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ABSTRACT

REPRESENTATIONS OF ALGEBRAS: SOME COMPUTATIONAL

ASPECTS

Kyle Rhoads

MASTER OF SCIENCE

Temple University, August, 2019

Professor Edward S. Letzter, Chair

Let n ∈ Z≥1 and R be a finitely presented k-algebra over a computable field

k. We describe algorithms for computably deciding representation-theoretic

properties of R, following work by Letzter. Among these algorithms is an

algorithm deciding whether an n-dimensional irreducible representation exists.

We also provide a package, finitely-presented-algebra, which implements

these algorithms into the computer algebra system SAGE.
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CHAPTER 1

INTRODUCTION

One of the best ways to understand some algebraic structures is through

their representations. This is true in the case of associative algebras. One

useful class of associative algebras is the class of finitely presented algebras,

which are free algebras modulo finitely generated ideals. This endows the

algebra with a presentation structure, which is desirable as it allows these

algebras to be approached algorithmically, in principle. Interesting examples

include quantum algebras, quaternion algebras, the Weyl algebras, and group

algebras for finitely presented groups.

This leads to a natural question: given a finitely presented algebra R,

what representation-theoretic properties of R can be decided computation-

ally? in [8, 9, 10], Letzter provides algorithms that can, in principle, decide

representation-theoretic properties of finitely presented algebras, when work-
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ing over a computable field. Among these include determining whether an

irreducible representation of R exists in a fixed finite dimension, and deter-

mining if a given map is an irreducible representation.

The purpose of this paper is twofold. First, we lay ground work from

computational commutative algebra and linear algebra, and then present the

representation-theoretic results proved by Letzter. Second, we present our im-

plementations of several of these algorithms into the computer algebra system

SAGE. The organization of the paper is outlined below.

Beginning in Chapter 2, we present the notation and definitions which will

be used throughout. This includes defining computability, defining finitely

presented algebras, and discussing their representations.

In Chapter 3, we outline main definitions and theorems from computational

commutative algebra to be used later. This primarily includes discussion of

Groebner bases, in order to present the ideal membership algorithm and radical

membership algorithm.

In Chapter 4, we briefly discuss generating sets for matrix algebras, and

Paz’s conjecture for lengths of matrix algebras. We then give a preview of

several results made towards Paz’s conjecture.

In Chapter 5, we present the decidable representation-theoretic properties

of finitely presented algebras, as proved by Letzter. This includes decisions

towards general representation properties in finite dimensions, as well as deci-
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sions towards irreducibile and semisimple representations.

Lastly, in Chapter 6, we provide our package finitely presented algebra

in the computer algebra system SAGE. We discuss usage of the package, and

provide examples of results obtained for representations of specific algebras

using the package.
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CHAPTER 2

PRELIMINARIES

In this chapter we will present the notation and conventions that will be

used throughout, define finitely presented algebras, and then discuss represen-

tations and their properties.

2.1 Notation

To begin, when we refer to a process or object as computable, we mean

that it can be implemented, in principle, into an idealized computer algebra

system without loss of precision. When we refer to an algorithm or test, we

will always mean a computable process. Often we will ask that a field be

computable. Examples of computable fields include Q, and finite fields Fq.

Nonexamples include R and C.

A question is decidable if there exists a computable process that guarantees
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an answer to the question in finite time. A property P of an object X is

decidable if the question “does X have property P” is decidable.

Let k be a field of arbitrary characteristic. All k-algebras will be assumed to

be unital and associative, unless otherwise stated. Let k{X1, . . . , Xm} denote

the free k-algebra on m generators. For f1, . . . ft ∈ k{X1, . . . , Xm}, we will use

〈f1, . . . , ft〉 to denote the ideal of k{X1, . . . , Xm} generated by f1, . . . , ft.

Definition 2.1. Let f1, . . . , ft ∈ k{X1, . . . , Xm}. Set

R =
k{X1, . . . , Xm}
〈f1, . . . , ft〉

.

Here we call R a finitely presented k-algebra. Further, we denote R by

k〈X1, . . . , Xm | f1, . . . , ft〉, and call this a presentation of R.

In a slight abuse of notation, X1, . . . , Xm will also denote their images in

R, so that f1 = · · · = ft = 0 in R without a change in notation.

Example 2.2. In possibly the simplest example, the polynomial ring over k

in two variables k[x, y] can be formed by quotienting the free algebra k{x, y}

by the ideal 〈xy − yx〉. Thus, k[x, y] = k〈x, y | xy − yx〉. This of course can

be done for k[x1, . . . , xn] for any n ∈ Z≥1.

Example 2.3. We define the first Weyl algebra over k as

A1(k) =
k{X, Y }

〈Y X −XY − 1〉
= k〈X, Y | Y X −XY = 1〉.
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The first Weyl algebra is the first in an infinite family of algebras that are used

to study differential operators, as well as quantum mechanics. Representations

of this algebra will be discussed in Example 2.7.

Example 2.4. Let 0 6= q ∈ k. We call the following algebra the quantum

plane:

kq[X, Y ] =
k{X, Y }

〈Y X − qXY 〉
= k〈X, Y | Y X = qXY 〉.

This gives rise to a class of finitely presented k-algebras, dependent on q ∈ k.

Often, we will want to note whether q is a root of unity.

Example 2.5. Let G = 〈g1, . . . , gm | r1, . . . , rs〉 be a finitely presented group.

Then k〈g1, . . . , gm, g1, . . . , gm | r1 − 1, . . . , rs − 1, g1g1 − 1, . . . , gmgm − 1〉 is

equivalent to the group algebra k[G]. Here, gi denotes the inverse of gi. Thus

finitely presented groups give rise to finitely presented algebras.

The representation theory of the group G over k coincides with the repre-

sentation theory of k[G], allowing us to gain information about G by examining

k[G]. An example of such is discussed in 6.4.2.

2.2 Representations

Fix n as a positive integer, and let Mn(k) denote the k-algebra of n × n

matrices over k, where k is the algebraic closure of k. Note that Mn(k) is a

k-algebra, as well.
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Definition 2.6. Let R be a k-algebra.

1. If ρ : R → Mn(k) is a k-algebra homomorphism, we say that ρ is a

n-dimensional representation of R.

2. Two representations ρ1, ρ2 : R → Mn(k) are equivalent if there exists

a matrix Q ∈ GLn(k) such that ρ1(r) = Qρ2(r)Q
−1 for all r ∈ R.

3. If ρ(R) k-linearly spans Mn(k), we say that ρ is irreducible. That is,

kρ(R) = Mn(k).

4. We call ρ semisimple if ρ is equivalent to a representation of the form

r 7→



ρ1(r)

ρ2(r)

. . .

ρr(r)


,

where each ρi : R→Mni
(k) is an irreducible ni-dimensional representa-

tion, for suitable choices of n1, . . . , nr ∈ Z≥1.

It is worth noting that this not the standard definition of a representation.

In the standard definition, the codomain of ρ is Mn(k), instead of Mn(k). Our

definition, as it is stated in [8, 9, 10], appears in the foundational work [1] by

Artin. This definition is useful as it allows us to find irreducible or semisimple

representations over k by working over its subfield k, for which it is often easier

to directly obtain results.
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In some cases, finite dimensional representations can be well understood.

Example 2.7. Let A1(k) = k〈X, Y | XY − Y X = 1〉, the first Weyl algebra.

Assuming k is a field of characteristic zero, A1(k) has no finite dimensional

representations.

To see this, fix a positive integer n and suppose ρ : A1(k) → Mn(k) is

a representation. Let x = ρ(X) and y = ρ(Y ), and note that both x and

y must be nonzero. We know that for any two matrices A,B ∈ Mn(k),

trace(AB) = trace(BA). Therefore trace(xy − yx) = 0. However, since ρ

is a homomorphism, and ρ(1k) = In, the identity of Mn(k), this implies that

0 = trace(xy − yx) = trace(In) = n, a contradiction. Thus no finite dimen-

sional representations of A1(k) exist.

Example 2.8. Recall our definition kq[X, Y ] = k〈X, Y | Y X = qXY 〉 for

nonzero q ∈ k, as in Example 2.4. We can similarly define

kq[X
±1, Y ±1] = k〈X, Y, U, V | Y X = qXY, UX = XU = V Y = Y V = 1〉,

which we call the quantum torus. Note that U = X−1 and V = Y −1. We have

that kq[X
±1, Y ±1] is a simple k-algebra, meaning it has no proper nontrivial

two-sided ideals, if and only if q is not a root of unity in k; see [5] for one such

proof of this. Additionally, kq[X
±1, Y ±1] is infinite dimensional as a k-vector

space. These two results can be used to show that kq[X
±1, Y ±1] has no finite

dimensional irreducible representations, when q is not a root of unity in k.
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In situations where one has not, or cannot, determine the existence of

irreducible representations through more general means, computational ap-

proaches are worth exploring. Results obtained computationally can be used

to influence the direction of theoretical research, as well as directly study spe-

cific instances of interesting algebraic objects. The following chapters will

outline material we will use to approach representations from a computational

standpoint.
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CHAPTER 3

COMPUTATIONS IN

COMMUTATIVE ALGEBRA

This chapter will present foundational results in computational commuta-

tive algebra, which we will then later use when discussing decidable properties

of finitely presented algebras. Most of the material discussed will be presented

without proof; for a more complete detailing of the subject complete with

proofs, we recommend [3].

Computational commutative algebra has proved to be highly successful in

many diverse mathematical settings. It is thus desirable to translate prob-

lems working in a noncommutative algebra into the language of commutative

algebra, in order to gain access to symbolic computation. Particularly, for a

finitely presented algebra R = k〈X1, . . . , Xs | f1, . . . , ft〉, we often want to
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form ideals of a commutative polynomial ring based on the noncommutative

polynomials f1, . . . , ft. We then use these ideals to gain information about R.

3.1 Factoring Algorithms

Let k be an arbitrary field, and let k[x] denote the univariate polynomial

ring over k. Recall that k[x] is a unique factorization domain, and so every

polynomial in k[x] can represented uniquely as a scaled product of irreducible

polynomials in k[x].

Definition 3.1. By a factoring algorithm for k[x], we mean an algorithm

which takes nonzero f ∈ k[x] as input, and gives as output 0 6= a ∈ k and

irreducible polynomials g1, . . . , gs ∈ k[x], such that f = a · g1 · · · gs. That is,

an algorithm which factors f in k[x].

Not every polynomial ring over a field has such a factoring algorithm. In

particular, if k is not computable, then k[x] cannot have a factoring algorithm.

However, if we have do have such a factoring algorithm for k[x], this algorithm

can be used to solve polynomial equations over larger multivariate polynomial

rings k[x1, . . . , xn]. Some of the algorithms outlined in Chapter 5 will require

such an algorithm in order to be computable.
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3.2 Groebner Bases

We again assume that k is an arbitrary field and n is a positive integer,

and let k[x1, . . . , xn] denote the polynomial ring in n commutating variables.

For our purposes, taking f1, . . . , fs ∈ k[x1, . . . , xn], we will use 〈f1, . . . , fs〉 to

denote the ideal generated by f1, . . . , fs, and (f1, . . . , fs) to denote the ordered

tuple containing f1, . . . , fs.

Definition 3.2. A monomial ordering on k[x1, . . . , xn] is a total ordering

≤ on the set of monomials of k[x1, . . . , xn], such that

1. if w, y, z are monomials such that w ≤ y, then wz ≤ yz.

2. ≤ is a well ordering.

Example 3.3. The following is a classic example, called the lexicographic

ordering: for two monomials xs11 · · ·xsnn , x
t1
1 · · ·xtnn ∈ k[x1, . . . , xn] with si, ti ≥ 0

for all i, we say that xs11 · · ·xsnn ≤ xt11 · · ·xtnn if

1. min{i | si > 0} ≤ min{i | ti > 0},

2. or if j = min{i | si > 0} = min{i | ti > 0} then sj ≤ tj.

One can always endow k[x1, . . . , xn] with a monomial ordering for arbitrary

k and n, for example by giving it the lexicographic ordering. Moving forward,

we will always assume that k[x1, . . . , xn] is given a fixed monomial ordering.

Definition 3.4. Let f ∈ k[x1, . . . , xn].



13

• Let LM(f) denote the largest monomial appearing in f , with respect

to the monomial ordering of k[x1, . . . , xn], which we call the leading

monomial of f .

• Let LC(f) denote the coefficient attached to LM(f), the leading coef-

ficient of f .

• Let LT(f) = LC(f) · LM(f), the leading term of f .

Definition 3.5. Let I be a nonzero ideal of k[x1, . . . , xn]. Let

LT(I) = {axt11 · · ·xtnn | there exists f ∈ I with LT(f) = axt11 · · ·xtnn }.

We call LT(I) the leading terms of I.

Note that 〈LT(I)〉 is an ideal of k[x1, . . . , xn], and that 〈LT(I)〉 is not

necessarily equal to I.

Definition 3.6. A subset G = {g1, . . . , gs} of an ideal I is said to be a Groeb-

ner basis if 〈LT(g1), . . . ,LT(gs)〉 = 〈LT(I)〉.

Proposition 3.7. Let I be a nonzero ideal of k[x1, . . . , xn]. Then I has a

Groebner basis, and any Groebner basis of I is a generating set of I.

This establishes the existence of Groebner bases for an arbitrary ideal of a

commutative polynomial ring. However, for computability we must be able to

generate a Groebner basis for an ideal in an algorithmic manner.
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3.3 Division and Buchberger’s Algorithm

Proposition 3.8. Let F = (f1, . . . , fs) ⊆ k[x1, . . . , xn] be an ordered tuple.

Let f ∈ k[x1, . . . , xn]. Then there exist a1, . . . , as, r ∈ k[x1, . . . , xn] such that

f = a1f1 + · · ·+ asfs + r,

and either r = 0, or no term of r is divisible by LT(fi) for every i.

Definition 3.9. We call r as above a remainder of f from division by F ,

and we denote r by f
F

.

In particular, there exists an algorithm to produce such a1, . . . , as, r which

is referred to as the division algorithm in k[x1, . . . , xn]. For our purposes we

will not prove the validity of the division algorithm, but instead accept its

existence.

Another important result is Hilbert’s basis theorem. Recall that a ring

R, not necessarily commutative, is called left Noetherian if every ascending

chain of left ideals of R terminates after finitely many steps, or equivalently

if every left ideal of R has a finite generating set. We similarly define right

Noetherian for right ideals. Then R is called Noetherian if R is both left

Noetherian and right Noetherian. Note that all three definitions coincide when

R is commutative, since in this case left ideals are rights ideals, and vice versa.

Theorem 3.10. (Hilbert’s basis theorem) Let R be a ring. If R is Noetherian,

then R[x] is Noetherian.
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Clearly any field is Noetherian, which immediately gives us that k[x1, . . . , xn]

is Noetherian. Moving forward we will assume that we always are given a finite

generating set f1, . . . , fs for an ideal I. That is, I = 〈f1, . . . , fs〉. This leads

us to Buchberger’s algorithm.

Theorem 3.11. (Buchberger’s algorithm) Let I = 〈f1, . . . , fs〉 be a nonzero

ideal of k[x1, . . . , xn]. The following algorithm produces a Groebner basis G of

I:

input : (f1, . . . , fs) , require f1, . . . , fs in k[x1, . . . , xn]

begin algorithm

G := (f1, . . . , fs)

G′ := G

for (p, q) in G′ ×G′ , p 6= q do

S :=
lcm(LM(p),LM(q))

LT(p)
· p− lcm(LM(p),LM(q))

LT(q)
· q

i f S
G′ 6= 0 do

G := G ∪
{
S
G′
}

i f G = G′ do

return G

end

Above, lcm(f, g) denotes the least common multiple of f and g. Note that

we always have 〈LT(G′)〉 ⊆ 〈LT(G)〉. The key step in showing that this algo-
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rithm terminates is that if G′ 6= G then 〈LT(G′)〉 ⊂ 〈LT(G)〉 properly. This is

due to the fact that if G 6= G′ then S
G′

yields a nonzero remainder r, and so

LT(r) /∈ 〈LT(G′)〉, but by construction LT(r) ∈ 〈LT(G)〉. Thus we construct

an ascending chain of ideals given by 〈LT(G′)〉 ⊆ 〈LT(G)〉, which must even-

tually terminate since k[x1, . . . , xn] is Noetherian, implying that G′ = G after

some finite step. Thus the algorithm must terminate.

Be aware that this is not the most efficient version of Buchberger’s algo-

rithm. Modern computer algebra systems implement a modified version of the

above in order to reduce calculation time; see Section 2.9 of [3] for more elab-

oration. In general computing the complexity of Buchberger’s is not an easy

task, but it was shown in [4] that the degrees of elements of G are bounded

above by 2((d2/2) + d)2
n−1

, where d = max{deg(f1), . . . , deg(fs)}.

3.4 The Ideal and Radical Membership Algo-

rithms

We now know that we can compute Groebner bases for a given ideal. Next,

we will see how to apply this to determining element containment for ideals.

Proposition 3.12. Let f ∈ k[x1, . . . , xn], I be a nonzero ideal of k[x1, . . . , xn],

and G = {g1, . . . , gs} be a Groebner basis of I. Then there exists a unique

r ∈ k[x1, . . . , xn] such that
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1. either r = 0, or no term of r is divisible by LT(gi) for every i,

2. there is a g ∈ I such that f = g + r.

Note the similarity to 3.8. What this tells us is that when finding the re-

mainder of f of division by a Groebner basis G, we gain uniqueness, regardless

of the order of the elements of G. Recall that this remainder is computable

via the division algorithm.

Corollary 3.13. Let G = {g1, . . . , gs} be a Groebner basis for an ideal I of

k[x1, . . . , xn] and f ∈ k[x1, . . . , xn]. Then determining if f ∈ I is decidable, by

the following: f ∈ I if and only if f
G

is zero.

This gives us our desired result. For I an ideal and f ∈ k[x1, . . . , xn] we

can now algorithmically determine if f ∈ I, by first applying Buchberger’s

algorithm to gain a Groebner basis G of I, and computing whether f
G

= 0.

This process is referred to as the ideal membership algorithm.

Now recall that for an ideal I of k[x1, . . . , xn], the radical of I, denoted
√
I,

is {f | fk ∈ I for some k}. This is also an ideal of k[x1, . . . , xn]. In general,

a full description of
√
I can be difficult to obtain. Thankfully, the following

result let’s us extend the notion of the ideal membership algorithm to check

whether a given element is in
√
I, without actually constructing

√
I itself.

Theorem 3.14. Let I = 〈f1, . . . , fs〉 be an ideal of k[x1, . . . , xn] and let f ∈

k[x1, . . . , xn]. Then f ∈
√
I if and only if 1 ∈ 〈f1, . . . , fs, 1− yf〉, an ideal of
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k[x1, . . . , xn, y]. That is, whether f ∈
√
I or f /∈

√
I is decidable.

Why is this useful for us? Later, in Chapter 5, we will want to determine

if one algebraic variety is contained in another. Here, an algebraic variety is

the set V (I) = {(y1, . . . , yn) ∈ kn | f(y1, . . . , yn) = 0,∀f ∈ I} for an ideal I of

k[x1, . . . , xn]. To do so, we need to rely on a cornerstone of algebraic geometry:

Hilbert’s Nullstellensatz.

When k is algebraically closed, the Nullstellensatz gives us an inclusion-

reversing bijective correspondence between algebraic varieties in kn and radical

ideals of k[x1, . . . , xn]. In particular, it states that I(V (J)) =
√
J where J is

an ideal of k[x1, . . . , xn], and where I(U) is the ideal of all polynomials that

vanish on the set U . We can thus rephrase a question of whether one variety

V is contained in another U , as whether the radical ideal corresponding to U

is contained in the radical ideal corresponding to V . If we then have defining

equations for these radical ideals, then we can use the tools established in this

chapter to compute our answer.
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CHAPTER 4

MATRIX ALGEBRAS AND

LENGTH

When working in the matrix algebra Mn(k), problems are often easier

when stated in the language of generating sets. Doing so allows one to work

with finite sets. For this reason, with the starting point of a generating set,

we are able to computationally decide properties about the algebra Mn(k).

Recalling that our representations map into such matrix algebras, this will be

immediately be useful. We discuss these concepts for matrix algebras below.

4.1 Generating Sets and Paz’s Conjecture

As before, k is a field, and Mn(k) is the algebra of n× n matrices over k.
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Definition 4.1. Let S be a finite subset of Mn(k), containing the identity

of Mn(k). We refer to a product of elements of S as a word in S. Let

a = a1 · · · at be a word in S; we say t is the length of a. By convention, the

identity element of Mn(k) has length zero.

Note that a given word a in S may not have a well defined length, in the

situation where a can be written as two distinct products of elements. That

is, if a = a1 · · · at = b1 · · · bs where ai, bi ∈ S with s 6= t, we cannot canonically

assign a length to a. To circumvent this, we may define the notion of a minimal

length.

Definition 4.2. Let S be a finite subset of Mn(k), containing the identity of

Mn(k). For a word a in S, we define the minimal length of a as

min{t | a = a1 · · · at, for a1, . . . , at ∈ S}.

Taking S as above, for i ≥ 0, let Si denote the set of all words of length

less than or equal to i. Additionally, let Span(Si) denote the linear span of Si

in Mn(k). Let Alg(S) be the k-subalgebra generated by S.

Definition 4.3. Let S be a finite subset of Mn(k), containing the identity.

The length of S is defined as

l(S) = min{i ∈ Z+ | dimk(Span(Si)) = dimk(Alg(S))}.

The length of Mn(k) is then defined as

l(Mn(k)) = max{l(S) | S is a generating set of Mn(k)}.
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An upper bound on l(Mn(k)) depending only on n exists; for example,

l(Mn(k)) ≤ n2. To showcase this, let S be a generating set of Mn(k). By

our definition, Span(S0) = k. Note that each Span(Si) is a k-vector space of

Mn(k). This gives an ascending chain of vector spaces

k = Span(S0) ⊆ Span(S1) ⊆ Span(S2) ⊆ · · · .

Since dimk(Mn(k)) = n2, we know that Span(Sn
2
) = Span(Sn

2+1) = · · · .

Therefore l(S) ≤ n2. Thus we have an upper bound l(Mn(k)) ≤ n2.

In [15], Paz conjectured a linear upper bound for l(Mn(k)).

Conjecture 4.4. [15] (Paz’s Conjecture) For k a field, l(Mn(k)) ≤ 2n− 2.

This conjecture is still open. In the same work by Paz, he proved a non-

linear upper bound of (n2+2)/3 for l(Mn(k)). In [14] Pappacena was also able

to prove a non-linear upper bound, which is currently the best known upper

bound, in the general case.

Theorem 4.5. [14] For k a field, l(Mn(k)) < n
√

2n2

n−1 + 1
4

+ n
2
− 2.

Paz also provided an open lemma which would resolve Paz’s conjecture, if

proved.

Conjecture 4.6. [15] Let S be a generating set for Mn(k). If there exists

j ∈ Z with j ≤ 2n− 2 such that one of the following holds:

1. if 1 ≤ j ≤ n− 1 then dimk(Span(Sj))− dimk(Span(Sj−1)) ≤ j,
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2. if n ≤ j ≤ 2n−2 then dimk(Span(Sj))−dimk(Span(Sj−1)) ≤ 2n−j−2,

then l(S) ≤ 2n− 2.

In particular, if this holds for every generating set of Mn(k), then of course

Mn(k) ≤ 2n − 2. This provides a nice tool for resolving Paz’s conjecture for

certain classes of generating sets of Mn(k).

Much work has been made to show Paz’s conjecture holds in certain cases,

which we discuss below.

4.2 Instances of Linear Bounds

Arguably the most substantial result made to date is that Paz’s conjecture

holds for small n, provided the field k is contained in C.

Theorem 4.7. [7, 11] For k a subfield of C, and n ≤ 6, l(Mn(k)) ≤ 2n− 2.

For n ≤ 4 this follows from the fact that l(Mn(k)) ≤ (n2+2)/3 as originally

shown by Paz. The case of n = 5 was shown by Longstaff, Niemeyer, and

Panaia in 2006 [11]. The case of n = 6 was then shown by Lambrou and

Longstaff in 2009 [7]. In particular both papers show the result for pairs of

complex matrices. This is especially useful in our case, since we often are

computing low-dimensional representations over Q ⊂ C.

We now turn our attention to specific generating sets of Mn(k). In general,

S will denote a generating set for Mn(k).
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Definition 4.8. For k a field and A ∈ Mn(k), if dimk(〈1, A, . . . , An−1〉) = n

then A is referred to as nonderogatory.

In 2017, Guterman, Laffey, Markova, and Smigoc proved the following

results pertaining to generating sets containing nonderogatory matrices:

Theorem 4.9. [6] For k a field and S a generating set of Mn(k), if some

matrix of S is nonderogatory, then l(S) ≤ 2n− 2.

Theorem 4.10. [6] Let be k a field, and S be a generating set of Mn(k).

1. If there exists A ∈ S such that deg(A) = n− 1, then l(S) ≤ 2n− 2.

2. Let n = 2k for m ∈ Z≥1. If Jm ⊕ Jm ∈ S, then l(S) ≤ 5n/2 − 2. Here,

Jm is the Jordan matrix.

In addition to these theorems, Guterman et al. show examples of gen-

erating sets S containing a nonderogatory matrix, where the upper bound

l(S) = 2n − 2 is achieved [6]. This tells us that the bound in Theorem 4.9 is

sharp.

The following result by Constantine and Darnall in 2004 shows that Paz’s

conjecture is satisfied in the presence of a specific property for a generating

set [2].

Definition 4.11. [2] Let S = {A1, . . . Am} for matrices Ai ∈ Mn(k), k a

field. We say that S has the modified Poincaré-Birkhoff-Witt (PBW)
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property if every product of elements of S, u = Ai1 · · ·Ail can be written as

∑
j1+···+jt=l

c(j1,...,jt)A
jt
t · · ·A

j1
1 ,

modulo Span(Sl−1), with c(j1,...,jt) = 0 if Xjt
t · X

j1
1 < u in the lexicographical

ordering of S.

Theorem 4.12. [2] For k a field and S a generating set of Mn(k), if S has

the modified PBW property, then l(S) ≤ 2n− 2.

Constantine and Darnall show the above theorem by showing that for S,

as in the theorem, Conjecture 4.6 is true. In addition, they show that if S is

not a generating set of Mn(k), and A is the largest subalgebra of Mn(k) k-

linearly spanned by all products in S, then products of length at most 2n− 3

are necessary to k-linearly span A [2].
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CHAPTER 5

DECIDABILITY FOR

REPRESENTATIONS

With the tools of computational commutative algebra and linear algebra

now available, we may examine what properties concerning representations

of finitely presented algebras are decidable, at least in low dimensions. The

results here are distilled from work by Letzter, in [8, 9, 10].

5.1 General Representations

We begin with a definition, which will be used in following sections as well.

Definition 5.1. Let n, s ∈ Z≥1 and K be a commutative ring. Set

B = K[xij(l) | 1 ≤ i, j ≤ n, 1 ≤ l ≤ s],
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xl =


x1,1(l) · · · xn,1(l)

...
. . .

...

x1,n(l) · · · xn,n(l)

 ∈Mn(B),

for 1 ≤ l ≤ s. We call xl the l-th generic matrix. Note that i, j, and l are

all indices.

To start, if we have R = k〈X1, . . . , Xs | f1, . . . , ft〉 and A1, . . . , As ∈Mn(k),

we can define the map ρ : R → Mn(k), with Xi 7→ Ai, for 1 ≤ i ≤ s. Then

f1(A1, . . . , As) = · · · = ft(A1, . . . , As) = 0 if and only if ρ is a representation.

Lemma 5.2. Let R = k〈X1, . . . , Xs | f1, . . . , ft〉 be a finitely presented algebra

over a computable field k and n ∈ Z≥1. It is decidable whether there exists an

n-dimensional representation of R.

Proof. A representation ρ : R → Mn(k) can be determined by the image

of the generators,
(
ρ(X1), . . . , ρ(Xs)

)
∈ (Mn(k))s. Therefore there exists a

n-dimensional representation of R if and only if the set

{(Γ1, . . . ,Γs) ∈ (Mn(k))s | f1(Γ1, . . . ,Γs) = · · · = ft(Γ1, . . . ,Γs) = 0}

is nonempty. This set is nonempty if and only if the entries of the ma-

trices f1(x1, . . . ,xs), . . . , ft(x1, . . . ,xs) have a common zero. This can be

determined by a dimension check of the ideal generated by the entries of

f1(x1, . . . ,xs), . . . , ft(x1, . . . ,xs), which can be computed using Groebner bases.
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5.2 Irreducibility

For R = k〈X1, . . . , Xs | f1, . . . , ft〉 and A1, . . . , As ∈ Mn(k), consider the

map ρ : R→Mn(k), with Xi 7→ Ai, for 1 ≤ i ≤ s. As noted, we can determine

if ρ is a representation. We can additionally decide if ρ is irreducible. Here, ρ

is an irreducible representation if and only if Alg(A1, . . . , As) = Mn(k), if and

only if dimk(Alg(A1, . . . , As)) = n2. The dimension of Alg(A1, . . . , As) can be

computed using Gaussian elimination.

For the next result about irreducibility, we will need a definition and a

theorem from polynomial identity algebras. Below, if f ∈ Z{Y1, . . . , Ym} and A

is a k-algebra, then f(A) will denote the set {f(a1, . . . , am) | a1, . . . , am ∈ A}.

A complete treatment of this material can be found in [13].

Definition 5.3. Let m ∈ Z≥1. In Z{Y1, . . . , Ym}, let

sm(Y1, . . . , Ym) =
∑
σ∈Sm

sgn(σ) · Yσ(1) · · ·Yσ(m).

We call sm the m-th standard identity.

Theorem 5.4. [13] (Amitsur-Levitzky) Let n ∈ Z≥1 and K be a commutative

ring. Then sm(Mn(K)) = 0 for all m ≥ 2n, and sm(Mn(K)) 6= 0 for all

m < 2n.

We now present the main result. The algorithm detailed below is imple-

mented into our software package for SAGE, and examples of usage are detailed

in Chapter 6.
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Theorem 5.5. [8] Let R = k〈X1, . . . , Xs | f1, . . . , ft〉 be a finitely presented

algebra over a computable field k and n ∈ Z≥1. It is a decidable property

of R whether there exists an n-dimensional irreducible representation, via the

following algorithm:

input : n , require n > 1

input : p , require p > l(Mn(k))

begin algorithm

i f not h a s r e p r e s e n t a t i o n (n) do

return False

end

B := k[xij(l) | 1 ≤ i, j ≤ n, 1 ≤ l ≤ s]

for 1 ≤ l ≤ s do

xl := (xij(l)) ∈Mn(B)

Rel(B) := the ideal of B generated by the entries of

fi(x1, . . . ,xs), for 1 ≤ i ≤ t

S := {xi1 · · ·xim | m < p} = {M1, . . . ,MN}

U := {Mm0 · s2n−2(Mm1 , . . . ,Mm2(n−1)
) |

1 ≤ m0 ≤ N, 1 ≤ m1 < · · · < m2n−2 ≤ N}

for u in U do

i f trace(u) /∈
√

Rel(B) do

return True
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return False

end

Proof. The set of representations R→Mn(k) can be identified with

{(Γ1, . . . ,Γs) ∈ (Mn(k))s | f1(Γ1, . . . ,Γs) = · · · = ft(Γ1, . . . ,Γs) = 0},

which is the algebraic subvariety V (Rel(B)) of (Mn(k))s, where Rel(B) is the

ideal generated by the entries of f1(x1, . . . ,xs), . . . , ft(x1, . . . ,xs), as described

in the algorithm above.

Let P be the set of (Γ1, . . . ,Γs) ∈ (Mn(k))s such that the k-subalgebra

generated by Γ1, . . . ,Γs is not equal to Mn(k). It can be shown that P and

V (Rel(B)) are both algebraic subvarieties of (Mn(k))s. Then we have that an

irreducible representation of R exists if and only if V (Rel(B)) 6⊆ P .

Suppose P is defined by equations g1 = · · · = gq = 0 in B. Since k is alge-

braically closed, the ideal-variety correspondence given by the Nullstellensatz

tells us that V (Rel(B)) 6⊆ P if and only if gi /∈
√

Rel(B) for some 1 ≤ i ≤ q.

Now let A be a subalgebra of Mn(k), with a finite generating set of G.

Take p to be an upper bound of l(Mn(k)). Then A is k-linearly spanned by

the set

T = {a1 · · · ai | a1, . . . , ai ∈ G, 0 ≤ i < p},

where the product corresponding to i = 0 is the identity of Mn(k). Give T an

ordering, say T = {b1, . . . , bN}. Additionally let L = A · s2n−2(A). Then L is
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k-linearly generated, as a left ideal of Mn(k), by the set

V = {bm0 · s2n−2(bm1 , . . . , bm2n−2) | 1 ≤ m0 ≤ N, 1 ≤ m1 < · · · < m2n−2 ≤ N}.

There are two cases to consider. For the first case, suppose that A is

properly contained in Mn(k), and let J be the Jacobson radical of A. The

algebra A/J will embed into
⊕q

1Mm(k), for some m < n and some q ∈ Z. The

Amitsur-Levitzky theorem then tells us that s2n−2(Mm(k)) = 0, and further

s2n−2
(⊕q

1Mm(k)
)

= 0. Thus, s2n−2(A/J) = 0. This implies that s2n−2(A) ⊆

J . Then L is contained in J , which implies that L is a nilpotent left ideal of

A. This further implies that every matrix in L has trace zero.

For the second case, suppose that A = Mn(k). Then L is a left ideal of

Mn(k), and using a similar argument as above, at least one matrix in L has

nonzero trace.

We have shown that A is a proper subalgebra of Mn(k) if and only if every

matrix in L has trace zero. In particular, A is a proper subalgebra of Mn(k)

if and only if {trace(v) | v ∈ V } = {0}.

Recalling that p is an upper bound for l(Mn(k)), let

S = {xi1 · · ·xim | m < p},

and give S an ordering, say S = {M1, . . . ,MN}. We then define the set

U = {Mm0 · s2n−2(Mm1 , . . . ,Mm2(n−1)
)

| 1 ≤ m0 ≤ N, 1 ≤ m1 < · · · < m2n−2 ≤ N}.
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By our results, it follows that {trace(u) = 0 | u ∈ U} is a set of defining

equations for P . Therefore an irreducible representation of R exists if and only

if trace(U) 6⊆
√

Rel(B). From this, the algorithm follows.

A few remarks on the algorithm described:

1. As noted in Chapter 2, Buchberger’s algorithm has double exponential

complexity. In the algorithm above, we utilize Buchberger’s algorithm

for each element of U . Therefore our algorithm has at least double

exponential complexity.

2. The size of U depends on the size of S. In particular, if |S| = q, then

we have | trace(U)| = |U | =
(

q
2n−2

)
elements to apply the radical mem-

bership algorithm to. Thus it is wise to attempt to reduce the size of S

before applying the algorithm. Items 3 and 4 address this.

3. By the Cayley-Hamilton Theorem, we may express xnl as a linear com-

bination of lower powers of xl, for any 1 ≤ l ≤ s. Therefore we can

exclude terms of S containing xnl , or any higher power of xl.

4. If the defining relations f1 = 0, . . . , ft = 0 of R allow us to rewrite

or reduce a monomial Xi1 · · ·Xik , we may extend this to the monomial

xi1 · · ·xik . Thus in the presence of satisfactory defining relations, we can

drastically reduce the size of S, for large n.
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5. One can also look for irreducible representations with restrictions placed

on the images of Xl. This can be done by instead assuming that a

subset of the generic matrices x1, . . . ,xs are diagonal, upper triangular,

or lower triangular, to reduce computational requirements. Of course, a

returned value of False in this case does not prevent the existence of an

irreducible representation in the more general setting.

Theorem 5.6. [8] Let R = k〈X1, . . . , Xs | f1, . . . , ft〉 be a finitely presented

algebra over a computable field k and n ∈ Z≥1. Suppose k[x] is equipped with a

factoring algorithm. We can algorithmically produce an n-dimensional repre-

sentation of R, provided we know the existence of an n-dimensional irreducible

representation.

Proof. Suppose that there exists an n-dimensional irreducible representation

of R. Then we can find y ∈ {trace(u) | u ∈ U} such that y /∈
√

Rel(B), using

the algorithm described in Theorem 5.5.

Consider the equations given by setting yz − 1 and the entries of the ma-

trices f1(x1, . . . ,xs), . . . , ft(x1, . . . ,xs) equal to zero, living in the polynomial

ring B[z]. We can use the factoring algorithm of k[x] to solve these sn2 + 1

equations, giving us a solution xij(l) = λij(l) ∈ k. Then the map Xl 7→ (λij(l))

for 1 ≤ l ≤ s gives an irreducible representation of R.
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5.3 Semisimplicity

Letzter also provided algorithms for decisions regarding semisimple repre-

sentations in [9, 10], similar to those that exist for irreducible representations

as described above. We will state the results of this section without proof, and

do not provide the algorithms themselves.

Theorem 5.7. [9] Let R be a finitely presented k-algebra, and n ∈ Z≥1.

Whether every m-dimensional representation is semisimple for m ≤ n is a

decidable property of R.

Theorem 5.8. [10] Let k be a computable field of characteristic zero, and R

be a finitely presented k-algebra.

1. It is decidable whether R has at most finitely many equivalence classes

of semisimple n-dimensional representations.

2. Suppose k[x] is equipped with a factoring algorithm, and that R has

has finitely many equivalence classes of semisimple n-dimensional rep-

resentations. Then the number of equivalence classes of semisimple n-

dimensional representations is computable.
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CHAPTER 6

THE SOFTWARE

SAGE is a free, open-source computer algebra system built in python and

cython. For reference on how to install and operate SAGE, see [16]. We have

developed a package finitely presented algebra that implements the algo-

rithms for representations as described in Chapter 5. Additionally, the software

handles basic functionality and arithmetic for finitely presented algebras. The

package is available here:

https://github.com/rhoadskj/finitely-presented-algebra

This package is currently not available in the standard distribution of SAGE,

and must be downloaded and imported separately. The package is written with

the intent of following SAGE guidelines and traditions as closely as possible, so

that users familiar with SAGE can use the package without much effort. Any

feedback or bug reports may be directed at the author.

https://github.com/rhoadskj/finitely-presented-algebra
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What follows in this chapter is an introduction in how to operate the

package, as well as examples that make use of the representation-theoretic

functions.

6.1 The Basics

Once the finitely presented algebra.py package has been downloaded,

open SAGE in the same directory as the file, in order to load the package.

sage: from finitely_presented_algebra import *

Once loaded, a finitely presented algebra can be formed with the following:

sage: R.<x,y> = FinitelyPresentedAlgebra(QQ, ’y*x - 2*x*y’); R

Finitely presented algebra over Rational Field with presentation

<x, y | -2*x*y + y*x>

sage: A = FinitelyPresentedAlgebra(QQ, ’b*a - a*b - 1’, ’a, b’); A

Finitely presented algebra over Rational Field with presentation

<a, b | -1 - a*b + b*a>

sage: A.inject_variables()

Defining a, b

Note that in the second case, the names for generators must come after the

relations, and must be injected to be recognized. Relations and names can be

given as a tuple, list, or comma delimited string. Addition and multiplication

work as expected.

sage: f = R(x + y); g = R(x - y)

sage: f*g

x^2 + x*y - y^2
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Upon creating an instance of finitely presented algebra, a list of rewrite

rules is created, derived from the relations of the algebra and a graded lexi-

cographic ordering. Then when elements are constructed, these rewrite rules

are applied when possible.

However, this is currently only implemented for sufficiently ‘simple’ rela-

tions. By this, we mean relations that consist of two or less terms. Thus a

monomial is swapped for another monomial, possibly empty, at the cost of

multiplication by a coefficient. For example, in R and W as above:

sage: R(y*x + x*y)

3*x*y

sage: A(b*a - a*b)

-a*b + b*a

sage: R(-2*x*y + y*x)

0

sage: A(b*a - a*b - 1)

-1 - a*b + b*a

Standard functions for accessing data about the object are included. The

functions ngens(), nrels(), gen(i), gens(), rel(), and rels() can be used

to access information about the generators and relations. Additionally, the

functions base ring(), free algebra(), one(), zero(), and monoid() can

be used to learn underlying properties of the algebra itself. For more detail on

use, one can either reference the README.md file available on GitHub.
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6.2 Algorithm for Representations

In 6.2.1, we detail the basic tests for general representations. Our core work

are tests in 6.2.2 and 6.2.3, which perform tests for irreducible representation.

In the following sections, all tests were performed on a personal computer,

with a 1.70 GHz processor and 8GB of RAM.

6.2.1 Tests for Representation

We saw in Chapter 5 that for a given finitely presented algebra R and

n ∈ Z≥1, we can determine if there exists an n-dimensional representation of

R, or check if a given map is a representation. We have implemented these

tests as has rep(), and is rep(), respectively.

Given a finitely presented algebra R = k〈X1, . . . , Xs | f1, . . . , ft〉 and ma-

trices A1, . . . , As ∈ Mn(k), we can check if the map Xi 7→ Ai for 1 ≤ i ≤ s is

an n-dimensional representation using is rep(), giving the list of matrices in

an array and the dimension as input. The function then returns True if the

given map is a representation and False otherwise. Note that by assumption

the base field of R must be a computable field.
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As an example, let R = Q−1[X, Y ] = Q〈X, Y | XY = −XY 〉, and let

ρ : R→M2(k) be the map defined by

X 7→

0 1

1 0

 , Y 7→
0 −1

1 0

 .
Is ρ a 2-dimensional representation of R? We can check with the following:

sage: R.<x,y> = FinitelyPresentedAlgebra(QQ, ’x*y + y*x’)

sage: A1 = matrix([[0, 1], [1, 0]])

sage: A2 = matrix([[0, -1], [1, 0]])

sage: R.is_rep([A1, A2], 2)

True

Thus ρ as described above is a representation of R.

As mentioned in Lemma 5.2, we can determine the existence of an n-

dimensional representation of R; we do so using has rep(). This function

takes input of an integer n, and returns True if there exists an n-dimensional

representation of R, and False otherwise.

In the example of R = Q−1[X, Y ] above, we verified that at least one 2-

dimensional representation exists. This matches the result of has rep(2), as

below.

sage: R.<x,y,z> = FinitelyPresentedAlgebra(QQ, ’x*y + y*x’)

sage: R.has_rep(2)

True

The function has rep() has one optional argument: restrict. This argu-

ment can be set to a tuple or list of either strings or None types. Each string
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must match ’diagonal’, ’upper’, or ’lower’. The length of restrict must

match the number of generators of R. This will restrict the i-th generic ma-

trix constructed to being either standard, diagonal, upper triangular, or lower

triangular, in accordance with the i-th entry of restrict.

As an example, we can ask if R = Q−1[X, Y ] has a representation ρ : R→

Mn(k) where ρ(X) is upper triangular, and ρ(Y ) is lower triangular.

sage: R.<x,y,z> = FinitelyPresentedAlgebra(QQ, ’x*y + y*x’)

sage: R.has_rep(2, restrict=[’upper’, ’lower’])

True

6.2.2 Testing if a Representation is Irreducible

Again let R = k〈X1, . . . , Xs | f1, . . . , ft〉 and A1, . . . , As ∈ Mn(k). As

noted in Chapter 5, we can check if the map Xi 7→ Ai for 1 ≤ i ≤ s is an n-

dimensional irreducible representation using is irred rep(), with the same

arguments as is rep(), returning True if the map is an n-dimensional repre-

sentation and False otherwise. Of course, is irred rep() calls is rep() to

verify that it is working with a representation in the first place, and returns

False if it is not.

We will use the same example as in 6.2.1, where R = Q−1[X, Y ], and

ρ : R→M2(k) is the map

X 7→

0 1

1 0

 , Y 7→
0 −1

1 0

 .



40

Knowing that ρ is a representation already, we can check if ρ is irreducible.

sage: R.<x,y> = FinitelyPresentedAlgebra(QQ, ’x*y + y*x’)

sage: A1 = matrix([[0, 1], [1, 0]])

sage: A2 = matrix([[0, -1], [1, 0]])

sage: R.is_irred_rep([A1, A2], 2)

True

Thus ρ : R→M2(k) as defined above is a 2-dimensional irreducible repre-

sentation.

6.2.3 Testing Existence of Irreducible Representations

Let R be a finitely presented k-algebra. We stated in Theorem 5.5 that

we can decide the existence of an n-dimensional irreducible representation of

R. This is implemented in the function has irred rep(), which, given an

input of an integer n, of course returns True if there exists an n-dimensional

irreducible representation of R, and False otherwise.

Again, let R = Q−1[X, Y ]. We already have determined the existence of a

2-dimensional irreducible representation of R, which we can also verify using

has irred rep().

sage: R.<x,y,z> = FinitelyPresentedAlgebra(QQ, ’x*y + y*x’)

sage: R.has_irred_rep(2)

True

To compare, we can also ask whether there exists a 3-dimensional irre-

ducible representation of R.
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sage: R.<x,y,z> = FinitelyPresentedAlgebra(QQ, ’x*y + y*x’)

sage: R.has_irred_rep(3)

False

The software will attempt to reduce the size of the set S detailed in The-

orem 5.5 as much as possible. It does so by removing terms with n-th powers

and rewriting terms based on the relations present, similar to how it reduces

elements of R. If no ‘simple’ rewrite rules are present, the generating set can

be exceptionally large, preventing the software from practically completing.

The function has irred rep() has two optional arguments: restrict,

and gen set. In the right conditions, these arguments can be used to reduce

computation time.

The argument restrict works equivalently to the similarly named argu-

ment of has rep(). Extending the question posed above, does R = Q−1[X, Y ]

possess a representation ρ : R → Mn(k) where ρ(X) is upper triangular and

ρ(Y ) is lower triangular?

sage: R.<x,y,z> = FinitelyPresentedAlgebra(QQ, ’x*y + y*x’)

sage: R.has_irred_rep(2, restrict=[’upper’, ’lower’])

True

The argument gen set can be set to either a set, list, or tuple of elements

of R, which will be used to create the generating set S after passing the gener-

ators to the generic matrices, in lieu of has rep() creating its own generating

set. Alternatively, gen set can be set the string ’pbw’ or ’PBW’, which will

create a generating set similar to a Poincaré-Birkhoff-Witt basis. That is, the
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generating set will be of the form

{xt11 · · ·xtss | ti ≥ 0, and t1 + · · ·+ ts < p},

with appropiate terms removed by the Cayley-Hamilton theorem. Using gen set

is wise in situations where the relations of R do not generate rewrite rules via

the software, but a ‘nice’ basis of the algebra exists.

As an example, the first Weyl algebra A1(Q) = Q〈X, Y | Y X −XY = 1〉

does not produce a ‘simple’ rewrite rule, by the logic of the software. How-

ever, the set {X iY j | i, j ≥ 0} forms a basis of A1(Q), meaning the option

gen set=’pbw’ can be used freely in order to reduce computational time.

sage: A.<x,y> = FinitelyPresentedAlgebra(QQ, ’y*x - x*y - 1’)

sage: A.has_rep(3, gen_set=’pbw’)

False

Now that we understand how to use the software and its functions, we

will examine the performance times of the algorithms, and then work through

specific examples.

6.3 Performance

All tests were performed using the python function timeit(). All tests

were performed on the algebra A1(Q) = Q〈X, Y | Y X − XY = 1〉, unless

otherwise stated, to guarantee False returns for each function. Additionally,

A1(Q) does not possess a rewrite tool, by the software’s understanding, which
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gives us the largest generating set S possible. The function is irred rep()

was modified to not perform is rep() first to avoid redundancy, and likewise

for has irred rep() and has rep(). All tests were performed with n = 2,

that is, for 2-dimensional representations.

The function is rep(..., 2) was tested on the map defined by

X 7→

2 2

2 2

 , Y 7→

3 3

3 3

 .
These matrices were chosen to have nonzero, nonidentity entries. With this,

is rep(..., 2) averaged a time of 769 microseconds. Of course, this is our

fastest, and simplest, function.

Our function has rep(2) performed with an average time of 1.97 millisec-

onds. With the additional restriction of restrict=[’upper’, ’lower’] as

detailed in 6.2.1, the average became 1.89 milliseconds, a 4% increase.

Testing is irred rep(2) with the same map defined for is rep(2) above,

our average time was 13.7 milliseconds. This time can be improved by mapping

to matrices with zero or identity entries. As an example, with the map

X 7→

0 1

0 0

 , Y 7→

0 0

1 0

 ,
our average time was 6.98 milliseconds, which is a 49% increase.

Unsurprisingly, has irred rep() is our most costly function. In the 2-

dimensional case, has irred rep(2) performed with an average time of 169
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milliseconds. When tested on a finitely presented Q-algebra with three genera-

tors and no 2-dimensional representations, our function has irred rep(2) has

an average time of 5.93 seconds, which constitutes a 3408% increase. With the

restrictions placed of restrict=[’upper’, ’lower’], our average becomes

167 milliseconds. With the option of gen set=’pbw’, our average becomes 23

milliseconds, a 86% increase. Of course, this assumption is not applicable to

every algebra.

For general finitely presented algebras, testing the existence of irreducible

n-representations for n = 2, 3 are as much as can expected on a small computer.

However, when suitable additional reductions can be applied, somewhat higher

values of n can be considered; for instance, see the example regarding PSL2(Z)

described in 6.4.2.

6.4 Examples

6.4.1 First Weyl Algebra

As discussed in Example 2.7, the first Weyl Algebra over the rationals

A1(Q) = Q〈X, Y | Y X −XY = 1〉 has no finite dimensional representations.

Thus, our function has rep(n) will return False for any value of n, when

tested on A1(Q). We verify this to be the case for 2 ≤ n ≤ 30.

sage: A.<x,y> = FinitelyPresentedAlgebra(QQ, ’y*x - x*y - 1’)

sage: results = {A.has_rep(i) for i in range(2, 31)}
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sage: results

{False}

As a additional check, we generate random matrices M1,M2 ∈M2(Q) and

verify that X 7→ M1, Y 7→ M2 does not give a 2-dimensional representation,

and repeat this process 100,000 times.

sage: A.<x,y> = FinitelyPresentedAlgebra(QQ, ’y*x - x*y - 1’)

sage: M = MatrixSpace(QQ.algebraic_closure(), 2)

sage: M = MatrixSpace(QQ.algebraic_closure(), 2)

sage: results = {A.is_rep([M.random_element(), M.random_element()],

....: 2) for i in range(10000)}

sage: results

{False}

Thus none of our 100,000 randomly generated maps gave us a representa-

tion of A1(Q), as desired.

6.4.2 Projective Special Linear Group

Our discussion up to now has dealt with representations of associative

algebras, but the representation theory of groups is also of great interest.

Definition 6.1. Let G be a group, and k be a field. A representation of

G over k is a group homomorphism ρ : G→ Autk(V ), where V is a k-vector

space and Autk(V ) is the group of k-linear homomorphisms of V . Here, the

dimension of ρ is the dimension of V as a k-vector space.

There is a natural relation between representations of groups and repre-

sentations of associative algebras. This comes from the fact that there is a
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bijective correspondence between representations of the group algebra k[G]

and representations of G over k. For a in depth discussion of the representa-

tion theory of group algebras, we recommend the reader Chapter 3 of [12].

In our case, if G is a finitely presented, and k is a computable field, then

we can use the tests discussed above to gain information about the group

representations of G, over k.

To showcase this, consider the projective special linear group PSL2(Z).

Choosing Q as our field and letting n ∈ Z≥1, we can ask if there exists an

n-dimensional irreducible representation of PSL2(Z) over Q. This group is

isomorphic to C2 ∗ C3, where Cm denotes the m-th cyclic group.

Due to this, we can equivalently ask if there exists an n-dimensional irre-

ducible representations of the finitely presented algebra R = Q[PSL2(Z)] =

Q〈X, Y | X2 − 1, Y 3 − 1〉, which we can answer computationally. In particu-

lar, we want to know the state of existence for irreducible representations of

dimension n for 2 ≤ n ≤ 6.

sage: R.<x,y> = FinitelyPresentedAlgebra(QQ, ’x^2 - 1, y^3 - 1’)

sage: results = [R.has_irred_rep(i) for i in range(2, 7)]

sage: results

[True, True, False, False, True]

This tells us that for 2 ≤ n ≤ 6, there exists an n-dimensional irreducible

representation ofR if and only if n divides 6. With the bijective correspondence

of group representations and group-algebra representations, we learn the same

result for n-dimensional irreducible representations of PSL2(Z) over Q.
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Let us also assume that ρ(X) is diagonal. Doing so, we retain the existence

of irreducible representations of dimensions 2, 3, and 6. We check this with

the following:

sage: R.<x,y> = FinitelyPresentedAlgebra(QQ, ’x^2 - 1, y^3 - 1’)

sage: R.has_irred_rep(2, restrict=[’diagonal’, None])

True

sage: R.has_irred_rep(3, restrict=[’diagonal’, None])

True

sage: R.has_irred_rep(6, restrict=[’diagonal’, None])

True

6.4.3 Off-diagonal Generating Set

For n ∈ Z>1 and k a field, consider the following matrices in Mn(k):

Un =


0 1

. . . . . .
. . . 1

0

 , Ln =


0

1
. . .
. . . . . .

1 0

 .
If we let p be an upper bound for l(Mn(k)), then products of Un and Ln of

length ≤ p will always k-linearly span Mn(k). Consequently, if Un and Ln are

contained in a set of matrices S, then S will necessarily k-linearly span all of

Mn(k). Using this, we know that if we have a finitely presented k-algebra R,

a representation ρ : R→Mn(k) is irreducible provided that Un, Ln ∈ ρ(R).

Note that Un · Ln · Un = Un for any n > 1. Therefore if we define an

algebra R = Q〈X, Y | XYX − X〉, we know that ρ will be a n-dimensional

representation of R. Thus, it will also be an irreducible representation. We

verify this for 2 ≤ n ≤ 6 using is irred rep():
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sage: A.<a, b> = FinitelyPresentedAlgebra(QQ, ’a*b*a - a’)

sage: results = {A.is_irred_rep(off_diag(i), i) for i in range(2, 7)}

sage: results

{True}

Thus the result holds for 2 ≤ n ≤ 6. The map ρ should be irreducible for

all values of n as well, however computation time limits us from checking for

large values of n.
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