + 1) �

; (2.3-12)

for any k 2 f 1; 2; : : : ; n � 1g. It is easy to see thatD(k) is a monotonically increasing

function of k.

We now extend the domain ofD(k) to the set of positive real numbers and want

to �nd k0 such that D(k0) = 0. With some standard calculations and dropping the

negative solution, we derive the following:

k0 =
2�n

p
(� + �)2 + 4��n + � + �

: (2.3-13)

18

Next, we discuss two cases: (i)k0 > n � 1 and (ii) 0 < k 0 � n � 1.

In Case (i), we havek0 > n � 1. This implies that D(k) = � i (k + 1) � � i (k) < 0

for all k 2 f 1; 2; : : : ; n � 1g, asD(k) is monotonically increasing. Hence, the expected

AoI �(k) is a monotonically decreasing function fork 2 f 1; 2; : : : ; ng. Therefore,

k� = n must be the optimal solution.

In Case (ii), we have 0< k 0 � n � 1. We consider two subcases:k0 is an integer

in f 1; 2; : : : ; n � 1g and k0 is not an integer.

If k0 is an integer in f 1; 2; : : : ; n � 1g, we haveD(k) = �(k + 1) � �(k) � 0 for

k 2 f 1; 2; : : : ; k0g and D(k) = �(k + 1) � �(k) > 0 for k 2 f k0 + 1; : : : ; n � 1g, as

D(k) is monotonically increasing. Hence, the expected AoI �(k) is �rst decreasing

(for k 2 f 1; 2; : : : ; k0g) and then increasing (fork 2 f k0+ 1; : : : ; ng). Therefore, there

are two optimal solutions: k� = k0 and k� = k0+ 1 since �(k0+ 1) = �(k0) (due to

D(k0) = 0).

If k0 is not an integer, we haveD(k) = �(k +1) � �(k) < 0 for k 2 f 1; 2; : : : ; bk0cg

and D(k) = �(k + 1) � �(k) > 0 for k 2 fd k0e; : : : ; n � 1g, as D(k) is mono-

tonically increasing. Hence, the expected AoI �(k) is �rst decreasing (for k 2

f 1; 2; : : : ; bk0c; dk0eg) and then increasing (for k 2 fd k0e; : : : ; n � 1g). Therefore,

k� = dk0e must be the optimal solution.

Combining two subcases, we havek� = dk0e in Case (ii). Then, combining Cases

(i) and (ii), we have k� = min fdk0e; ng = min
��

2�np
(� + �)2+4 ��n + � + �

�
; n

�
.

Remark. There are two special cases that are of particular interest: (i) waiting

for the �rst response only (i.e., k� = 1) and (ii) waiting for all the responses (i.e.,

k� = n). In Corollary 2.3, we provide a su�cient and necessary condition for each of

these two special cases.

Corollary 2.3. (i) k� = 1 is an optimal solution to Problem(2.3-10) if and only

if � � � (n� 1)
2 ; (ii) k� = n is an optimal solution to Problem(2.3-10) if and only if

� � �
n(n� 1) .

19

Proof. The proof follows straightforwardly from Theorem 2.2. A little thought gives

the following: k� = 1 is an optimal solution if and only if D(1) � 0. SolvingD(1) =

1
(n� 1)� � 1

2� � 0 gives� � � (n� 1)
2 . Similarly, k� = n is an optimal solution if and only

if D(n � 1) � 0. SolvingD(n � 1) = 1
� � 1

n(n� 1)� � 0 gives� � �
n(n� 1) .

Remark. The above results agree well with the intuition. For a given number

of servers, if the variance of the inter-update time is much smaller than that of the

response time (i.e.,� � �), then the di�erence of the freshness levels among the

servers is relatively small. In this case, it is not bene�cial to wait for more responses.

On the other hand, if the variance of the inter-update time is much larger than that of

the response time (i.e.,� � �), then one server may possess much fresher information

than another server. In this case, it is worth waiting for more responses, which leads

to a signi�cant gain in the AoI reduction.

2.3.3 Extensions

In this subsection, we discuss some straightforward extensions of the considered

model, including more general replication schemes and di�erent response time distri-

butions.

Replication schemes So far, we have only considered the (n; k) replication

scheme. One limitation of this scheme is that it requires the user to send a repli-

cated request to every server, which may incur a large overhead when there are a

large number of servers (i.e., whenn is large). Instead, a more practical scheme

would be to send the replicated requests to a subset of servers. Hence, we consider

the (n; m; k) replication schemes, under which the user sends a replicated request to

each of them servers that are randomly and uniformly chosen from then servers,

and waits for the �rst k responses, wherem 2 f 1; 2; : : : ; ng and k 2 f 1; 2; : : : ; mg.

Making the same assumptions as in Section 2.2, we can derive the expected AoI at

the user's side in a similar manner. Speci�cally, reusing the proof of Theorem 2.1 and

20

replacingn with m in the proof, we can show the following:

E[�(k)] =
1
�

(H (m) � H (m � k)) +
1

k�
: (2.3-14)

Uniformly distributed response time Note that our current analysis requires

the memoryless property of the Poisson updating process. However, the analysis can

be extended to the uniformly distributed response time. We make the same assump-

tions as in Section 2.2, except that the response time is now uniformly distributed

in the range of [a; a + h] with a � 0 and h � 0. In this case, it is easy to derive

E[R(k)] = kh
n+1 + a (see, e.g., Arnold et al. (2008)). Since Eq. (2.3-9) still holds, from

Eq. (2.3-6) we have

E[�(k)] =
kh

n + 1
+ a +

1
k�

: (2.3-15)

Following a similar line of analysis to that in the proof of Theorem 2.2, we can

show that an optimal solution k� can be computed as:

k� = min

(&
2(n + 1)

p
h2� 2 + 4h� (n + 1) + h�

'

; n

)

: (2.3-16)

2.4 Utility Maximization

In Section 2.3, our study has been focused on minimizing the expected AoI at the

user's side. For certain practical applications, however, the user might be more inter-

ested in maximizing the utility that is dependent on the AoI rather than minimizing

the AoI itself. Such an AoI-based utility function can serve as aQuality of Experi-

ence (QoE)metric, which measures the user's level of satisfaction with respect to the

freshness of received information. To that end, in this section we will investigate the

utility maximization problem. Speci�cally, we will consider both cases of known and

unknown system parameters (i.e., the updating rate and the mean response time) in

21

Sections 2.4.2 and 2.4.3, respectively.

2.4.1 Utility Function

Consider a functionU : [0; 1) ! [0; 1), which maps the AoI at the user's side

under the (n; k) replication scheme (i.e., �(k)) to a utility obtained by the user. Such

a function U(�) is called a utility function. Similar to Sun et al. (2017), we assume that

the utility function U(�) is measurable, non-negative, and non-increasing. The speci�c

form of the utility function is determined by the application under consideration in

practice.

We consider the same model as in Section 2.2. From the analysis in the proof

of Theorem 2.1, it is easy to see that the AoI, �(k), is the sum of k + 1 indepen-

dent exponential random variables, which areR(j) � R(j � 1) for j 2 f 1; 2; : : : ; kg, and

mini 2K � i (s). Therefore, the AoI, �(k), is a hyperexponential random variable (or

a generalized Erlang random variable). The probability density function of a hyper-

exponential random variable with rate paramters� 1; � 2; : : : ; � r can be expressed as

f (x) =
P r

i =1 wi � i e� � i x , where � i is the rate of the i -th exponential distribution and

wi =
Q r

j =1 ;j 6= i
� j

� j � � i
. For �(k), we haver = k + 1, and the rate parameters� i 's are:

� i = (n + 1 � i)� for i = 1; 2; : : : ; k and � k+1 = k� . Then, the expected utility can

be calculated as:

E[U(�(k))] =
Z 1

0
U(x)

k+1X

i =1

wi � i e� � i xdx: (2.4-17)

Now, the problem is to �nd the optimal value k� that achieves the maximum expected

utility:

k� 2 argmax
k2f 1;2;:::;n g

E[U(�(k))] : (2.4-18)

In the following subsections, we will consider a utility that is an exponential

function of the negative AoI and investigate the utility maximization problem when

the system parameters (i.e., the updating rate and the mean response time) are known

22

and unknown, respectively.

2.4.2 Case with Known System Parameters

In this subsection, we consider a speci�c utility function in the following exponen-

tial form:

U(�(k)) = e� �(k) : (2.4-19)

The above exponential utility function implies that the user receives the full utility

when the AoI is zero (which is an ideal case) and the utility decreases exponentially

as the AoI increases. Such a utility function decreases very quickly with respect

to the AoI and is desirable for real-time applications that require extremely fresh

information to provide satisfactory service to the users (e.g., stock quotes service and

high-frequency stock trading).

Assuming that the updating rate and the mean response time are known, we �rst

derive a closed-form formula for computing the expected utilityE[U(�(k))]. Then,

we �nd an optimal k� that yields the maximum expected utility. The main results of

this subsection are stated in Theorems 2.4 and 2.5. The proofs of Theorems 2.4 and

2.5 follow a similar line of analysis to that for Theorems 2.1 and 2.2, respectively.

Theorem 2.4. Under the (n; k) replication scheme, the expected utility can be ex-

pressed as:

E[U(�(k))] =
k�

k� + 1

kY

j =1

(n + 1 � j)�
(n + 1 � j)� + 1

: (2.4-20)

Proof. Note that using Eq. (2.4-17), the expected utility can be computed based

on the probability density function of the AoI. For the exponential utility function

(2.4-19), however, we have the following more intuitive way of computing the expected

utility.

23

To begin with, we rewrite the expected utility as follows:

E[U(�(k))] = E
�
e� �(k)

�

= E
�
e� R (k) � min i 2K � i (s)

�

= E
�
e� R (k)

�
� E

�
e� min i 2K � i (s)

�
;

(2.4-21)

where the �rst equality is from Eq. (2.4-19), the second equality is from Eq. (2.3-5),

and the last equality is due to thatR(k) and mini 2K � i (s) are independent.

Then, we want to derive the expression for each of the two terms in the last line

of Eq. (2.4-21).

First, we want to showE[e� R (k)] =
Q k

j =1
(n+1 � j)�

(n+1 � j)� +1 . Note that for an exponential

random variableX with mean 1=� , it is easy to show the following:

E[e� X] =
�

� + 1
: (2.4-22)

Also, recall from the proof of Theorem 2.1 thatR(j) � R(j � 1) is an exponential random

variable with mean 1
(n+1 � j)� for any j 2 f 1; 2; : : : ; ng. In addition, the exponential

random variables (R(j) � R(j � 1))'s are all independent. Then, we can derive the

following:

E
�
e� R (k)

�
= E

h
e�

P k
j =1 (R (j) � R (j � 1))

i

= E

"
kY

j =1

e� (R (j) � R (j � 1))

#

=
kY

j =1

E
�
e� (R (j) � R (j � 1))

�

=
kY

j =1

(n + 1 � j)�
(n + 1 � j)� + 1

;

(2.4-23)

24

where the last equality is from Eq. (2.4-22).

Next, we want to showE
�
e� min i 2K � i (s)

�
= k�

k� +1 . Recall that mini 2K � i (s) is an

exponential random variable with mean 1
k� . Then, this is straightforward due to

Eq. (2.4-22).

Combining the above results, we complete the proof.

Theorem 2.5. An optimal solution k� to Problem (2.4-18) (i.e., achieving the max-

imum expected utility) can be computed as:

k� = min

(&
2�n

p
(� + � + 1) 2 + 4��n + (� + � + 1)

'

; n

)

: (2.4-24)

Proof. We �rst de�ne r (k) as the ratio of the expected utility between the (n; k + 1)

and (n; k) replication schemes, i.e.,r (k) , E[U(�(k + 1))] =E[U(�(k))] for any k 2

f 1; 2; : : : ; n � 1g. From Eq. (2.4-20), we have the following:

r (k) =
(k + 1)(k� + 1)
k ((k + 1) � + 1)

�
(n � k)�

(n � k)� + 1

=
�

1 +
1

�k 2 + (� + 1) k

�
�

�
1

n� k + �
;

(2.4-25)

for any k 2 f 1; 2; : : : ; n � 1g. It is easy to see thatr (k) is a monotonically decreasing

function of k.

We now extend the domain ofr (k) to the set of positive real numbers and want

to �nd k0 such that r (k0) = 1. With some standard calculations and dropping the

negative solution, we derive the following:

k0 =
2�n

p
(� + � + 1) 2 + 4��n + � + � + 1

: (2.4-26)

Next, we discuss two cases: (i)k0 > n � 1 and (ii) 0 < k 0 � n � 1.

In Case (i), we havek0 > n � 1. This implies that r (k) = E[U(�(k+1))] =E[U(�(k))] >

25

1 for all k 2 f 1; 2; : : : ; n � 1g, as r (k) is monotonically decreasing. Hence, the ex-

pected utility E[U(�(k))] is a monotonically increasing function fork 2 f 1; 2; : : : ; ng.

Therefore,k� = n must be the optimal solution.

In Case (ii), we have 0< k 0 � n � 1. We consider two subcases:k0 is an integer

in f 1; 2; : : : ; n � 1g and k0 is not an integer.

If k0 is an integer inf 1; 2; : : : ; n� 1g, we haver (k) = E[U(�(k+1))] =E[U(�(k))] �

1 for k 2 f 1; 2; : : : ; k0g and r (k) = E[U(�(k + 1))] =E[U(�(k))] < 1 for k 2 f k0 +

1; : : : ; ng, asr (k) is monotonically decreasing. Hence, the expected utilityE[U(�(k))]

is �rst increasing (for k 2 f 1; 2; : : : ; k0g) and then decreasing (fork 2 f k0+1; : : : ; ng).

Therefore, there are two optimal solutions:k� = k0 and k� = k0+ 1 since E[U(�(k0+

1))] = E[U(�(k0))] (due to r (k0) = 1).

If k0 is not an integer, we haver (k) = E[U(�(k + 1))] =E[U(�(k))] > 1 for k 2

f 1; 2; : : : ; bk0cg and r (k) = E[U(�(k + 1))] =E[U(�(k))] < 1 for k 2 fd k0e; : : : ; ng, as

r (k) is monotonically decreasing. Hence, the expected reward� (k) is �rst increasing

(for k 2 f 1; 2; : : : ; bk0c; dk0eg) and then decreasing (fork 2 fd k0e; : : : ; ng). Therefore,

k� = dk0e must be the optimal solution.

Combining two subcases, we havek� = dk0e in Case (ii). Then, combining Cases

(i) and (ii), we have k� = min fdk0e; ng = min
��

2�np
(� + � +1) 2+4 ��n + � + � +1

�
; n

�
.

Remark. Similar to the AoI minimization problem studied in Section 2.3.2, there

are also two interesting special cases: (i) waiting for the �rst response only (i.e.,

k� = 1) and (ii) waiting for all the responses (i.e.,k� = n). In Corollary 2.6, we

provide a su�cient and necessary condition for each case.

Corollary 2.6. (i) k� = 1 is an optimal solution to Problem(2.4-18) if and only if

� � � (n� 1)
2 � 1

2 ; (ii) k� = n is an optimal solution to Problem(2.4-18) if and only if

� � �
n(n� 1) � 1

n .

Proof. The proof follows straightforwardly from Theorem 2.5. A little thought gives

26

the following: k� = 1 is an optimal solution if and only if r (1) � 1. Solving r (1) =

2(� +1)
(2� +1) � (n� 1)�

(n� 1)� +1 � 1 gives� � � (n� 1)
2 � 1

2 . Similarly, k� = n is an optimal solution if and

only if r (n � 1) � 1. Solvingr (n � 1) = n((n� 1)� +1)
(n� 1)(n� +1) � �

� +1 � 1 gives� � �
n(n� 1) � 1

n .

2.4.3 Case with Unknown System Parameters

In Section 2.4.2, we have solved the utility maximization problem in Eq. (2.4-18),

assuming the knowledge of the updating rate (i.e.,�) and the mean response time

(i.e., 1=�). Similar assumptions are also made for obtaining a good understanding of

the studied theoretical problems (see, e.g., Kosta et al. (2017); Sun et al. (2017) and

references therein). However, such information is typically unavailable to the user

in practice. For example, the user generally has no knowledge about the updating

processes between the information source and the servers. Moreover, it is di�cult, if

not impossible, for the user to estimate the updating rate as the user has no direct

observation about the updating processes. Therefore, an interesting and important

question naturally arises: How to maximize the expected utility in the presence of

unknown system parameters?

To that end, in this subsection we aim to address the above question through

the design of learning-based algorithms. Speci�cally, we will formulate the utility

maximization problem in the presence of unknown system parameters as a stochastic

Multi-Armed Bandit (MAB) problem. To the best of our knowledge, this is the �rst

work that leverages the MAB formulation to study the AoI problem.

In the following, we will �rst brie
y introduce the basic setup of the stochastic

MAB model. Then, we formulate the utility maximization problem with unknown

system parameters as an MAB problem and explain the special linear feedback graph

of our problem, which can be exploited to achieve improved performance guarantees

compared to the classic MAB setting (Section 2.4.3). Finally, we discuss various MAB

algorithms that can be applied to solve our problem (Section 2.4.3).

27

The MAB Model

The MAB model has been widely employed for studying many sequential decision-

making problems of practical importance (clinical trials, network resource allocation,

online ad placement, crowdsourcing, etc.) with unknown parameters (see, e.g., Lai

& Robbins (1985); Gittins et al. (2011); Bubeck & Cesa-Bianchi (2012); F. Li et al.

(2019)).

In the classic MAB model, there is one player who is faced withn options, which

are often called arms in the MAB literature. In each round, the player can choose to

play one arm and receives the reward generated by the played arm. The reward of

playing arm k in round t is a random variable between 0 and 1, which is denoted by

X k;t 2 [0; 1]. We assume that the rewards of playing an arm arei.i.d. over time. Let

� k be the mean reward of armk; let � � be the highest mean reward among all the

arms, i.e., � � , maxk � k . The speci�c distributions of X k;t 's and the values of� k 's

are unknown to the player.

A policy � chooses an armI t to play in each roundt 2 f 1; 2; : : : ; Tg, whereT is the

length of the time horizon. The objective here is to design a policy that maximizes

the expected cumulative reward from round 1 to roundT, i.e.,
P T

t=1 � I t . This is

equivalent to minimizing the regret, which is the di�erence between the expected

cumulative reward obtained by an optimal algorithm that always plays the best arm

and that of the considered algorithm. We useR� (T) to denote the regret, which is

formally de�ned as follows:

R(T) , � � T �
TX

t=1

� I t : (2.4-27)

In order to maximize the reward or minimize the regret, the player is faced with

a key tradeo�: how to balanceexploitation (i.e., playing the arm with the highest

empirical average reward) andexploration (i.e., trying other arms which could po-

28

tentially be better)? There exist several well-known algorithms that can address this

challenge. We will discuss them in Section 2.4.3.

The MAB Formulation of the Utility Maximization Problem

We now want to formulate the utility maximization problem with unknown system

parameters as an MAB problem. Note that when the updating rate and the mean

response time are unknown, one cannot easily derive a closed-form formula for the

expected utility and �nd the optimal number of responsesk� as in Section 2.4.2.

Therefore, for each sent request the user needs to decide how many responses to

wait for in a dynamic manner. In this case, we can naturally formulate the utility

maximization problem using the MAB model: making a decision for each sent request

corresponds to a round; waiting fork responses corresponds to playing armk. Let

� t (k) be the AoI corresponding to thet-th request at the user's side when the user

waits for k responses. Then, the utilityU(� t (k)) = e� � t (k) 2 [0; 1] corresponds to

the obtained rewardX k;t of playing arm k in round t. The mean reward of armk is

� k = E[X k;t] = E[e� � t (k)].

Recently, MAB models with side observations (also called graphical feedback) have

been studied (see, e.g., Mannor & Shamir (2011); Caron et al. (2012); Buccapatnam et

al. (2017)). In these models, playing an arm not only reveals the reward of the played

arm but also that of some other arm(s). Such side observations are typically encoded

in a feedback graph, where each node corresponds to an arm and each directed edge

(a; b) means that playing arma also reveals the reward of armb.

We would like to point out that the utility maximization problem with unknown

system parameters can be formulated as an MAB problem with graphical feedback.

Moreover, the feedback graph of this problem has a special linear structure as illus-

trated in Fig. 2.4. Speci�cally, note that upon receiving thek-th response, the user

has the information about the �rst k � 1 responses. Thus, the user can compute

29

Figure 2.4: Linear feedback graph where each nodek 2 f 2; 3; : : : ; ng has a directed
edge to every node inf 1; 2; : : : ; k � 1g and node 1 does not have any outgoing edge

the AoI as well as the utility she would have obtained if she had waited for onlyk0

responses for allk0 < k . Mapping this property to the MAB model, it means that

playing arm k reveals not only the reward of armk but also that of arm k0 for all

k0 < k . Such special properties can be leveraged to design learning algorithms that

perform exploration more e�ciently and thus lead to improved regret upper bounds.

Algorithms

There exist several well-known algorithms that can solve the classic MAB problem,

including � t -Greedy Auer et al. (2002) and Upper Con�dence Bound (UCB) Lai &

Robbins (1985); Auer et al. (2002); Auer & Ortner (2010). In the sequel, we will

introduce these algorithms and explain how to leverage the side observations and the

special linear structure of the graphical feedback to design algorithms with improved

regret upper bounds.

We begin with � t -Greedy, which is a very simple algorithm and performs explo-

ration explicitly. Speci�cally, it plays the arm with the highest empirical average

reward with probability � t (i.e., exploitation) and plays a random arm with proba-

bility 1 � � t (i.e., exploration), where� t decreases asO(1=t). When side observations

are available, one can incorporate additional samples from side observations into the

estimate of the empirical average reward of non-played arms. We call� t -Greedy

that exploits the side observations as� t -Greedy-N and summarize it in Algorithm 1.

Apparently, � t -Greedy-N accelerates the exploration process by taking advantage of

30

additional samples from side observations and is expected to outperform� t -Greedy.

As pointed in classic MAB analysis, the tradeo� is between exploring the environ-

ment and taking the empirically best arm. To get a sample of one arm, the arm has

to be played since all the arms are independent. However, as we describe in Section

xxx, in our model with side observations, we can get the sample of armk by playing

any arm i in Sk = f k; k + 1; : : : ; ng. We call Sk as the support set of armk. The in-

sight to improve the performance of a policy is that in the exploration, a good policy

should tend to select an arm with larger index since it will generate more samples.

Such an insight can be expressed by the following Linear Programming (LP) problem

Buccapatnam et al. (2017), which captures the graph structure information,

P : min
X

k

zk

s:t:
X

i 2S k

zi � 1; 8 k 2 K (2.4-28)

zk � 0; 8 k 2 K

Let f z�
kg be the optimal solution for the above LP. Under the Pull model, it is easy

to get the following,

Lemma 2.7. The optimal solution for P is

z�
k =

8
><

>:

1; k = n

0; k 6= n
(2.4-29)

The optimal solution f z�
kg is used as a weight for each arm. For an armk with

large z�
k , we tend to select it more often for exploration. The solution provided in

Eq. (2.4-29) implies that we should only select armn to collect more samples. This

is also what the algorithms do in the exploration phase. Next, we will consider

two algorithms that are proposed in Buccapatnam et al. (2017), which take use of

31

Algorithm 1 � t -Greedy-N

1: Input: c > 0 and 0< d < 1.
2: for t = 1; 2; : : : ; T do
3: Let � t , minf 1; cn

d2 t g and i � 2 argmaxj �x j (t), where �x j (t) is the empirical average
reward of arm j .

4: Play arm I t such that

I t =
�

any i; with probability � t ;
i � ; with probability 1 � � t :

(2.4-30)

5: Update �x j (t) for each j 2 f 1; 2; : : : ; ng, accounting for all the observations
(including side observations).

the graph structure of the model by applying the LP in Eq. (2.4-28). These two

algorithms are generalizations of the classic Greedy and UCB algorithms Auer et al.

(2002).

� t -Greedy-LP The � t -Greedy-LP algorithm is inspired by the Greedy algorithm

Auer et al. (2002) for the classic MAB problem. Both algorithms use a policy that

consists of exploration iterations and exploitation iterations and the probability of

exploration decreases witht. Considering the existing side observations, we give a

modi�ed version of � t -Greedy algorithm: � t -Greedy-N as presented in 1. Besides side

observations, the� t -Greedy-LP algorithm takes the graph structure into consideration

and di�ers from � t -Greedy-N in the exploration iteration, where it picks the arm

according to f z�
kg. For our model, z�

k = 1 only when k = n. Therefore, the policy

would only choose to play armn in an exploration iteration. The details of the policy

is described in Algorithm 2.

Note there are two parameters used in the� t -Greedy-LP algorithm. We useB =

f k j � k 6= � � g to denote the set of all sub-optimal arms. Let� k denote the di�erence

between the rewards of optimal and sub-optimal arms, i.e.,

� k = � � � � k ; for all i 2 B : (2.4-32)

32

Algorithm 2 � t -Greedy-LP

1: Input: c > 0; 0 < d < 1.
2: for t = 1; 2; : : : ; N do
3: Update �xk(t) for eachk 2 K , where �xk(t) denotes the empirical average reward

of arm k.
4: Let � (t) = min(1 ; c

d2 t) and �k� 2 argmaxk xk(t).
5: Play the arm with the following randomized policy

I t =
�

n; with probability � (t)
�k� ; with probability 1 � � (t)

(2.4-31)

Algorithm 3 UCB-N

1: for t = 0; 1; 2: : : : do
2: Selection: Play the arm k such that

k� 2 argmax
k

�xk(t) +

s
2 logt
Tk(t)

;

where �xk(t) is the empirical average reward of armk and Tk(t) is the total
number of observations for armk up to round t.

3: Updating: Update �x j (t) and Tj (t) for all j such that j � k� .

The following lemma bounds the expected regret of the� t -Greedy-LP algorithm:

Lemma 2.8. If the parametersc and d satisfy

0 < d < min
k2B

� k and c > max(2�d 2=r; 4�)

for any � > 1, then, the expected regret at timeN for the � t -Greedy-LP algorithm is

at most
c�n

d2
log(N) + O(n); (2.4-33)

where theO(n) term is only dependent on the number of arms and at most

X

k2B

�
� 2cn� k

3�d 2
(et

0
)cr=�d 2

+
2� 2

3� k
(et

0
)c� 2

k =2�d 2

�
: (2.4-34)

The parameters aret
0
= c

d2 ; r = 3(� � 1)2

8� � 2 .

33

Algorithm 4 UCB-LP

Require: Number of serversn; Number of roundsN
Ensure: Set B0 = f 1; 2; : : : ; ng; ~� 0 = 1

1: for m = 0; 1; 2: : : : do
2: Arm selection: Let n(m) = d2 log(N ~� 2

m)
~� 2

m
e

3: if jBm j = 1 then
4: Play the arm in Bm until N .
5: else if 2jBm j~� m � 1 then
6: Play the arm n for [n(m) � n(m � 1)] rounds.
7: else
8: For each armk in Bm , play k for [n(m) � n(m � 1)] rounds.
9: Update �xk(m) and Tk(m) for each armk, where �xk(m) is the empirical average

reward of arm k; and Tk(m) is the total number of observations for armk up
to stagem.

10: Arm elimination:
11: To get Bm+1 , delete all the armsk in Bm such that

�xk(m) +

s
log(N ~� 2

m)
2Tk(m)

< max
j 2 B m

�x j (m) �

s
log(N ~� 2

m)
2Tj (m)

(2.4-35)

12: ~� m+1 = ~� m=2

In Lemma 2.8 we can see that the �rst part of the upper bound is independent on

the number of arms in the system. However, there is one disadvantage about the� (t)-

Greedy-LP algorithm. To guarantee the performance of (2.4-33), parameterd should

satisfy the condition d < mink2B � k which depends on the knowledge of mink2B � k . It

is usually hard to get this value even when the distributions of updating process and

response time are known.

UCB-LP Inspired by the classic UCB Auer et al. (2002) and improved-UCB Auer

& Ortner (2010) algorithms, a new policy that also explores the side observations is

proposed in Buccapatnam et al. (2017) named UCB-LP. A intuitive generalization of

the UCB algorithm is the UCB-N Caron et al. (2012), which takes the side observation

into consideration. The details of the algorithm is provided in Algorithm 3. UCB-LP

further takes the graph structure into consideration by using the optimal solution

f z�
kg. Compared with the � t -Greedy-LP algorithm, UCB-LP has the advantage that

34

(a) Expo. response time (b) Uniform response time (c) Gamma response time

Figure 2.5: Simulation results of average AoI vs. the number of responsesk for three
di�erent types of response time distributions.

it does not require the knowledge of� k while still can achieve similar asymptomatic

regret bound. Under some simple assumptions, the upper bound of regret for UCB-LP

can be written as,

O(log N) + O(n): (2.4-36)

The details of the policy are provided in Algorithm 4. Note that UCB-LP still requires

to know the time horizon N to determine the length of each stage. Here we want to

point out that UCB-LP is originally designed for general graphs. It takes a \selection-

and-elimination" process in decision making. Due to the special structure of our

model as shown in Fig. 2.4, UCB-LP may lead to worse performance than UCB-N in

practice. The detailed results are provided in Section 2.5.2.

2.5 Numerical Results

In this section, we perform extensive simulations to evaluate the reward of AoI in

an information-update system under the (n; k) replication scheme. The results are

presented in Section 2.5.1 and 2.5.2, corresponding to the settings where the system

parameters are known or unknown, respectively.

2.5.1 Simulation with Known System Parameters

We �rst describe our simulation settings. Throughout the simulations, the updat-

ing process at each server is assumed to be Poisson with rate� and is i.i.d. across

35

(a) Impact of updating rate
� .

(b) Impact of mean response
time 1=� .

(c) Impact of total number of
serversn.

Figure 2.6: Impact of the system parameters on the optimalk� and the corresponding
improvement ratio. We consider the exponential distribution for the response time.
In (a), we �x � = 1; n = 20; in (b), we �x � = 1; n = 20; in (c), we �x � = 1; � = 10.

the servers. The user's request for the information is generated at times, which

is uniformly selected from the time interval [0; N], where we setN = 106=� . This

implies that each server has a total of 106 updates on average.

Next, we evaluate the AoI performance through simulations for three types of

response time distribution:exponential, uniform, and Gamma. First, we assume that

the response time is exponentially distributed with mean 1=� . Fig. 2.5a presents how

the average AoI changes as the number of responsesk varies in three representative

setups, where each point represents an average of 103 simulation runs. We also

include plots of our theoretical results (i.e., Eq. (2.4-20)) for comparison. A crucial

observation from Fig. 2.5a is that the simulation results match perfectly with our

theoretical results. In addition, we observe three di�erent behaviors of the average

AoI performance: (i) If the inter-update time is much smaller than the response time

(i.e., � = 100, � = 2), then the average AoI increases ask increases and thus, it is

not bene�cial to wait for more than one response. (ii) In contrast, if the inter-update

time is much larger than the response time (i.e.,� = 1, � = 200), then the average

AoI decreases ask increases and thus, it is worth waiting for all the responses so as to

achieve a smaller average AoI. (iii) When the inter-update time is comparable to the

response time (i.e.,� = 1, � = 5), then as k increases, the AoI would �rst decrease

and then increase. On the one hand, whenk is small, the freshness of the data at the

36

servers dominates and thus, waiting for more responses helps reduce the average AoI.

On the other hand, whenk becomes large, the total waiting time becomes dominant

and thus, the average AoI increases ask further increases.

In Section 2.3.3, we discussed the extension of our theoretical results to the case

of uniformly distributed response time. Hence, we also perform simulations for the

response time uniformly distributed in the range of [12� ; 3
2�] with mean 1=� . Fig. 2.5b

presents the average AoI as the number of responsesk changes. In this scenario, the

simulation results also match perfectly with the theoretical results (i.e., Eq. (2.3-15)).

Also, we observe a very similar phenomenon to that in Fig. 2.5a on how the average

AoI varies ask increases in three di�erent simulation setups.

In addition, Fig. 2.5c presents the simulation results for the response time with

Gamma distribution, which can be used to model the response time in relay network-

sNajm & Nasser (2016). Speci�cally, we consider a special class of the Gamma(r; �)

distribution that is the sum of r i.i.d. exponential random variables with mean�

(which is also called the Erlang distribution). Then, the mean response time 1=� is

equal to r� . We �x r = 5 in the simulations. Although we are unable to derive ana-

lytical results in this case, the observations are similar to that under the exponential

and uniform distributions.

Finally, we investigate the impact of the system parameters (the updating rate,

the mean response time, and the total number of servers) on the optimal number

of responsesk� and the improvement ratio, de�ned as � , E[�(1)] =E[�(k�)]. The

improvement ratio captures the gain in the AoI reduction under the optimal scheme

compared to a naive scheme of waiting for the �rst response only.

Fig. 2.6a shows the impact of the updating rate� . We observe that the optimal

number of responsesk� decreases as� increases. This is because when the updating

rate is large, the AoI diversity at the servers is small. In this case, waiting for more

responses is unlikely to receive a response with much fresher information. Therefore,

37

Figure 2.7: Average reward of (n; k) replication scheme

the optimal scheme will simply be a naive scheme that waits only for the �rst response

when the updating rate is relatively large (e.g.,� = 2). Fig. 2.6b shows the impact

of the mean response time 1=� . We observe that the optimal number of responses

k� increases as� increases. This is because when� is large (i.e., when the mean

response time is small), the cost of waiting for additional responses becomes marginal

and thus, waiting for more responses is likely to lead to the reception of a response

with fresher information. Fig. 2.6c shows the impact of the total number of servers

n. We observe that both the optimal number of responsesk� and the improvement

ratio increase with n. This is because an increased number of servers leads to more

diversity gains both in the AoI at the servers and in the response time.

2.5.2 Simulation with Unknown System Parameters

In this section, we consider an information-update system withn = 20 servers,

where the updating process at each server is assumed to be Poisson with rate� and

the response time is exponentially distributed with mean 1=� . However, the system

parameters are unknown to the decision maker a priori.

We take the learning approach to estimate the expected reward of (n; k) replication

38

(a) � = 1 ; � = 200 (b) � = 1 ; � = 5 (c) � = 100; � = 2

Figure 2.8: Performance comparison between Greedy,� t -Greedy-LP, UCB, UCB-N,
and UCB-LP.

policies for di�erent k. Each (n; k) policy is viewed as one arm in the MAB problem.

The AoI is mapped to a reward via an exponential reward function as described

in Eq. (2.4-19). Therefore, the reward of playing armk is some distribution with

unknown mean� k as in (2.4-17). We consider the two classes of policies described

in Section xxx, i.e., Greedy-based (� t -Greedy-N, and � t -Greedy-LP), where the� t -

Greedy-N policy is the classic Greedy combining side observations, and UCB-based

(UCB-N and UCB-LP) policies. For the two classes, we record the evolution of

cumulative regrets for 106 rounds. We also include the classic UCB and� t -Greedy

algorithms to show how the performance can be improved by considering the side

observations and graph structure of the problem. All the results are the average over

10 independent trails.

Generally, the di�erence between the classic policies for MAB problem and other

policies modi�ed for AoI utility optimization are in two folds. First, there are side

observations in the AoI optimization problem under Pull model. It is not hard to

see that we can always improve the performance of the policies by exploring the side

observations. Our theoretical analysis already shows that the modi�ed policies have

better regret upper bound and this is also veri�ed by our numerical results. Second,

when we represent the side observations as a graph, the model of our problem has a

very special structure. However, it is usually not easy to �nd a good strategy that can

39

very well utilize the graph structure. As we will show in this section, some algorithms

that take use of the graph structures and perform well in general graphs, such as

UCB-LP, fail to beat other algorithms in our special structure.

We conduct simulations under three settings: i)n = 20; � = 1; � = 200; ii)

n = 20; � = 1; � = 5; iii) n = 20; � = 100; � = 2. Fig. 2.8 shows the performance

of � t -Greedy-based and UCB-based algorithms. For the classic� t -Greedy, � t -Greedy-

N and � t -Greedy-LP policy, we use the parametersd = 0:05 and c = 1 in all the

three settings. First, we can observe that all the policies performs di�erently under

di�erent settings and classic UCB policies have the worst regret performance among

all policies. This is apparently because it does not use the side observations to collect

more samples. On the other hand,� t -Greedy-based policies outperform UCB-based

policies overall in our particular model. The� t -Greedy-LP policy taking into account

side observations and the speci�c graph structure, however, is not guaranteed to

perform well in all cases. This phenomenon is caused by our selecting armn for

exploration, which could be the \worst" arm and bring a very big regret especially

when � is large and� is relatively small. Besides that, the regrets of UCB-LP has

a special pattern. The regrets �rst increase very fast and then remain the same for

the rest of the time. This is because UCB-LP takes a \selection-and-elimination"

process. It �rst spends time on the arms with more side observations, i.e., arms with

large index number, to get enough samples. Then, it will converge to the optimal

arm after sub-optimal arms are eliminated. Overall, from Fig. 2.8,� t -Greedy-N has

a good performance no matter what the system parameters.

2.6 Conclusion

In this paper, we for the �rst time propose thePull model for the AoI optimization

problem. Given di�erent settings, we provide two set of di�erent solutions. First, we

propose to use replications to reduce AoI and get the closed-form formulation of the

40

expected AoI under the case where the updating process and response time are known.

Based on this result, we �nd the optimal policy that minimizes the expected AoI.

Considering a utility function of AoI, we also provide an optimal (n; k �) replication

scheme to maximize the utility. When the system parameters are unknown, we regard

utility optimization as MAB problem and apply the learning approach to achieve it.

Our model has a very special side-observations structure. By applying the algorithms

modi�ed from MAB problems, we can get a lower regret bound that is not dependent

on the number of arms, i.e.,n. We want to point out that some of the algorithms

still require certain preknowledge of the system, such as� min or T. We believe that

the structure information is still not full utilized here, such as unimodal property

of our arms. It would be interesting to design an algorithm that do not need such

preknowledge but can still achieve the same performance by further exploring the

special structure of our model.

41

CHAPTER 3

TOWARDS OPTIMAL TRADEOFF BETWEEN

DATA FRESHNESS AND UPDATE COST

3.1 Introduction

Over the last decade, we have witnessed signi�cant advances in smart devices and

Internet of Things (IoT) Cisco Visual Networking Index: Global Mobile Data Tra�c

Forecast Update, 2015-2020(2016), which support a plethora of real-time services.

Age of Information (AoI) has recently emerged as an important metric to measure

the timeliness/freshness performance of these time-sensitive data-driven applications

S. Kaul et al. (2012); S. Kaul, Gruteser, et al. (2011); Sang et al. (2017b); Liu & Ji

(2019); Ling & Mi (2004). One practical example is the sensor networks for environ-

mental/health monitoring Bacinoglu et al. (2018). A central server is connected to

multiple types of sensors to monitor the physical conditions (temperature, humidity,

air quality, etc.) of the environment. Other applications may send requests to the

server to query the information for analysis or control over the environment. Similar

applications include news feeds, weather updates, and stock quote services.

Ever since the concept of AoI was introduced in S. Kaul, Gruteser, et al. (2011);

S. Kaul et al. (2012), the study on the AoI has attracted a lot of research interests.

There is a large body of work that provides detailed analyses on the AoI performance

of information-update systems under di�erent queueing models (M/M/1, M/D/1,

etc.) and scheduling policies (FCFS, LCFS, etc.) Costa et al. (2014); Najm & Nasser

(2016). Another important topic is the AoI minimization problem. Compared with

42

classical metrics such as throughput and delay, it has been shown in several studies

Sun et al. (2017); Yates (2015) that the AoI metric exhibits very di�erent properties

in queueing systems. For example, under the assumption of exponentially distributed

service time, an optimal scheduling policy that minimizes the AoI is not necessarily

throughput-optimal or delay-optimal; counter-intuitively, it sometimes may not even

be work-conserving Sun et al. (2017). Another example is the \Pull Model" proposed

in Sang et al. (2017b), where the replication scheme reveals the power of waiting for

more than one response in minimizing the AoI, which is very di�erent from other

applications, such as cloud computing systems, where waiting for the �rst response

is su�cient.

One particular type of optimization problem, which is similar to our work, is the

AoI minimization problem with certain constraints. These constraints can be viewed

as a special type of update cost. For example, in wireless networks, the update of

data consumes wireless channel resources. Therefore, the number of packets that can

be transmitted depends on the interference model Lu et al. (2018). Similarly, for

caching services, the cache server can only update certain contents at a time due to

the capacity constraint Yates et al. (2017); Zhong et al. (2018b). Another example is

the energy constraint Wu et al. (2018); Bacinoglu et al. (2018); Arafa et al. (2018),

which is common in energy-constrained IoT systems. In these models, the update

cost usually appears as a constraint of the optimization problem. It is shown that for

this type of application, simple threshold-based policies have signi�cant advantages

over other policies Arafa et al. (2018). However, determining the optimal value of

the threshold is generally di�cult Bacinoglu et al. (2018). Besides, the optimality of

the threshold-based policies has been established among only certain types of policies

(e.g., uniformly bounded policy Wu et al. (2018)).

Note that capacity or energy is a hard constraint, i.e., when there is not enough

energy, no update can be performed. However, in many applications, the update cost

43

can be viewed as a price that the server is willing to pay for service quality. Take

the environmental monitoring system for example. The server may choose to update

more frequently at a larger update cost in order to provide the clients with fresher

data. The objective is to �nd the sweet point that minimizes the total cost of update

and information staleness, which we consider in our work. A similar approach is

considered in Ling & Mi (2004). However, they only consider the periodic update

policies and provide the optimal update frequency. In contrast, we consider the

set of all the online policies, propose a threshold-based policy, and prove its overall

optimality among all the online policies.

We summarize our key contributions as follows.

First , we provide a detailed analysis on the tradeo� between the data freshness

and the update cost in information-update systems. We formulate the problem with

an objective function that is the sum of the total update cost and the total staleness

cost.

Second, we propose several guidelines for the design of update policies that achieve

an optimal tradeo� between data freshness and update cost. We show that 1) the

information provider should update the data only at a point when it receives a request,

and 2) the server should always update the data when the AoI is no smaller than the

update cost. By following these guidelines, an update policy can achieve a lower total

cost.

Third , under the assumption of Poisson request arrival process, we derive the

closed-form expression of the average cost of a class of threshold-based policies. More

interestingly, we show that the optimal threshold-based policy is also an overall opti-

mal policy among all the online update policies.

Finally, we perform extensive simulations to verify our theoretical results and

evaluate the performance of our proposed policy compared with some baseline policies.

The numerical results also provide important insights towards the design of update

44

Figure 3.1: The structure of the model we consider.

policy in more general settings.

The remainder of this chapter is organized as follows. The system model is de-

scribed in Section 3.2. Several guidelines of designing update policies are provided in

Section 3.3. Then, in Section 3.4, we present our main results and show the optimal-

ity of the threshold-based policy that we propose. Finally, we present the numerical

results in Section 3.5 and conclude our work in Section 3.6.

3.2 System Model and Problem Formulation

While most of the previous work focuses on the queueing models, in many information-

update systems (e.g., IoT applications), the queueing e�ect is not the major concern

and sometimes can be neglected. For many types of time-sensitive information, such

as the environmental status, the packet size is relatively small and does not require any

processing. Therefore, we consider a model where the key tradeo� comes from the up-

date cost, since the update operation usually requires certain resources. Speci�cally,

we consider an information-update system that consists of one information source,

one information provider, and multiple clients. The information provider can directly

communicate with the source and update the data with the latest copy. The clients

need to send requests to the provider to obtain the data. Fig. 3.1 shows the structure

of such a model. This model captures the nature of many types of time-sensitive

data-driven applications. For example, the information provider could be a central

45

Figure 3.2: An illustration of the AoI evolution at the server. The server has 3
updates (at u1, u2, and u3) during the process of serving 6 requests (atr1; r2; : : : ; r6).

server that connects to the sensors in an environmental monitoring system. In the

rest of the chapter, we will simply refer to the information provider as theserver and

the users that are interested in the information as theclients, respectively.

The server can update the data at any timet. Let ui denote thei -th update time.

We set u0 = 0 for convenience. We assume that the communication delay between

the server and the information source is negligible. The length of the interval between

two consecutive updates is denoted byX i , ui � ui � 1; i = 1; 2; : : : . Let u(t) be the

most recent update time att, i.e.,

u(t) , max
u i � t

ui : (3.2-1)

The AoI at the server at time t, denoted by �(t), is de�ned as the time elapsed since

the most recent update, i.e.,

�(t) , t � u(t): (3.2-2)

The server can update the data to keep the information fresh. For each update, there

is a constant update costp. After the update, the AoI drops to 0 immediately. An

update policy � is denoted by the update times:� , f ui g1
i =1 .

46

To obtain the information, the clients need to send requests to the server. We

consider the requests from all clients as an aggregated arrival process. Letr j be the

arrival time of the j -th request. We also assume that there is no communication delay

between the server and the clients. For each request, the server replies with the data

that is most recently updated. We de�ne astaleness costof the response which re
ects

the unsatisfaction level of the clients when they receive stale data. The staleness cost

is typically non-decreasing with the AoI. Here we assume that the staleness cost is

equal to the AoI of the response for simplicity. Note that the server can update the

data right before replying to a request to avoid the staleness cost as the AoI drops

to zero immediately after the update. We user +
j to denote the time instance right

after r j . Therefore, the staleness cost should be de�ned as the AoI atr +
j , i.e., �(r +

j).

After the server receives the request atr j , if the server chooses to update the data

before replying to the request, the staleness cost becomes �(r +
j) = 0, and the server

needs to pay an update costp. On the other hand, if the server does not update the

data and replies with the current local data, the staleness cost is �(r +
j) = �(r j).

The AoI evolution under a certain update policy is shown in Fig. 3.2. When the

�rst request arrives at r1, the server replies with the current local data, which incurs

a staleness cost. For the second request that arrives atr2, the server �rst updates

the data and then replies with the fresh data, whose staleness cost is �(r +
2) = 0.

However, this operation incurs an update costp. The second update is performed at

u2 when no request arrives.

Let U(N) be the total number of updates during the process of servingN requests

under a certain update policy,

U(N) , maxf i j ui � rN g: (3.2-3)

Let C(N) denote the total cost of servingN requests, which is de�ned as the sum-

47

mation of the update costs and staleness costs, i.e.,

C(N) ,
NX

j =1

�(r +
j) + pU(N): (3.2-4)

Apparently, the server is in the face of a natural tradeo�. On the one hand, to keep

the AoI at a low level, the server must update the data frequently. On the other

hand, too many updates would incur high update costs. Therefore, the objective is

to �nd an update policy � that can minimize the long term expected average cost(or

average costfor short), which is de�ned as

C � , lim sup
N !1

E
�

C(N)
N

�
: (3.2-5)

The expectation is taken over all possible request arrival sample paths. Note that

in our work, we consider a cost minimization problem. However, it is equivalent to

considering the problem of net utility maximization, where the net utility is the utility

(i.e., negative of the AoI or the staleness cost) minus the update costs. We focus on

the set of online policies, denoted by� , under which the information available at time

t for determining the update time only includes the update history and the arrival

times of requests that arrive beforet. Then, we formulate the problem as follows

min
� 2 �

C � : (3.2-6)

3.3 Algorithm Design

In this section, we propose several guidelines of designing update policies. The

policies that follow these guidelines can achieve a lower total cost than the policies that

do not follow them. We will prove the advantage of these policies by showing sample

path dominance over the policies that do not follow these guidelines. Therefore, we

48

can reduce the search space to a certain class of online policies rather than all the

online policies.

3.3.1 Conservative Policies

In this subsection, we present the �rst guideline for the design of update policies.

As described in Section 3.2, the server can update the data at any time.

However, we show that to achieve a lower total cost, the update policy should

only consider updating the data right after it receives a new request. We call such

policiesConservative Policiesas the server does not update the data when there is

no request. Formally, the set of conservative policies is de�ned as �R ,

� R , f � j ui 2 f r j g1
j =1 for all ig: (3.3-7)

The advantage of conservative policies is shown in the following lemma.

Lemma 3.1. For any update policy� 2 � n� R , there exists a conservative policy

� 0 2 � R that achieves a lower total cost. Speci�cally, given any sample path withN

requests, letC0(N) and C(N) be the total cost of serving theN requests under policy

� 0 and � , respectively. Then,C0(N) < C (N).

Proof. Consider the sequence ofN requests and the updates performed by policy

� . Policy � 0 will be constructed according to the update times of policy� . First,

for all the updates performed by� at request arrival times, � 0 will also update the

data. Let ui be the �rst time that policy � updates the data when no request arrives.

Obviously, the cost to serve the requests arriving between [0; ui] is the same for� and

� 0. Assume that the �rst request after ui arrives at time r j . Policy � 0 di�ers from �

that it does not update the data during [ui ; r j) and only updates the data atr j . Let

ui 0 be the �rst update performed after r j under policy � , i.e., ui 0 � r j . Policy � 0 will

not update between (r j ; ui 0) either since it follows policy� . We can show that policy

49

Figure 3.3: This �gure shows the advantage of a conservative policy� 0 2 � R over
� 2 � n� R . The dashed red line shows how the AoI evolves under policy� 0.

� 0 generates strictly lower cost than� during (ui ; ui 0). This is illustrated through the

evolution of AoI under two policies. Speci�cally, we consider the following two cases.

In the �rst case, only update cost will be reduced. In the second case, both update

cost and staleness cost will be reduced.

Case 1) If ui 0 = r j , under policy � 0 2 � R , all the updates between [ui ; r j) will be

canceled, and only one update will be performed at timer j . Therefore, the update

cost will be reduced. All the requests that arrive between [r j ; ui 0) will be replied with

data of the same AoI.

Case 2) If ui 0 > r j , policy � 0 will update the data at r j , and the AoI will drop to

0. Therefore, all the requests that arrive between [r j ; ui 0) will be replied with data of

lower AoI under policy � 0 compared with� . Then, the staleness cost will be reduced.

Besides that, as stated in case 1, all the updates between [ui ; r j) will also be canceled

if there is any. Fig. 3.3 illustrates the advantage of policy� 0 over � in this case.

Then, we search for the next update performed by� when there is no request

arriving. The same procedure will be applied to construct policy� 0 until all requests

are served. As shown above, policy� 0 reduces the total costC(N) every time when

it postpones the update compared with� .

50

