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ABSTRACT

Thisthesispresentsan economical, noinvasive and user friendly approachd#terminingthe

ddz6 2S06GQa 31T S AngwithiAdaMdalrs Babkingg&2 & dStingtidmllows a

user to control a computer by eye dinead movements. Gaze estimation has many applications

in surveillance, video gaming, advertisementsmonitoring driver alertness,and medical
applications. The objective of gaze estimation is to determine where the user is looking at on

the computer scren. However, currentgaze estimationstrategies tend to be expensive,
impractical, and invasive. The suggested methothispaperh & | 6t S (2 G MWidO] G KS
headmovenents in real time under variodghting conditions with a regat webcam. Théead

poseisi NI O1 SR o6& YIGOKAYy3a GKS dzaSNRa RSGSOGSR T C
the system to estimate thelzi Sdvédall eye gaze. Experimental results show robustness and

speed in determining the eye gaze in real time for usersatbus ethnicities, under different

lightening conditions, at a normal distance from the webcam, with reasonable head movements

and with standard resolution imagedhe proposed eye pupil center detection method
outperforms other algorithms by up to 1.2%he head pose tracking has a“3.9.1° and 5.3

error for tilting, shaking and nodding respectively. Both eye pupil center detection and head

pose tracking have been tested with widely used public databases. In addition, despite using

only a regular webaa, our overall gaze estimation system has an average gaze error°f 2.9

horizontally and 3.7vertically.
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CHAPTER 1
INTRODUCTION TO GAZE ESTIMATION

Eyes allow us to see and gather information about the environment. Eyes mainly act as an input

organ as they collect light, but they also can be considered an output organ as they indicate the

adzo2S0oiQa 3T S RANBOGAZ2YD® | aAy3d GKS 2NRSyYydl GA
possible to estimate the gaze path of an individuahze estnation is a fast growing technology
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also known as the focus ptj is defined as the intersection of the line of sight with the screen.

Gaze tracking has an infinite number of applications such as monitoring driver alertness or
hellJA y 3 G NI O1 | BIfshchdogicaladisdsderShat canioti ddmmunicate his/he
issues. Gaze tracking is also used as a hemachine interface for disabled people that have
lost total control of their limbsAnother application of gaze estimation is marketing. Companies
use the information given by the gaze estimation system fromirtcustomers to design their

advertisements and products.

1.1 Research Objective

The objective of this thesis is to develop and implement a gaze estimation system that tracks the
head and eyes of a person in front of a computer in real time using onlpgée siegular
webcam. Opposed to infrared (IR) camera which forms an image using infrared radiation, a

regular webcam forms images using visible light only.

The proposed system should be able to display the gaze point onto the monitor of the person

sitting in front of the screen. The main constraint of such a project is to design a system that



requires no additional/special hardware aside from a webcam. The ideal solution would consist
of a personal computer and a single regular webcam. To date, there @epde of commercial

gaze estimation systems on the market. Unfortunately, the biggest disadvantage of these
existing solutions is the need of special equipment, such as dedicated devices mounted on the
head or infrared cameras. These limitations prevéirdse invasive systems to go main stream.
Thus it is easy to see the benefits of the proposed system that requires no additional hardware
other than a computer, desktop or laptop, equipped with a normal webcam. However, one must
remember that even thoughhe use of a webcam makes the proposed system very convenient,

it is less accurate than the ones commercially used. Another issue is that the proposed system
needs to work in real time therefore it is vital to employ fast algorithms which limit
computationd complexity. Like every image processing task, lighting is always a major obstacle
that needs to be taken into consideration, especially when the goal is to design a system as

convenient as possible.

Because of these several issues, gaze trackers #iraddtpart of our everyday life. It is not an
easy task to create a gaze estimation system that is convenient by using only a webcam. The
ideal gaze system is to operate automatically and be precise for all types of people and

environments, which is a weitough challenge.

1.2  Contributions
In developing a universal gaze estimation system, two main contributions have been made

which are applicable. The main contributions in this thesis are as follows.

The first contribution of the proposed gaze estimationtegs is that it takes in consideration
head movements by using a head pose tracking algorithm with automatidtiadization. The

proposed algorithm goes further than OpenGazer, one of the most popular gaze estimation



systems, which works only by eye mawents. We developed a solution that not only works
with a standard webcam but also works with head movements. The proposed method
determines the head pose, finds the eye gaze and computes the overall gaze vector of the user.
The gaze point is shown on tlsemputer screen as the intersection of the gaze vector and the
monitor plane. To determine the head pose, the face is detected using the Jdn&s algorithm

also called Haar classifier. The features that are the most traceable are selected insideethe fa
region to be the ones located at the pixels with the highest eigenvalues. Once those facial
corners are detected, they are mapped to 3D features onto a 3D face model. The pose (rotation
and translation) is then determined from the relationship betwedhithage and 3D face model
using the POSIT algorithm. When the program starts, the user is asked to look at the center of
the monitor so that the pose is initialized. The 2D features are tracked across multiple frames
using the LucakKanade optical flow tdmique. The image features are mapped back onto the
3D model and the pose is updated. The POSIT algorithm accumulates error over time. Therefore,
an extension of the algorithm is proposed by automatically resetting the algorithm using specific

constraints.By reinitializing the algorithm, errors caused by illumination changes are reduced.

The second main contribution is the detection of the eye pupil center. To detect the eyes, the
ViolaJones technique is used again. The Haar classifier is now traimedetct eyes within the

face region. Once the eyes are detected, their features are extracted foprpmessing to

locate the pupil.The preprocessing involves color space conversion, histogram normalization,
Otsu thresholding, and dilation to facilitatee detection of the pupil. The eye detected image

by the Haar Classifier still contains a lot of useless information such as the skin. Because the skin
is illuminated intensively, it influences the thresholding when detecting the eyeball. To remove
the skn, the eye image is converted into HSV color space. Knowing that almost all humans have

the same hue, it is easy to remove the skin by modifying the hue value. As a result, the eye

3



image only contains a little amount of skin. The image is croppeddicension approximate to

that of the eye andhen converted to gray. Finally, the resulting imagéesatively thresholded

using constraints based on the anatomy of human eyes. At thethadyupilis detectedas the
center of gravity of the resulting imagThe use of geometric constraints, as well as the
normalized center of gravity, helps in avoiding miscalculations of the pupil center due to lighting

variations.

This paper presents a system that is based exclusively on one standard webcam using recent
image processing breakthrough. It works in real time at different distances from the camera and
the system can be used successfully when using personal laptops with built in webcams under
any lighting condition.

Head Pose Tracking Video Frame Eye Pupil Center Detection
1 ‘ 1

Head and Eye Angles
Fusion

-#

Gaze point

Figure 1 Overall System Block Diagram



CHAPTER 2
BACKGROUND STUDY

There are many methods to estimate the gaze of a person in front of a monitor. The existing
research in gaze estimation includes intrusive and-imbrusive systems. Selecting the optimal
method depends on the purpose of the systeifhe poposedgaze estimation system must be
accurate, fast, lowcost and user friendly. In order to build the right system, it is important to

first review the different methods used to estimate the gaze.

2.1 Commercial and Invasive Gaze Trackers

On the market, thee is a whole range of commercial systems for eye tracking. The leading
products are Tobii an&enso Motoric InstrumentSMI). Thesasystems owe their popularity to

the fact that they are very accurate despite the fact that they require eixtiiared (R light
a2dz2NOSa&a 2N Y2dzyi SR RS@OAOSa 2y GKS dzaSNRa KSI|
cameras and carefully positioned one or multiple IR light sources. The gaze is estimated by
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caused by théRemitter.
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corneal reflection to estimate the gaze of the user. Although the accuracy of Tobii is admirable it

is certainly not user friendly. The Tobii system has to be transported in a special carrying case

that includes a huge monitor equipped with IR emitters and a separate laptop. In addition, a
special Tobii agent is needed to supervise the entire experiméet.Tbbii system also includes

an extended calibration step that frequently involves a questionnaire.



Senso Motoric Instrument (SMI) is one of Tobii biggest competitors. Their gaze system consists
of a special mounted pair of glasses that is equipped oftipie HD cameras. The SMI eye
tracking glasses are worn like a normal pair of glasses and the binocular tracking gives a
NEYI Nyl oftS I OOdzNIF 0 2F G(KS dzasSNna 31 S ¢KS
NEO2NRa (KS dza SN adistehdes dastt like ITdbii, thd $MI fails 16 Sdliverd ay’ R
completely natural, user friendly and comfortable solution to gaze tracking because of the need

of special accessory equipment.

Intrusive systems uses special equipment such as electrodes, radae fmogr or special
Jftlraasa 6A0GK I avrff 6So00lFY Y2dzyiSR 2y GKSY

be expensive and unfriendly as they require special hardware.

2.2 Non-Invasive Gaze Trackers
To make gaze estimation more natural, Aatrusive techniques have been proposed. Non
intrusive systems fall into two main categories; pupil center corneal reflection techriie

useinfrared illumination and normal video cameras technique that do not require infrared.

2.2.1 IR Gaze Trackers

IR Gaze trackers @ghe pupil corneal reflection method. The pupil corneal reflection technique
uses at least one infrared light to illuminate the eye. A camera then captures images of the eye
for analysis and the pupil and the infrared corneal reflection positions arectite Based on

the distance between the pupil and the corneal reflection, the gaze direction is calculated using
geometry. The problem with this technique is that it only works in an ingdootrolled
environment, which makes it inconvenient. Indeed, thdrdared system requires intensive
calibration because the position between the infrared and the camera needs to be known in

advance. In addition, these systems are very sensitive to light because they are based solely on

6
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the position between the pupil andhe infrared illumination. Therefore, the pupil corneal
reflection technique is not adequate to humaomputer interactions because of its

impracticality.

2.2.2 IR Free Gaze Trackers
To overcome those difficulties, techniques using onbje@i cameras have beenedeloped:

appearancebased methods and modélased methods.

Appearance based method®no et al. 2006; Morency et al. 2006pnsist of estimating the
gaze from comparing a new image of an eye to a set of eye images contained in a database in
order to findthe best match. One of the main disadvantages of appeardased methods is
that extracting the pupil position precisely is very difficult. The accuracy of such a system is
often based on how much data is used. Therefore, those systems require a lataofadbe

accurate and the system tends to be too slow and fails in real time tracking.

Model based methods consist of using the shape of the eye to build an eye model. The position
of the eye features as well as some other facial features is utilizegdate the eye model and
estimate the current gaze. Various techniques are used to estimate the gaze from an eye model.
The two most popular techniques are the circle algorithm [Wang and Sung 2001] and the 3D
eye-model [Matsumoto and Zelinsky 2000]. Theckd algorithm fit the iris into an ellipse shape

and from ellipse parameters, the gaze is estimated. Unfortunately, the circle algorithm depends
highly on the resolution of the eye images in order to shape the ellipse correctly. Therefore
when used with aregular webcam, the circle algorithm performs poorly. The 3D eye model
estimates the gaze as a vector from the eyeball center to the iris center. The disadvantage of the
3D eye model is that it often requires calibration to estimate the relationship betwbe eye

and the 3D eye model.



This thesis presents a nosntrusive infrared free hybrid model for gaze estimation, which
combines the advantages of both appearance and model based models. The proposed method
detects the face and eye region using an eg@@nce based approach, and estimates the gaze
using a simplified 2D eye model that requires a limited amountalfbration and deals with

head movements.



CHAPTER 3
HEAD POSE ESTIMATION

A large number of systems that are available for eye tracking imply lirhigad movements,

which is not a practical solution. In humaomputer interaction, a person is not able to keep his
head still for a long period of time when looking at a computer screen because of breathing or
muscle exhaustion. Additionally, applicatiosigch as driver awareness and marketing require
head movements; therefore a system that does not tolerate head motion would be inadequate.
Consequently, it is necessary to design a gaze estimation system that takes in consideration

voluntary and involurdry head movements.

Video Face | Features Extraction
— . .
Frame Detection and Tracking
2D Face
Aligned

Alignment using 3D Head Model

eyes position

Pose
Estimation

3D Head Model

3D Modeling

Rotation Matrix and
Translation Vector

Figure 2: Head Pose Block Diagram

This paper presents one of the most popular approaches in recent years to track the head
position. The face is detected using Viola/Jones face detector. The detected corner features
within the face egionare mapped to a 3D head model. The initial pose using POSIT algorithm is
then estimated using th@D feature points in the image and their corresponding 3D points on

the head model¢t KS LJ12aS 2F (GKS 05 KSIFIR Y2RStdpasgd. (KSy



The poses then a combination of a 3D rotation matfkand a 3D translation vector. The
changes in position are tracked by applying optical flow to the detected facial features and the
pose is updated. In case the pose does not satisfy theetbsbnstraints, the 3D head model is

re-initialized automatically.

3.1 Viola-Jones Face Detector

3.1.1 Detection of Face

The face is detected using the Vidlanes detector also callébde Haar classifierlt is one of the

most popular solutions used for face det®n because of its speed and efficienayudesthe
Haartransformfeatures that consist of adding and subtracting rectangular image regions before
thresholding the result. The Haar classifier detector is trained in this case to recognizel faxes.
Vida-Jones algorithm starts with positive (faces) and negative -faoas) sample gray scale
images. The Haar features are extracted from the sample images and a cascade of classifiers is
trained using Adaboost which is a weighted voting method. As a resilhave a set of selected
features and the classifier is applied to each subwindow of the given image until the face is

found.

10



Positive (faces) and Extract Haar-like Train Cascade of
Negative (non -faces) ———— Features Classifiers with Adaboost
Gray Scale Images (weighted voting)

l

Selected Features

v

Apply Classifier to
each subwindow

Figure 3:Face Detection using Violalones

3.1.2 Optical Flow

Commercial detection systems for facial expressions and head nensngenerally use a
markerbased technology, especially in Hollywood. This technology is known as facial motion

O LG dzNB s KSNB Y20SYSyida 2F | LISNE2YyQa FFOS | N
such as Avatar or The Polar Express, actors su€hrasHanks have several LED markers placed

to their faces and are tracked with high resolution cameras. This solution is extremely accurate

but not practical because it requires expensive additional equipment. The presented solution is
markerless; it is hsed solely on a standard webcam without the use of any additional support

such as markers.

11



Figure 4: Optical FlowSample ImageThe red points represent features in the current frame and

the blue points in the previous frame.
To track the changes in hd position, we apply the Luc#anade optical flow method. Optical
flow is the apparent motion of brightness patterns in the image. Optical flow estimates pixel

motion from one image to another.

t t+1
o fx Yis(placement = YefY«
o VYelu VY
H I

(@) (b)

Figure 5: Optical Flow Assumptiors. The point with briitness at time t is the same one
movingto @ Yeho Y« attime t+1 with approximately the same brightness value. The

displacement between successive frames must be small.

12



Two assumptions are necessary to be made when applying optical flow. Thedust@®n is

that brightness is constant which translates to:

W e U 1
Duw Cw Yehw Y @
The second assumption is that motion is small so we can derive:
i~ G S e 17O T O
O Yelwd Y Ol —Ye —Yo TNOWie i QORI i )
T 1T )
e 17O 1O
O —Ye —VYi
T W T W
Then we compute optical flow by combining the two equations above such as:
T O Yelth Y¢ "Ocho "Cuftd "'OYe "OY« 'O cfwo
3)
oy Oy OYe OV«
()
WhenYe andY« goes to zero, the optical flow equation becomes exact:
Tt O OYe QY« (4)

The optical flow equation shows that at each pixel we have one equation and tkvmwns.
This means that only the flow component in the gradient direction can be determined. In other

words, the motion parallel to the edge cannot be determined; this is called the aperture

problem.

13
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Figure 6: Aperture problem. The motion was not detded because the dark window moves in

a direction parallel to the edge.
At this stage we need to make one last assumption to solve the equation(M&/¢) is
constant within a small neighborhood of a pixel. Therefore if we use a 5*5 window of brightness

values, the optical flow equation becomes:

I:(p1)  Iy(p1) Ii(p1)
L(p2) Iy(p2) ||| _ _| li(p2)
: : v H
5
Ie(p2s) Iy(p2s) If(pas) ©)
A d b
25x2 2x1 25x1

We have now 25 equations for only two unknowns. To solve for this system, we set up-a least

squares minimization of the equation, whete Q& Q GE is solved as;

(ATA) d= ATh
2%2 2x1 2x1
IEYEEDY Iq_tly Ul _ NI (6)
Y lly Y Iyl v > Iyl
ATA ATy
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This equation is only solvable whéno is invertible which happens when it has full rank. In
addition, the two eigenvalues @f 6 should be large. Therefore, it vital that we pick the right

480G 2F FSI(dNBEAS ¢ FRaPadetFviiki dNBaé S T2NJ GKS [ dzOF

To decide which facial points are good to track, the Shi and Tomasi method is used. A good
feature needs texture and corner. Texture exhibits local-homogeneity in an image while a
corner is more like the intersection of two edges within a local neighborhood. Features that
have texture and corner have big eigenvalues. Using the Shi and Tomasi technique, the pixels

with big eigenvalues are then selected i thearch area.

Features with strong edges are usually located around the mouth, eyes and nose. In a situation
where the subject makes a lot of different quick facial expressions, this algorithm will have a
hard time to track those features which may leaxihcorrect results. The number of features
selected varies between 20 and 40. In one hand if the number of features is greater than 40, the
quality of the features is not high enough and the points are not robust enough for tracking. In
the other hand ifthe number of features is less than 20, the loss of a point greatly affect the

tracking result because there are few features.

Figure 7: Facial Features Extraction

15



3.2 Mapping of Features to 3D Head Model

The head is modeled using a sinusoidal 3D head numtedtructed in Blender, a 3D computer
graphics software. The head model does not take into account the detailed estimation of the
AKILS 2F (KS dzaSNR&a KSIRZ odzi 3IA@Sa ariAatlh od:
model has several advantageshias it does not demand prior preparation to fit the user which
means automatic initialization. Furthermore, the speed is maximized due to the simplicity of the

model.

Figure 8: 3DHead Model created in Blender

The alignment and scaling between the faseage and head model is done according to the
position and distance between the two eyes. In addition, the mapping of the 2D facial corner
feature points on the 3D head model is possible thanks to the assumption that during
AYAGAL T AT F (A Bfacing 8traighdal tBeNdogitor. KrSoth& words, we make the 3D
head face model coincide with the image obtained from the camera. From that initial pose, the
change in features between successive frames are tracked and mapped back onto the 3D face
modeland the head pose is updated. The 3D model assesses changes in head position relative
to the preliminary fixed position during initialization.

16



Figure 9: Mapping of 2D image features to 3D model

From the mapping of the 2D facial features in the image teir corresponding points on the
3D head model, the next step is to determine the head pose (rotation and translation) of the

user using POSIT algorithm.

3.3 POSIT Algorithm

The relationship between a 3D poifX, Y, Zdn the head model and a 2D image miofu, v)is

expressed as;

) Q m o I 1 i o @9
i 0 nQe it 11 0 @
N W
pommp !t L 07 ()

where X, Y, Xare the coordinates of a 3D point in the world coordinapace, (, V) are the
coordinates of the projection point in pixelé is the camera matrix containing the intrinsic
parameters; @, @) is the image centers is the scale factor ani), "Q are the focal lengths
expressed in pixel uts. [R|t] is the joint rotationtranslation matrix, also called extrinsic

parameters.
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Figure 10: Relationship between a 3D point¢ifty  and its corresponding 2D projection

6  onto the image plane

The POSIT algorithm is used to mstie the position in three dimensions of a known object. The

3D pose of an object includes rotation and translation. The POSIT algorithm requires image

O22NRAYIFGSa 2F G tSrkad F2dNJ 202S00Qa LRAyGaD

points must not belong to the same plan. The 3D model coordinates of these points must be
known as well. Finally, the algorithm necessitates the focal length of the camera used to picture
the object. In our case, the image coordinates of the object are tbedamates of the detected

features on the face and the 3D model coordinates of these points are their corresponding

points on the 3D head model. The focal length is estimated using the face width.
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Figure 11: POSIT Algorithm Inputs/Outputs

CA NA (i efsthnd Qaime niatatidons about the pinhole camera modelDAlbelong to the 3D
model and alld belong to the image plan&. The planeK is parallel to the planés at a
distanced . 0 projects perspectively ofi (onK) and & (onG). 0 projects orthographically

on0 and0 projects perspectively of) .

Figure 12: Perspective projection & and scaled orthographic projection r) for an object

point 0 and a reference pointd
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system expressed in the object coordingidle 6f) OR) O such as;

(8)

_<
ool
olfoie

Oncei andj are computedk is obtained by taking therass product of andj. If & (depth
of 0 ) is found, it is possible then to compuie because of the alignment betwednand O&

suchasY —zu0a with fbeing the focal length.

In scaled orthographic position, the imagkaopointd of an object is a poiny of the image

planeGwhich has coordinates;

N —— 9
© = €)
A 10
O (10)
while for perspective projection an image point would be obtained instead af with
coordinates
D = 11
© = 11
o B (12
W

These can be combined to:
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The ratioi  "J® is the scaling factor.

Nowi andj from the rotation matrix andd from0 are combined with) 0 and coordinates

@ andw from image point®t to & such as:

0
D02z -+ 10ow - W 1
5 P (19
- Q. . 1
D0DZ—Qwp - w (16
()
The terms- are defined as —0 0 8Q Next, we solve the equations above and we iget

andj. We also geto asf, the focal length,s known. We start setting T assuming scaled
orthographic image points and perspective image points coincide. Then once wei kjpamd

@ we can estimate a better and this leads to better values fgrjand® in the next iteratian.

3.4 Head Pose with Euler Angles

The head pose is updated after each movement and given in the form of a matrix that can be
viewed as a multiplication of three rotations, one about each principle axis. Matrix
multiplication does not commute so the order thie axes is important. In this paper, we rotate

first around the xaxis, then the yaxis and finally the-axis such as;
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(18)
A rotation ofr radians about the-axisis defined as:
p T
Y r n AIrO OFI (29)
n O&BT AirO

Y — mop L (20)
Finally, a rotation of radians about-axisis defined as:

AinO  OBT
Yon ol AinO m

(21)
Tt Tt p

Combining these three, the rotatidRis expressed as:

Ai-ATn0O OFOEHATINO AirOBRI ATrOEATMO OEDBEI
Y AT-@Opl OBDERORT ATr@ind AIr@EHOBT OEAINO (22)
OB+ OERAT-© Air@1-9

Given the rotdion matrix R, the Euler angles—andn are then computed by equating each

element in R with its corresponding elemdram the POSIT rotation matrix.
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Figure 13: Head Pose with Euler Angles

3.5 POSIT Algorithm Tracking Failure and Correction

During irtialization, the POSIT algorithm maps the corner feature points onto the 3D head
model and the user is required to front at the camera for a few frames at the beginning of the
tracking process. When graphing the performance of POSIT over time, onecaignifi
observation is made. The original POSIT algorithm fails after an average of 80 frames. The error
accumulates over time, especially when the algorithm deals with large head movements. In
order to correct such a limitation by POSIT algorithm, the predasethod extends the original
POSIT algorithm by implementing an auto reset of the algorithm when three checks are verified.
The first check is that the current position of the face must be within 20% of the previous

position at initialization. The reseitill then only occur when the head is close its initial position.
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The second check states that the Euclidean distance of the head Euler angles must be less than a
desired threshold estimated during calibration such as:
r— QR A
(23)
If the head is back to its initial position, it is only natural to expect that the distance between the
Euler angles and zero should be minimal. The last and third check is to only do-the re
initialization proces after a minimum of 40 frames. This gives some time to the program-to re

adjust itself. The auto reset only occurs when the three checks have been confirmed.

(a) ¢® xhJt&® thiugt x J (b) T ohJ 1o thiT8t P J
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Figure 14: 3D Head Model next to the face image in different posd@$ie angle for head tilting

is represented by . The angle for head nodding sideways (shaking)psesented by—The

angle for head nodding up and down is represented byhe head pose is then represented by

(" hhr).

Furthermore, it is necessary to adjust the scale of the pose accurately to obtain valid gaze
results. The distance between the twoesyis used as a measure of how far away the user is
from the camera (focal length). For example, if the detected head width is small, that means the

dzASNJ A& TFdzNHIKSNJ FNBRY GKS OFYSNro hy GKS O2y (N

user is cloer to the camera. As a result, it is possible to adjust the head model scale.
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Figure 15: Head pose at diérent distances d The distance d is the distance in meters between

the user and the computer screen

The POSIT method allows us to compute the 3D position of an object using only one webcam.
The described algorithm is a good choice for real time appbicatiecause its computational

complexity is low and it is robust to lighting changes.
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CHAPTER 4
EYE PUPIL CENTER DETECTION

The proposed eye tracking method is a hybrid method that combines the strengths of
appearance and feature based algorithms while lingttheir weaknesses. The proposed pupil
center detection system takes advantage of the precision of appearance technique. To make
sure the proposed program runs in real time, the amount of training data is reduced to only
detecting the face and rough poisih of the eyes in the image. Then, we exploit feathesed
technique processing steps to locate the pupil center by using an adaptive thresholding that is
robust against illumination changes. Figure 16 shows the overall procedures of the eye pupil
centerdetection. The face and then the eyes within the face region are detected using the Viola
Jones appearance technique. Because the Mofes method does not detect the eyes
accurately, some prprocessing steps including color space conversion and @tssholding

are applied to each eye image in order to remove the skin and eyebrow parts around the eyes.
Once the eyes are localized more precisely, an adaptive thresholding technique that uses the

physical properties of the eye is utilized to localize plgil center.

Eye _ Skin . Pupil
Detection Removal Localization

Face Image — — Pupil Center

Figure 16: Pupil Center Detection Block Diagram.

4.1 Eye Detection

The detected faceés divided horizontally into three parts. The top two parts are selected to be
the region of interest that contains the eyes. By reducing the search areapthputation time

is reduced. Using the same Vidlanes detector, both eyes are detected. The face is then
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divided into two parts vertically. The left eye is chosen to be the eye on the left side of the face

and the right eye on the right side

Left eye
search area

Right eye
search area

Figure 17: Eye detection from face detection

4.2 Pre-Emphasis: Skin Removal

In the previous section, we successfully detected the face and eyes using theldfiela
technique. However, at this stage the eye image detected by the Haar Classifier still contains a
lot of useless information such as the skin and eyebrows. Because the skin is illuminated
intensively, it influences the thresholding when detecting the pupil center. To remove the skin,
the eye image is converted into HSV (Hue Saturation Value) color SpeeddSV coordinate

system is cylindrical.
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Figure 18 HSV Color space
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(Fig. 18). Hue is measured in degrees frono®B60°. The equations below described hdwe

"0 is computed from RGB color space;

0 I AQHan
& | EIYROD
0 0 a

L 080000 0®

I P“O

I’I:TG € @1 QW Y
O o Y .
[y 5 ch Qe O
ry O .
b E th o® o
o}
O on O

(24)
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Knowing that almost all humans have the same hihe, skin is removed by Otsu automatic
thresholding the hue component of the image. As a result, the eye image only contains a little
amount of skin and no eyebrows. The image is thempged to the nearly dimensions of the eye

for further processing.

(181, 127, 97) (183, 129, 118) (146, 140, 100)

u\'ﬂW

(143, 115, 84)

(18, 106, 169) (15, 78, 167) (23, 95, 138) (20, 121, 145)

Figure 19 HSV to RGB intensity (255) component comparison

4.3 Pupil Center Detection

The pupil center is detected on each eye by the following method. First, the eye image without
skin isup-sampled to twice its original size. Then, the resulting image is eroded and normalized
to reduce the effect of the variations in illumination. At that point, the eye image is thresholded
using an adaptive approach. The pupil is assumed to be darkarttie background which is
mainly the white of the eye. Therefore any pixel below a certain threshold value is labeled as the

pupil. Because the environment especially illumination changes all the time, a fixed threshold
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cannot be selected. Consequentlyy aitial threshold valued is selected such a® is large
enough to contain at least the pupil and unfortunately some of the background as well. Then
the image is iteratively thresholded until eye geometric constraints are satisfied and the desired

thresholdo ischosen.

The eye geometric constraints are created based on physical anthropological characteristics of

human eyes:

- Two eyes region must belong to the same line

If0 and™Q arerespectively the widttand the height of an eye, then in average;

0
;IQ c (25)

If0 and™Q are respectively the width and the height of a pupil, we have:

V]
g 9 (26)

If the distance between the left and right eye is notedy, we have the relation:

Q 0
¢ (27)

After applying the geometric constraints to the eye image, only the pupil remains. The pupil
center is then estimated by computing the center of mass also called the center of gravity.
KnowingOuito is the pupil image, the coordinates of the centergodvity® and are defined
as the spatial moments of first ordér  andd p divided by the are® &  of the object

such as;
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The center of gravity has shown better results in determining the center of the pupil than

computing the center of the contour area.

@— o8t ™l b)— p& e ™MeEJ (©— 18T T

Figure 20: Pupil Center DetectionThe angle in which the eye moves sideways is expressed by
—and the angle in which the eye moves up and down is expressed by

Toprevent the program to search for a pupil when the eye is closed, an eye blink detection
method is implemented. The eye geometric constraints are also used to detect a closed eye.
[ S Q& GKS LldzLdHy abtie KyR sogrtinatBsih wdus . Then, the pupil

region that satisfies those two conditions is considered aksed eye:
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If the eye is closed for more than 3 frames, it is considered a closeidsgad of a blink.

Figure 21: Eye BlinkThe right eye is closed while the left eye is open and the left pupil center

is detected. Notice that no pupil cross is drawn on the right eye since it is closed.

4.4 2D Eye Model

Once we know the position of the pil, it is possible to find their coordinate projections
andr . The eye projections are derived from the position of the pupil relative to the position of
the eye corners. In order for the system to work in real time, a limited amount of computation
is required which makes a 2D eye model appropriatedur purposes. The poind(x, y)is the

center of the pupil on the eye image. The poidité R is chosen to be the origin of the 2D

eye model as the center d® and’O as well as) and0 . Knowing thatod and

, it is possible then to express the projectiersandr onto the axis centered ai

(fig.22) such as;
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L,

Figure 22: 2D Eye Model
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CHAPTER 5
GAZE POINT COMPUTATION

Knowing the head pose and the positions of the eyes and pupil centers, we are now able to
determine where the user is looking at on the monitor. The gaze point is the intersection of the

line of sight with the screen.

Subject

Webcam

Gaze Point

Figure 23:System Setup.

5.1 Fusion of Head Pose and 2D Eye Model

Let 0 & be the gaze point onto the computer screen. The gaze point in real time is
computed using the linear combination of the head pose Euler angles) @nd the pupil

coordinate projections+, r ) such as:
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The constants,| ,T andl are estimated during calibration.

Figure 24: Gaze Point Estimation

5.2 Calibration

During calibration, the estimation of the parameterg ,1 andf is done. The user is asked to
look at the 4 corners of the computer screen and the values, pf ,f andf are recorded.

The parameters are estimated using the average method. The user first looks at the center of
the screen. Then, the user looks at the four calibratiomfsiwhich correspond to the four
corners of the screen. That calibration process facilitates computation of the parameters by

allowing us to calculate,| ,1 andf by simply averaging them such as;
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By recording multiple sequences of different head and eye positions, the parametersf

andf arecomputed and can be used to determine the gaze in real time.

Figure 25: Calibration Markers The calibration markers are the five blue crossed disks
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CHAPTER 6
EXPERIMENTALRESULTS

6.1 Head Pose Tracking Results

To evaluate the performance of the proposed headegestimation and tracking system, the
Boston University (BU) public database was used (http://csr.bu.edu/headtracking/). The BU
database had been used by many head tracking papers. The BU database contains 72 videos and
the ground truth for position and @ntation of the head was obtained using a magnetic sensor.

The BU database contains 2 set of video sequences of free head movements from different
subjects. The first class of sequences includes 45 videos under uniform lighting conditions. The
second clas includes 27 videos under varying lighting conditions. The proposed algorithm was

tested on all the 72 videos which are 200 frames long (approximately seven seconds) each.

The proposed algorithm is first tested on uniform lighting. The initializatialotiee in the first

frames when the subject stares at the camera for a short period of time before moving freely at
RAFTFSNSBYyG RAaGFYyOSa FNRY GKS OFYSNI® ¢KSy @K
efficiently for different subjects and poses for a MAE&m absolute error) of (3.779°, 3.943°,

4.834°).

Next the proposed method is evaluated under varying lighting conditions in 27 videos for
diverse subjects and poses at different distances from the camera. Although the performance

decreases to (5.054°, 68 > pPomMpcO>X GKS LINRPLR2&SR YSiK2R a

head under varying illumination.
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Figure 26: Uniform lighting. The figure shows results of the proposed head tracker in an

example of the BU databasader uniform lighting conditions for different poses.
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