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ABSTRACT 
 
 

Word boundary detection is the stepping stone for many applications like keyword spotting, speech 

recognition, etc. It is proved that fifty percent of the speech recognition errors are due to the errors in the 

word boundary detector. Efficient word boundary detection can reduce the recognition errors and improve 

the performance of keyword spotting algorithms. Word boundary detection also helps in reducing the 

search space in the keyword spotting algorithm. Speech is non-stationary in nature and most of the time 

no utterance of the same word will be same as another utterance of same word. This makes it 

challenging to develop any speech processing algorithm.  

 

Many algorithms, to detect word boundaries, use acoustic features, lexical cues, energy, pitch etc. 

Acoustic features of energy, pitch and Teager Energy were used in this research to detect word 

boundaries. The strengths and drawbacks of each of the techniques are identified and the information 

from all the techniques was fused to obtain improved word boundary detection. Energy was able to detect 

word boundaries with 56% of the time, pitch with 68% of the time and Teager Energy with 72% of the time 

 

Simple counting rule, which is based on reinforcement learning, was used in this research to fuse the 

detections from the three techniques to make a final decision on the word boundaries. This system does 

not need prior knowledge about the detection and false alarm probabilities of the techniques. The weights 

are adapted with the outcome in every iteration. Fusion of the decisions from energy, Teager Energy and 

pitch yielded a 79% hit rate on spontaneous speech using counting rule whereas linear opinion pool and 

log opinion pool produced 73% and 74% hit rate respectively.  
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CHAPTER 1 

INTRODUCTION 
 
 
1.1    Word Boundary Detection 

 
Word Boundary Detection (WBD) is defined as identifying the start and the end of each word in a spoken 

utterance. Detecting the word boundary is used in many applications like keyword spotting, speech 

recognition system etc. In this research various types of word boundary detection environments which 

include noise free, telephonic conversations are considered.  

 

Two types of speech are considered in this research which are explained below: 

• Constrained Speech: In the constrained speech, the utterance and words has well defined 

boundaries with well defined pauses between words. 

• Unconstrained Speech: Speech with no well defined boundaries, grammar or pauses is called 

unconstrained speech. Word boundary detection is challenging in the unconstrained speech and 

without a good detection algorithm word boundary detection can result in the many false alarms 

and misses. 

 

Word boundary detection can also be classified as speaker dependent and speaker independent. 

Speaker dependent systems are easy to develop when compared to speaker independent systems as 

one can have the information about utterance characteristics of the single speaker like pitch, but speaker 

independent systems have to be developed based on many speakers which makes it challenging due to 

different prosody, pitch etc. In this research a speaker independent system is developed. 

 

1.2    Problem Statement 

The goal of the research presented here is to detect the word boundaries in a spontaneous unconstrained 

speech independent of the speaker.  
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1.3    Previous Research 

Word boundary detection is usually performed using the acoustic information of speech (Janqua [1994], 

Wang [2003] and Cettolo [1998]). Janqua et al [1994] used energy based on sub-band analysis to detect 

the clues for word boundary detection even in the presence of noise. Using this algorithm the recognition 

errors were reduced to 20% which was 50%. Wang et al [2003] presented sentence boundary detection 

using pause, rate of speech and prosody. In the first stage basic features frame energy, Zero Crossing 

Rate (ZCR) and pitch are calculated. In the second stage pauses, rate of speech and prosodic features 

are obtained to mark candidate word boundaries. In the third stage a statistical method Adaboost is used 

to mark the sentence boundaries based on the contextual information. The hit rate using this method is 

79%. Andreas Tsiartas et al [2009] proposed using lexical features along with acoustic features which 

greatly improved the word boundary detection rate. Acoustic features like short time energy, short time 

pitch frequency and short time zero crossing rate are used along with the Boundary Confidence 

Coefficient (BCC) parameter which is based on lexical information of the frame. These lexical and 

acoustic features are used to train the Hidden Markov Model (HMM) based classifier to detect word 

boundaries. The word boundaries were detected with F-score of 0.81. Some word boundary detection 

techniques are discussed in this section 

 

1.3.1  Robust Word Boundary Detection in Spontaneou s Speech Using Acoustic 

and Lexical Cues 

Acoustic cues often fail to give cues about the word boundaries when the beginning of a word gets co-

articulated with the end of the previous word, which is common in spontaneous speech. Tsiartas et al 

[2009] used lexical cues along with acoustic features to detect word boundaries. Although lexical cues 

can be erroneous, they provide rough and potentially imperfect word segmentation information which 

when used with additional acoustic information can produce improved word boundary detection.  

The acoustic features used by Tsiartas et al [2009] are: 

• Short time energy: The signal energy variation can give a cue to determine if the frame is close to 

word boundary.  
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• Short time zero crossing rate: If there is a reduced speech activity from a word to word boundary, 

it can act as a cue to detect the boundary. 

• Short time pitch frequency: Pitch can be used to detect the unvoiced sound near a word boundary 

which can act as a cue. 

 

Figure 1.1: A typical word Lattice in Automatic Spe ech Recognizer 

 

The authors considered the word lattice at the each frame where the nodes (the circles) in the Figure 1.1  

indicate possible word boundary and arcs show different possible words. Using a language model, the 

most probable paths are listed in the order of their probability in the entire lattice. A new parameter 

Boundary Confidence Coefficient (BCC) at frame i is defined as:  

                                                               BCC(i) =  
�
� ∑ ����

��� �	

                                                      (1.1) 

                                                               g(p(k)) = �1 �� ��	
 � ��
0 ���������

�                                                       (1.2) 

Where p(k)  is the probability of kth path in the lattice and th is the optimally chosen threshold of the 

probability. The authors used 5000 utterances from SwitchBoard for training purpose and 2000 for the 

testing purpose. The features described above were used to train a Hidden Markov Model (HMM) based 

classifier and trained the detector using only clean speech. Two symbols, a boundary symbol and a non 

boundary symbol, are used in the HMM. In evaluating this model the authors used speech with different 

types of noise and different SNR levels between 5 and 20 dB. It was observed that use of the lexical 

features along with acoustic features always produced higher detection rate when using only the acoustic 

features. As the SNR decreased BCC feature also suffered which reduces the boundary detection. The 

results are shown on F-score basis which is measure of tests accuracy. 

                                                              F-score = 2* (p . r)/ (p +r)                            (1.3) 
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                             Where    p = number of hits/ total boundaries detected      

                                         r = number of hits/ number of actual word boundaries                

The word boundary detection F-score is 0.81 using both lexical and acoustic features is much higher than 

using only the acoustic features which has a F-score of 0.63 

1.3.2   Word Boundary Detection with Mel-Scale Freq uency Bank 

An Adaptive Time-Frequency (ATF) parameter for extracting both the time and frequency features of 

noisy speech signals for word boundaries was proposed by Der Wu et al [2000]. Mel scale frequency 

bank is approximated by simulating 20 triangular band pass filters f(i,k) (1≤ i ≤ 20, 0 ≤ k ≤ 63 ) over a 

range of 0 – 4000 Hz. Each filter band has a triangular bandpass frequency response and the spacing is 

determined by a constant mel frequency interval given by the equation below: 

 

                                                                   Mel = 2595 log(1 + f/700)                                                     (1.4) 

 

Energy of each frequency band can be calculated for each time frame of the signal using the formula  

 

                             F(m) = x(m,i) = ∑ xfreq(m,k) f(i,k) , 0≤ m ≤ M-1, 0≤ k ≤ N-1, 0≤ i ≤ 20                     (1.5) 

 

where i is filter bank index, N is N point DFT, k is spectrum index, m is frame number, M is number of 

frames for analysis,   xfreq is DFT of xtime(m,n), f(i,k)  weighting factor of frequency energy. 

 

                                                   Time energy T(m) = xrms(m) – ∑ ���
/�
��� 5                                     (1.6) 

                                                    ATF (m) = Smoothing( T(m) + cF(m))                                               (1.7) 

 

Smoothing is performed by a three point median filter, c is a proper weighting factor and T(m) is time 

energy, F(m) is frequency energy. The algorithm first performs a noise classification procedure to 

determine noise level (high, medium or low) and the noise category  (high or low zero-crossing rate) by 
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using ten frames of relative silence at the beginning of the recording and computing an average of the 

logarithm of the rms energy and the zero-crossing rate for these frames. It then uses the ATF parameter 

to find the islands of reliability boundary using a threshold. It adjusts the word boundary from 50 ms to 

150 ms based on the noise level. Using the ATF parameter reduced the recognition error due to end point 

detection to about 20 % which was 30 % using only time frequency parameter. It is shown that the ATF 

parameter can extract useful frequency information of the signal by using the maximum total energy 

bands without the need to determine the SNR and recognize the types of noise. 

 

1.3.3   A Robust Word Boundary Detection Algorithm  

Accurate detection of word boundary is very important in the performance of speech recognizers. An 

evaluation of speech recognizer showed that more than half of the recognition errors were due to word 

boundary detector (Agaiby  [1997]). Agaiby et al [1997] showed a word boundary detection algorithm that 

performs well under a variety of noise. The objective of the algorithm presented by Agaiby [1997] was to 

maintain computational simplicity while detecting word boundaries efficiently even in a noisy environment. 

The algorithm uses direction of the signal, using two microphones, as the main criteria to distinguish 

between wanted speech and background noise. Direction is the simple observation that in most of the 

speech recognition applications the position of the speaker can be considered to be within a predefined 

area facing the microphones. It is mentioned that it is easier to adjust the position of the user than to 

control the types or levels of background noise. The algorithm is based on the use of two microphones, 

and is therefore able to estimate the direction of the signal source and not its position. It uses the time 

delay between the received signals at the two microphones which are 20 cm apart to estimate the 

dominant signal source direction. This estimate along with an estimate of coherence function between 

two signals are used to determine the initial values for word boundaries and then are refined using the 

signal energy by adding the head and tail frames at the beginning and the end of the wanted speech. 

 

The noisy speech is first processed using manually labeled speech and the recognizer is evaluated and 

then the word boundaries are detected using the algorithm discussed and the recognizer is evaluated. A 

significant improvement of 45% was achieved in the recognition accuracy with different SNR levels. This 
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algorithm is capable of differentiating between desired speech and other types of noise including 

competing real time talkers can be implemented. 

 

1.3.4   Detection of Prosodic Word Boundaries  

A reliable method of prosodic word boundary detection for continuous Japanese speech based on the 

statistical modeling of fundamental frequency contours of prosodic words was developed by Hirose et al 

[2000]. Prosodic word boundary is defined as a word or a word chunk corresponding to an accent 

component which is otherwise called accent phrase. Taking into account “Mora” (the basic unit in 

Japanese like syllable for English) and that its relative fundamental frequency (F0) value is important for 

accent-type perception Hirose [2000] developed a modeling scheme. The models are time-aligned to 

segmental boundaries they can be easily incorporated into phoneme based recognition. The modeling in 

Mora units has an advantage over frame based as it can be robust to F0 contour fluctuations at 

consonants and can be trained using a small sized corpus. 

 

A sentence fundamental frequency contour in logarithmic frequency scale is segmented into mora units 

using mora boundary information obtained by the phoneme recognition process. The segmented F0 

contours are represented by pair of codes, one representing the contour shape and other representing 

the average shift from preceding Mora. Based on the accent types and the succeeding pauses the 

prosodic words are modeled. These models are matched against the input utterances to obtain the 

prosodic word sequence with their accent types and prosodic word boundaries detected simultaneously. 

Using this modeling the detection rate was 75%. The authors also stated that a corpus with prosodic 

boundaries can greatly improve the recognition rate. 

 

1.3.5   A Multi-pass Linear Fold Algorithm for Sent ence Boundary Detection  

Detecting sentence boundary and using the cues of the sentence boundary can improve the word 

boundary detection rates. A multi-pass linear fold algorithm for sentence boundary detection in 

spontaneous speech was proposed by Wang et al [2004]. It uses only prosodic cues and does not rely on 
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segmentation information from a speech decoder. Pause and pitch features were found to play a crucial 

role in boundary and disfluency detection problems. By analyzing a number of files from the SwitchBoard 

corpus it is observed that sentence boundaries show larger break duration and the pauses are large 

when compared to other pauses like intra and inter word breaks. In this algorithm Wang [2004] mainly 

focused on pitch breaks, pitch properties in the neighborhood of the pauses. After the pitch detection, the 

pitch break durations are plotted in ascending order of the pitch breaks but not in the way they occur in 

the utterance. After plotting the pitch breaks, it is observed that the region corresponding to shorter 

duration has most of the pitch break points and is related to intra and inter word breaks. The region with 

larger duration is sparsely populated. Points in the sorted pitch break map are cut into two groups and a 

linear fit is done to each group independently. The cut which has minimal mean squared deviation is 

chosen as shown in the Figure 1.2 . 

As we can see in the Figure 1.2  this one pass linear algorithm was able to fit the data well most of the 

time. The upper line in the figure represents the fluent pause, hesitation and other special breaks which 

can be the sentence boundary. There can be other cases where there is a rich transition with no good 

pauses between the sentences. In such cases the algorithm is applied recursively removing the lower half 

of the data in each iteration.  After obtaining the results with this multi-pass algorithm the output is post 

processed on the following criteria: 

1) If a pitch break point occurs early in the sentence it cannot be a sentence boundary. 

2) Sentence boundaries cannot appear too close to one another. 

3) Occurrence of pitch reset is associated with sentence boundary. If the pitch reset was observed it 

marked as sentence boundary. 

4) If there is no other clue available the break point with longest duration is selected as sentence 

boundary. 
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Figure 1.2: Linear Fold Algorithm – Wang [2004] 

Based on the above four assumptions the results from the algorithm are modified. Using this algorithm on 

100 randomly chosen utterances from Switchboard the overall hit rate in sentence boundary detection 

was observed to be 75 % where as the best results obtained using range features and a decision tree 

based was 78%.  

 

1.4 Scope of Research 

The aim of this research is to develop an algorithm with an improved word boundary detection rate in 

common speech signal environments like telephonic conversations. In this research the algorithm is 

developed for English and it eventually could be modified to suit any stress bound language.  
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CHAPTER 2 

INTRODUCTION TO WORD BOUNDARY DETECTION 
 

Words are the building blocks of speech. Different languages have different ways to start and end words. 

One of the types of language models is stress bound language, having stress at the beginning of the 

words, which includes English. Techniques like pitch, energy and Teager Energy take advantage of 

stress in the stress bound languages and can be efficient in identifying the beginning of the word 

boundary. For word boundary detection in English language, three features, having the acoustic 

information were used. Each of the techniques is used to detect the word boundaries individually, to mark 

the candidate word boundaries and then the results from all the techniques will be fused together to 

identify the word boundaries. The techniques are stated below 

1) Segmentation to Voiced/Unvoiced/Silence 

2) Energy  

3) Teager Energy 

4) Pitch 

 

 

2.1   Segmentation  

 
The knowledge of acoustic features in particular voiced and unvoiced segment plays an important role in 

many speech analysis systems. Segmentation of speech into voiced, unvoiced and silence could help in 

marking the candidate word boundaries in the speech. Voiced or Unvoiced speech followed by silence 

could be a candidate word boundary and in the similar way, silence followed by the voiced or unvoiced 

speech could be the candidate word boundary. So the segmentation of speech into 

voiced/unvoiced/silence is important in word boundary detection. Based the characteristics of the voiced 

and unvoiced speech listed in Table 2.1 , many algorithms were developed to detect voiced and unvoiced 

speech Arifianto [2007], Brett’s segmentation algorithm.  
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One algorithm developed for segmentation of speech was by Arifianto et al [2007]. He developed a new 

measure called the Instantaneous Frequency Amplitude Spectrum (IFAS) which is a measure of 

harmonicity of a speech segment, which is better than the short time Fourier transform (STFT). Voicing 

decision threshold relies on the difference of the harmonicity measured by the IFAS. It is quoted that 

major problem occurs at the segment where transition occurs from voiced to unvoiced or vice versa.  

 

Table 2.1: Differences in Voiced and Unvoiced speec h 

Voiced Speech  Unvoiced Speech  

Energy per frame is much higher Energy per frame is less 

Less zero crossings More Zero crossings 

Quasi periodic Noise like 

 

To reduce the error rate in the transition regions Arifianto [2007] the used two parameters namely entropy 

of the magnitude spectrum and instantaneous power of the signal. After the estimation of all the 

parameters above, the voicing decision is based on two techniques, direct threshodling and Peak-Picking. 

Using these techniques the results obtained were good with very low error rate of as much as 13.9 

percent. 

Problems faced in segmentation: 

1) Unvoiced and voiced speech overlap with each other making it difficult to identify their exact end 

points.  

2) Low energy voiced speech, like whisper, can be easily be mistaken as unvoiced speech. 

 

2.2    Energy 

Energy is one of the basic acoustic features in speech. It is mainly used in the Voice Activity Detection 

(VAD). If one can detect the voice activity it is easy to mark the word boundaries using other techniques. 

Li et al [2008] used the speech energy edge information which is the change in energy of the incoming 

speech. It has a capability of detecting voicing activity in low SNR environments. There are two steps, the 
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first step is to employ an optimized edge filter to identify the sudden rise or fall in the energy is defined in 

the equation below 

 

                        f(x) = eAx [K1 Sin(Ax) + K2 cos(Ax)]+ e-Ax [K3 sin(Ax)+K4 cos(Ax)] + K5 + K6
 eπ           (2.1) 

                                                               Edge(g) = ∑ ���
��� ! �
"
#� $"                                                     (2.2) 

Where A and K i are parameters of the edge filter, s is a positive constant, g is the speech energy, t is the 

current frame number and W is the window size. This filter is used to compute speech energy and obtain 

the edge information. In the next stage a four state finite state is applied with silence, starting speech, 

during speech and ending speech as its four states. Either silence or starting speech can be the starting 

point of the incoming speech data and then each frame will be classified into one of the four states of the 

transitions state diagram as shown as shown in Figure 2.1  below. 

 

Figure 2.1: Four state finite state diagram 
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Where Gap is the minimum frame number between the detected end point, Emax is the average energy 

value of the adjacent frames, F is the feature value of the current frame. The starting and ending 

boundaries of the speech are detected using this algorithm, which also identifies the background noise 

and silence. Using the proposed algorithm the highest recognition accuracy obtained is 80 % using 

Canadian English.  

 

Xufang Zhao et al [2008] developed an automatic speech signal segmentation approach using the silence 

detection which in turn uses short time frame energy, convex hull energy analysis and spectral variation 

analysis for the Mandarin language. The convex hull is the hull that exhibits minimal magnitude, 

monotonically non-decreasing until the loudness peak and monotonically non-increasing. The convex hull 

algorithm, which evaluates the shape of the loudness pattern, was used to find syllable boundaries. In 

Mandarin, the Zero Crossing Rate (ZCR) provides adequate spectral information, therefore an onset of a 

high ZCR is the beginning of a consonant and an offset means the end point of the consonant. A ZCR of 

2500 per second is considered as the threshold in this algorithm. Unlike HMM’s Zhao’s [2008] techniques 

does not need a language model and is also independent of the accent of the utterance. Initially pauses 

were detected in the speech segment using short time frame energy and the candidate word boundaries 

are marked based on a threshold. A hamming window is used twice, first to smooth the short time energy 

curve in the time domain and second to magnify the valleys of the curve to mark the boundaries. Later the 

zero crossing rate is used determine the boundaries from the candidate word boundaries. If the zero 

crossing rate is higher than the threshold, it is identified as unvoiced speech and in mandarin most of the 

syllables start with unvoiced speech, so it marked as a boundary. Using these techniques they obtained 

very good results of about 93% hit rate. 

 

Energy can be an important parameter in identifying the boundaries, and voicing activity. However, for 

automatic speech segmentation, it is difficult to segment the speech reliably on energy changes as these 

cues often are unreliable due to co-articulation. However it is an important acoustic feature and will 

produce good results when combined with other techniques like pitch detection in identifying the 

boundaries. 



13 
 

2.3    Teager Energy 

In signal processing, energy in a signal is usually referred to the average of the sum of the squares of the 

magnitude. Another way to measure energy is to take the discrete Fourier transform (DFT) of a signal 

segment where the energy is represented by its frequency components. Kaiser et al [1990] proved, using 

basic laws of physics, that energy is proportional to square of amplitude and frequency using simple 

harmonic motion. Based on that observation the author developed a new parameter called Teager 

Energy (TE) that is dependent on square of amplitude and frequency. In other words, Teager Energy 

estimates the true energy of the source of resonance. A formula for Teager Energy is stated below. 

 

                                                          TE (n) = x (n) ^2 - x (n-1)*x (n+1)                                                  (2.3)                               

 

Where n is the index of the sample and x is the speech signal. 

This algorithm operates only on three sequential samples at a time. The Teager Energy operator is:  

• Independent of the initial phase.  

• Symmetric in time. 

• Capable of responding to changes in both amplitude and frequency very rapidly.  

The third feature of the Teager Energy operator is of utmost importance for those in speech processing, 

because speech is non-stationary and the acoustic features change very rapidly. The Teager Energy 

operator is capable of identifying these changes as it is dependent on only three consecutive samples 

and also proves to be very efficient. It has been shown that signals with rapidly changing frequency, that 

the instantaneous frequency is estimated very quickly. Teager Energy has the capability of capturing the 

energy fluctuations in a glottal cycle. 

 

It was shown by Kaiser [1990] that the expected value of the output of the Teager Energy algorithm is 

offset by the variance of the noise when compared with clean signal, which shows that the algorithm is 

sensitive to the noise. The effects of the noise can be reduced by proper linear filtering using a median or 

moving average filter.  
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Teager Energy and Mel scale proved to be prominent algorithms in speech processing. Nehe et al [2009] 

introduced a word recognition method using mel frequency and Teager Energy features in a noisy 

environment. First the short time spectrum of speech is calculated. Next the frame spectrum is passed 

through a Mel scaled triangular filter bank. Teager Energy operator is applied and then the mean of the 

absolute values of the sequence is obtained. Finally the cepstral coefficients are extracted by applying the 

discrete cosine transformation on the mean’s obtained. The effectiveness of the Teager Energy operator 

is illustrated in its ability to recognize the isolated words in the TI-20 word database even in the presence 

of different types of noises. Teager Energy has many applications in speech processing like word 

boundary detection, isolated word recognition, pitch detection, audio de-noising, voice activity detection, 

etc.  

 

2.4    Pitch 

Pitch detection is fundamental to many digital speech processing applications like speaker identification 

and speech recognition. Although there are many pitch detection algorithms based on spectrum, 

cepstrum, neural networks, etc., very few techniques like short time Average Magnitude Difference 

Function (AMDF) and short term Auto Correlation Function (ACF) are employed in real time pitch detector 

according to Li Hui et al [2006]. AMDF is computed by taking the absolute magnitude by forming a 

difference signal between the delayed speech and original speech, at each delay value. AMDF is 

computationally easy to implement.  

 

                                             AMDF(t) = 1/N ∑ |��&
 '  ��& ! �
|�$�$�
(��                                                    (2.4) 

 

Where N is the frame length, n is the frame number and x is the speech signal. The major drawback of 

the AMDF approach, for pitch detection, is that it is highly influenced by the intensity variation of speech 

in each frame and background noise of the speech signal. In order to overcome these drawbacks ACF is 

proposed to be used along with AMDF by Xiaokun Li [2008]. First the AMDF values are computed for 

each frame of the signal. The AMDF values are converted to one bit signals to reduce the computational 

complexity in ACF and also to decrease the effects of amplitude and formants on pitch detection. The 
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authors proved that AMDF used along with the ACF had an error of 8% to detect pitch, where as using 

only AMDF had an error of 15%. 

 

Cepstrum is the inverse Fourier transform of the logarithmic spectrum of the signal. Cepstrum of voiced 

speech contains strong peaks corresponding to pitch periods. Verteletskaya et al [2009] used AMDF and 

ACF for pitch detection along with Cepstrum Pitch Determination (CPD) and Spectro-Temporal Auto-

Correlation (STA) function. For pitch determination, the real part of the cepstrum is sufficient. The cepstral 

peak, corresponding to pitch, is very sharp, so to determine the pitch using the cepstrum one has to 

search for peaks in the typical fundamental frequencies (50-500). Temporal auto-correlation is widely 

used for pitch detection due to its simplicity but it can result in detecting unwanted pitch period multiples 

while spectral auto-correlation based pitch detection can result in pitch halving. So Verteletskaya [2009] 

has developed STA method to determine pitch effectively.  A parameter Gross Error (GE) is the 

percentage of voiced speech segments for which the detected pitch is more than 20% higher than the 

reference pitch. Using the STA method, GE for male is 0.53% and for female is 2.84%. 

 

2.5    Fusion 

After obtaining the acoustic information using all the three techniques energy, Teager Energy, pitch, 

fusion of the results can improve the detection of word boundaries. Some fusion techniques discussed by 

Punska [1999] are explained in this section. 

 

2.5.1   Bayesian Fusion: 

Bayesian posterior probability reflects the belief in the hypothesis based on the current observations and 

prior information. Let E be an event to be evaluated and x1, x2 are the two pieces of information from two 

different sensors, from Bayes theorem we compute the posterior probability as: 

                                             p(E|x1,x2) =  p(x2|E,x1) p(E| x1)/ p(x2,x1)                                           (2.5) 
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2.5.2   Linear Opinion Pool 

When information originates from different sources, it is important to know how reliable and relevant 

information is from the sources. To identify the reliability of information from the sources, each source is 

assigned a weight ‘w’ and the posterior probabilities from each source are combined linearly to make a 

decision on the event E. 

                                                          p(E|x1,x2,..,xn) = ∑  )�(
)�� wj p(E|xj)                                                 (2.6) 

Where x j is the information from i th source and w j is the weight assigned to the source. This method is 

used to develop the system which models the reliability and weight out the faulty sensors. 

2.5.3   Independent Opinion Pool 

In independent opinion pool, it is assumed that information from the different sources is independent and 

the posterior probability is computed as: 

                                                    p(E|x1,x2,..,xn) =  ∏  )�(
)�� wj p(E|xj)                                                    (2.7) 

This is a difficult condition as the information from all the sensors cannot always be independent and 

when applying this method care has to be taken to make sure the information from different sensors is 

complementary. 

2.5.4   Independent Likelihood Pool 

Independent likelihood pool is better suited if all the information sources have prior information. The 

Independent Likelihood Pool more accurately describes the situation in multi-sensor systems where the 

conditional distribution of the observation can be shown to be independent. According to the Bayes 

theorem, the independent likelihood pool is defined as:  

                                                   p(E|x1,x2,..,xn) = p(E) ∏  )�(
)�� wj p(E|xj)                                                    (2.8) 

However, if there are dependencies between the information sources linear opinion pool is the best 

option. 

2.5.5  Logarithmic Opinion Pool (Log-OP) 

Logarithmic opinion pool is given by the following equation: 
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                                                   p(E|x1,x2,..,xn) = p(E) ∏  )�(
)��  p(E|xj)

w
j                                                    (2.9) 

Taking log of the product on both sides results in Equation 2.10: 

                                 

                                                    p(E|x1,x2,..,xn) = ∑  )�(
)�� wj log(p(E|xj) )                                                 (2.10) 

          

Accordingly, the linear opinion pool method can more generally be defined as a sum rule and the 

logarithmic opinion pool consensus rule can more generally defined as the product rule (Kittler et al, 

1998). 

2.5.6   Simple Counting Rule:  

Simple counting rule for optimal data fusion, developed by Mansouri and Fathi [2003], is used to fuse the 

decisions from the three techniques. This adaptive fusion model estimates the probability of detection (Pd) 

and probability of false alarm (Pf) based on the counting rule. Some of the advantages of this fusion 

method are: 

• This system does not need prior knowledge about the detection and false alarm probabilities. 

• The weights are adapted with the outcome at every iteration. 

• The results prove to be effective and the decision error can be reduced. 

• Computationally simple. 

The counting rule was used to integrate multiple individual structural damage detection measures by 

Chen et al [2010] to form a new measure, and the new measure has higher probability of correct 

detection than any individual measure. In accordance with the simple counting rule, relative 

frequency which is the ratio of the numbers of the events is utilized to evaluate the weight factors. This 

fusion model replaced Maximum Joint Probability (MJP) decision rule as it does not need any prior 

information. Independently identically distributed detectors with zero mean additive Gaussian random 

process were used to test the performance of counting rule. Having selected the random noise process, 

the theoretical probabilities of detection and false alarm for each detector can be readily evaluated. For 
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the Gaussian case, they can be determined by the standard deviation. The theoretical probabilities of 

detections and false alarms were calculated to compare with the weights estimated by the counting rule. 

The weights of each of detector estimated by counting rule are close to the theoretical weights as shown 

in the Table 2.2 . The steady state value of the weights is reached approximately after 1000 iterations. 

   

Table 2.2 Comparison Between Theoretical and Steady  State Values of Weights 

Sensor 1st 2nd 3rd 4th 

Theoretical 
Weight 

2.4895 2.4895 1.8721 3.7579 

Steady state 
weight 2.4853 2.4916 1.8721 3.7941 

 

 
Disaster relief networks are designed to be adaptable and resilient to encompass the demands of the 

emergency service. Cognitive Radio enhanced ad-hoc architecture has been put forward as a candidate 

to enable such networks. Nuno et al [2009] proposed a cluster based orchestration cooperative sensing 

scheme, which adapts to the cluster nodes surrounding radio environment state as well as to the degree 

of correlation observed between those nodes using counting rule. This system consists of a number of 

local detectors and a fusion center, where the local detectors make a decision of the underlying binary 

hypothesis testing problem based on their own observations and then transmit their decisions to the 

fusion center where the global decision is derived using counting rule. It is shown that Root Mean Square 

Error (RMSE) using the counting rule is 20% which outperformed AND rule with an RMSE of 25%. 
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CHAPTER 3 

RESULTS 
 

In this chapter, results from the experiments using three different features, energy, Teager Energy (TE), 

and pitch, to detect the word boundaries are discussed. The detections from the three techniques are 

then fused using simple counting rule [Mansouri and Fathi [2003]] to make a decision on the word 

boundaries and is compared with linear and log opinion pool.  

3.1 Database: 

The database used in this research is Switchboard, which has recorded telephonic conversations of 

spontaneous speech. Utterances from thirty randomly selected speakers which include 17 male and 13 

female speakers were used. Around three thousand word boundaries were used to test the performance 

of the algorithm. Each speech signal was sampled at 8 KHz and the length of the utterances used in this 

research varied between 60 seconds to 180 seconds. The actual word boundaries used to compare the 

results were obtained from the transcriptions of the Switchboard database. 

3.2 Short Words: 

Since the speech used is spontaneous, many boundaries are not well defined and often many words are 

not separated by pause or silence. This problem is most noticeable when really short words like no, ok, 

or, I, were encountered in speech. In the Switchboard database, the percentage of short words, which are 

less than 0.1 second of word length, was determined. Twenty four thousand words were used to estimate 

the percentage of short words and there were approximately 12 percent of short words or 2817 short 

words. The word boundaries of these words were missed, except when they are separated by pause with 

their neighboring word, in most of the cases. Word boundaries of long words were detected with higher hit 

rate than boundary detection of short words. The 12% of short words contribute to majority of misses in 

this algorithm. It is not possible to avoid the word boundary detection of short words. Therefore the length 

of short words which is 0.1 second or 800 samples (or less) is used as a threshold to avoid identifying too 

close candidate word boundaries discussed in the next section.  
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3.3 Avoiding Close Candidate Word Boundaries 

From previous section it was observed that 88% of the words are of length 0.1 seconds or more. It was 

observed that in each of the three techniques, energy, Teager Energy, pitch and fusion, many candidate 

word boundaries were marked with distance between them much less than the length of short words 

which resulted in many false alarms. To avoid this problem, a threshold of 0.1 second or 800 samples is 

selected on the basis of the statistics of short words. By removing too close candidate word boundaries 

the false alarms were reduced, although it resulted in a small increase in the percentage of misses. 

3.4 Hits and False Alarms  

If a word boundary hypothesis matches the actual word boundary it is a hit (H) and if a word boundary 

hypothesis doesn’t match are the actual word boundary it is called False Alarm (FA), the percentage of 

hits and false alarms is calculated using Equation 3.1 and Equation 3.2: 

                                                 Percentage of hits = hits/act                                                          (3.1) 

                                          Percentage of FA = false alarms/candidates                                                 (3.2) 

Where hits  is the number of word boundaries hypothesized, act  is total number of actual word 

boundaries, false alarms  is number of erroneous hypothesis and candidates  is total number of 

hypothesis. The actual word boundaries of speech files used from Switchboard database were observed 

to identify the threshold of trade off and a maximum trade off of 600 samples is considered as allowable 

distance between candidate word boundary and actual word boundary to consider it as hit. If the distance 

between a candidate word boundary and actual word boundary is more than 600 samples it is considered 

as false alarm. The threshold of 600 samples was chosen to match Switchboard database 

3.5 Energy: 

Energy is a basic acoustic feature of speech. Cues by observing the behavior of energy at word 

boundaries of speech were used. Initially speech files of 10 second length were used to identify the cues 

from energy to detect the word boundaries. After identifying the cues and developing an algorithm using 
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energy to detect word boundaries, it was tested on the utterances selected from Switchboard database 

which has three thousand word boundaries.  

3.5.1 Cues from Energy: 

The changes in energy at the word boundaries were observed to obtain the cues to identify them. From 

Figure 3.1  it can be observed that, at the word boundaries, amplitude has sudden rises or falls. The 

increase in amplitude from the previous frame to the current frame is taken as the cue for word boundary, 

also a decrease in energy from the previous frame to the current frame is taken as cue to identify the 

word boundary. A threshold is identified for each utterance, which is mean of energy of the speech file, 

was used to determine the word boundaries. 

 

Figure 3.1: Utterance with two words with word boun daries identified using transcriptions 

3.5.2 Energy Calculation 

Each speech file is divided into frames of 20ms was used with 50% overlap to obtain the optimal results. 

Frame overlap proved to be very useful in detection of the word boundaries. After dividing the speech file 

into frames, energy of each frame is calculated using Equation 3.3: 

                                                                    E(n) = ∑ ���
+�
#��                                               (3.3) 
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Where E(n) is the energy of frame n, s is the speech signal and k is the frame length. The energy of each 

frame along with the speech file is shown in Figure 3.2 

 

Figure 3.2: Speech file (top panel) and energy of s peech file (bottom panel) 

After identifying the energy of each frame, a threshold is identified for each speech file which is the mean 

of the energy of speech file. A sample in the speech file is identified as the word boundary based on the 

following criteria and equations: 

Cue1: Word boundary has a rise in energy from the previous frame which can be the beginning of the 

word: 

                       if (E(i-2)<= t  and E(i-1)<t and E(i)>=t  and E(i+1)>t and E(i+2)>t  ) ,                                (3.4) 

Where i is the possible place of the word boundary which is marked as a candidate word boundary, 

where E(i) is the energy of frame i and t is the threshold of energy 

Cue2: Word boundary has fall in energy from the previous frame which can possibly be the end of the 

word: 

                                  if (E(i-2)> t  and E(i-1)>t  and E(i)<=t  and E(i+1)<t  and E(i+2)<t  ) ,                       (3.5) 
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Where i is the possible place of the word boundary which is also called candidate word boundary, and 

E(i) is the energy of frame i and t is the threshold of energy 

 

Figure 3.3: Figure shows the actual word boundaries  (green) from Switchboard and candidate 

word boundaries (red) which were determined using e nergy 

Also a threshold is applied on the distance between two candidate word boundaries to avoid the algorithm 

identifying candidate word boundaries that are too close as discussed in Section 3.3  

3.5.3 Results Using Energy: 

Detection rates and false alarms using energy are shown in Table 3.1 . Three thousand word boundaries 

of Switchboard database were used in evaluating the performance of energy. Mean of energy is used as 

threshold for energy. Although 56 percent of hits were obtained using energy, the false alarms rate is very 

high. The performance of the energy is found to be good only if the words are separated by pause or 

silence. Many boundaries with no well defined pauses were missed, e.g. between points 2 and 3 in 

Figure 3.3 , using energy.  
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Table 3.1: Results of Energy 

Technique Hits False Alarms 

Energy 56 40 

 

3.5.4 Inference from Results 

Strengths of energy in identifying the word boundaries are: 

• It is very good at identifying the word boundaries with well defined word boundaries. 

• It helps in confirming the predictions of the word boundaries using other techniques. 

• The hits of energy are more closely identified to the actual word boundaries than with either 

Teager Energy or Pitch. 

 

Drawbacks of energy in identifying the word boundaries are: 

• The word boundaries are identified only if there is a well defined boundary. If there is no well 

defined boundary between two words, this technique results in misses. 

• It also identifies some of the boundaries of the noise as word boundaries which results in false 

alarms. 

3.6 Teager Energy: 

Teager Energy estimates the true energy of the source of resonance. It has both frequency and amplitude 

energy information which is effective in identifying the word boundaries. In using Teager Energy to 

identify the word boundaries, the speech file need not be divided into frames like energy. It only operates 

on three consecutive samples and therefore it can be applied on the fly. It is also very effective in 

responding to the changes in both amplitude and frequency. Cues to identify the word boundaries are 

recognized initially using small speech files before proceeding to test it on longer speech files in the 

Switchboard database. 
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3.6.1 Cues from Teager Energy: 

The changes in Teager Energy at the word boundaries were observed in order to obtain the cues used to 

identify word boundary. Teager Energy like energy has increasing magnitude at the beginning of the word 

and it has decreasing magnitude at the end of the word. From Figure 3.4  it can be observed that at the 

word boundaries Teager Energy has sudden rises or falls in the amplitude at word boundaries. The 

changes in amplitude from the previous sample to the current frame is more effectively tracked by Teager 

Energy than energy and it is taken as the cue for beginning of the word boundary, also a decrease in 

Teager Energy from the previous frame to the current frame is taken as cue to identify the end of word 

boundary.  

3.6.2 Teager Energy Calculation 

Teager Energy operates only on three consecutive frames and is calculated using Equation 3.6: 

                                                   TE (n) = s(n)2 - s(n-1)*s(n+1)                                                       (3.6) 

Where n is the index of the sample and s is the speech signal. Teager Energy is shown in Figure 3.5  

 

Figure 3.5: Speech file (top panel) and Teager Ener gy of speech file (bottom panel) 
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Teager Energy at each sample is calculated and a threshold is identified which is mean of the Teager 

Energy for each utterance. A sample in the speech file is identified as the word boundary based on the 

following cues and equations. 

Cue1: Word boundary has rise in Teager Energy from the previous sample which can be the beginning of 

the word: 

                     if (TE(i-2)<= t  and TE(i-1)<t  and TE(i)>=t  and TE(i+1)>t  and TE(i+2)>t  ) ,                      (3.7) 

Where i is the possible place of the word boundary which is also called candidate word boundary, TE(i) is 

the Teager Energy of a sample i and t is the threshold of Teager Energy 

Cue2: Word boundary has fall in Teager Energy from the previous sample which can be the end of the 

word: 

                     if (TE(i-2)>t  and TE(i-1)>t  and TE(i)>=t  and TE(i+1)<t and TE(i+2)<t  ) ,                          (3.8) 

Where i is the possible place of the word boundary which is also called candidate word boundary, where 

TE(i) is the Teager Energy of a sample i and t is the threshold of Teager Energy.  

3.6.3 Results Using Teager Energy: 

Detection rates and false alarms using Teager Energy are shown and compared with energy in Table 3.2 . 

Three thousand word boundaries of Switchboard database were used in evaluating the performance of 

energy. Mean of Teager Energy is used as threshold.  

Table 3.2: Results of Teager Energy and Energy 

Technique Hits False Alarms 

Teager Energy 72 27 

Energy 56 40 
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Figure 3.6: Figure shows the actual word boundaries (green) from Switchboard and candidate word 

boundaries (red) which were plotted using the cues from Teager Energy 

Teager Energy produced better results than energy in terms of hits and false alarm rates were much less 

when compared with energy. 

3.6.4 Inference from Results 

Strengths of Teager Energy in identifying the word boundaries are: 

• It is able to identify the word boundaries even if there are no well defined boundaries between 

the words, e.g., between points 2 and 3 in Figure 3.6  

• Speech is non-stationary and the acoustic features change very rapidly, Teager Energy is 

capable of responding to changes in both amplitude and frequency very rapidly. 

 

Drawbacks of Teager Energy in identifying the word boundaries are: 

• Teager Energy like energy gives false alarms identifying the boundaries of noise as word 
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• If the ending of the word is extended due to the prosody of the speaker, Teager Energy is not 

able to identify these word boundaries close to the actual word boundaries.  

3.7 Pitch: 

Pitch is the inverse of fundamental frequency of a signal and it is one of the acoustic features of speech. 

The fundamental frequency exists only for voiced sounds. Pitch is used as a cue for identifying the word 

boundaries. English is a stress bound language. This feature of English is used as another cue for 

identifying word boundaries using pitch.  A pitch detection algorithm Sawtooth Waveform Inspired Pitch 

Estimator (SWIPE) by Camacho et al [2007] was used to estimate pitch of each file and the pitch from 

SWIPE was used in detecting the word boundaries. The goal of SWIPE is to find the frequency that 

maximizes the peak to valley ratio in each frame of the speech file. Several modifications to this idea 

were applied to improve its performance: the locations of the harmonics of each frame were blurred, the 

spectral amplitude and the frequency scale were warped, an appropriate window type and size were 

chosen, and simplifications to reduce computational cost were introduced, which makes the algorithm 

robust. Swipe is compared with fourteen different techniques, including autocorrelation, cross correlation, 

YIN, and is ranked as second best technique for pitch estimation. 

3.7.1 Pitch Estimation Using SWIPE: 

Sawtooth Waveform Inspired Pitch Estimator (SWIPE) estimates pitch using the following steps: 

• Compute the square-root of the spectrum of the signal for every 10ms. 

• Normalize the square-root of the spectrum and apply an integral transform using a normalized 

cosine kernel whose envelope decays as 1/√f, where f is a pitch candidate identified by SWIPE. 

• Estimate the pitch as the candidate with highest strength. 

Swipe also limits the range of pitch between 75 and 500 Hz which is the range of pitch for speech. It 

estimates pitch every 0.01 second. Figure 3.7  shows the estimate of pitch using Swipe and the pitch 

breaks, between 100 and 200 in the bottom panel of Figure 3.7,  were used as cues in identifying the 

candidate word boundaries 
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Figure 3.7: Speech file (top panel) and pitch estim ate of speech file using SWIPE (bottom panel) 

3.7.2 Detecting Word Boundaries Using Pitch: 

The following cues are used to estimate pitch using SWIPE to detect word boundaries: 

Cue1: Pitch of the previous frames does not exist or is much less than the current frame if the current 

frame is the beginning of a word boundary. 

                 if (p(i-2) = 0  and p(i-1)=0  and p(i) ≠ 0 and p(i+1) ≠ 0 and p(i+2) ≠ 0) ,                                  (3.9) 

Where i is the possible place of the word boundary which is also called candidate word boundary and p(i)  

is the pitch of frame i. 

Cue2: Pitch of the next frames does not exist or is much less than the current frame if the current frame is 

the beginning of a word boundary. 

               if (p(i-2) ≠ 0 and p(i-1) ≠ 0 and p(i) =0  and p(i+1) =0  and p(i+2)=0 ),                                   (3.10) 
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Where i is the possible place of the word boundary which is called candidate word boundary and p(i)  is 

the pitch of frame i. Also a threshold is applied on the distance between two candidate word boundaries 

to avoid the algorithm to identifying close candidate word boundaries which are close as discussed in 

Section 3.3.  

3.7.3 Results Using Pitch: 

Detection rates and false alarms using pitch are shown and compared with Teager Energy and energy in 

Table 3.3 . Three thousand word boundaries of Switchboard database were used in evaluating the 

performance of pitch.  Using pitch 68 percent of the word boundaries were identified which is better than 

energy and Teager Energy performed better than pitch. The false alarms rate is also high using pitch. 

However Pitch detected the word boundaries more accurately than Teager Energy when the word 

boundaries are prolonged by the speaker due to prosody, e.g. at point 6 in Figure 3.8. Some word 

boundaries with no well defined pauses, e.g., between points 2 and 3 in Figure 3.8 , were detected using 

pitch which were missed by energy.  

Table 3.3: Results of Pitch, Teager Energy and Ener gy 

Technique Hits False Alarms 

Pitch 68 29 

Teager Energy 72 27 

Energy 56 40 

 

3.7.4 Inference From Results 

Strengths of pitch in identifying the word boundaries are: 

• It is capable of reducing the false alarms by not identifying the boundaries of noise as word 

boundaries like Teager Energy and energy. 
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• It is able to identify the beginning of the word boundaries effectively, as English is a stress bound 

language. 

 

Drawbacks of pitch in identifying the word boundaries are: 

• There is some offset between actual and predicted word boundaries if the word is beginning with 

unvoiced speech. 

• Some false alarms in this technique occur due to the pitch reset due to the prosodic units in the 

same word. 

 

 

Figure 3.8: Figure shows the actual word boundaries  (green) from Switchboard and candidate 

word boundaries (red) which were plotted using the cues from pitch 
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3.8 Fusion of All the Techniques: 

After identifying the candidate word boundaries of all three techniques separately, the decisions 

(candidate word boundaries) from all the techniques were processed in a data fusion module to make a 

final decision. Simple counting rule for optimal data fusion developed by Mansouri and Fathi (2003) was 

used to fuse the decisions from the three techniques. The major advantage of the counting rule is that a 

prior knowledge of the probability mass functions is not required. Knowledge about the reliability of each 

of the techniques is acquired by the model based on reinforcement learning. 

In this research the decisions from three techniques are input into the fusion model. Different weights, 

including equal weights, were used to obtain the optimal hit rate. When the initial weights are 1 for energy 

and pitch, and 2 for Teager Energy gave best results shown in Table 3.5 . Weights are then iteratively 

updated according to Equation 3.11 and Equation 3.12: 

                                                                  wi+1 = wi+1/mi                          if ui = di                       (3.11) 

                                                                  wi+1 = wi–�",/mi                         if ui ≠ di                         (3.12) 

Where w i+1 is the weight of the detector or technique for next iteration, m i is the number of decisions 

made by i th  detector that agree with the final decision d i made by the fusion model and u i is the decision 

of the ith local detector. The iterations are repeated until a steady state value of the weights is reached. 

The decision, if a candidate word boundary is a boundary or not a boundary, is made based on Equations 

3.13 and 3.14: 

                                                       u = 1           if ∑ ���
-��
 � �(
)��                                          (3.13) 

                                                              u = -1             otherwise                                                   (3.14) 

Where u = 1 means that the candidate word boundary is a boundary and u = -1 means that candidate 

word boundary is not a word boundary, t is threshold for reliability and in this research, after using 

different numbers and comparing the results, t is considered as 3 for optimal results. Initial weights 

assigned to each of the technique are iteratively updated, based on the decisions made by each of the 



33 
 

technique and the decision made by the counting rule, using Equations 3.11 and 3.12. Table 3.4  shows 

the weights of the techniques updated by the counting rule for one of the speech files. Note - Energy has 

less weight as its hit rate is less and false alarm rate is more. Teager Energy has the highest weight in 

almost all the cases, shown in Table 3.4 , as it has the highest hit rate and less of a false alarm rate than 

the other two techniques. The system is said to reach steady state if the difference in weights of two 

consecutive iterations is less than certain threshold, which is set to 0.05 for optimal results.  

Weights were estimated using counting rule and a steady state is reached approximately after 2500 

iterations as shown in Figure 3.9 . The weights estimated were used to fuse the decisions of the three 

techniques, energy, Teager Energy and pitch. Using the updated weights from counting rule has 

improved the performance of the system to 79% which was 73% by using the linear opinion pool.  

Table 3.4: Weights assigned by counting rule 

Technique Energy Teager Energy Pitch 

Initial weights 1 2 1 

Weight Assigned by 

Counting Rule 
1.476 2.407 1.825 

 

 

Figure 3.9: Weight of pitch updated using counting rule for every iteration 
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3.8.1 Results: 

The threshold for avoiding two close candidate word boundaries was reduced to 600 samples (which was 

800 previously) while using the counting rule to fuse the decisions from each of the techniques. This is 

done to increase the percentage of hits which also increases the false alarms. The counting rule is based 

on updated weights, and was able to remove many false alarms while retaining approximately 90 percent 

of the hits from each of the techniques. Figures 3.10, 3.11, 3.12  shows the candidate word boundaries 

(green) from each of the techniques which have increased number of candidate word boundaries 

compared to Figures 3.3, 3.6 and 3.8 , and also increased false alarms. Figure 3.13  shows the decisions 

made by counting rule after fusing data from all of the three techniques.  

 

 

Figure 3.10: Figure shows the actual word boundarie s (green) of Switchboard data and candidate 

word boundaries (red) which were plot determined us ing Energy  
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Figure 3.11: Figure shows the actual word boundarie s (green) of Switchboard data and candidate 

word boundaries (red) which were determined using T eager Energy  

 

 

Figure 3.12: Figure shows the actual word boundarie s (green) of Switchboard data and candidate 

word boundaries (red) which were determined using P itch  
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 Figure 3.13: Figure shows the actual word boundari es (green) of Switchboard data and candidate 

word boundaries (red) which were determined by coun ting rule 

Fusion using counting rule with equal initial weight of 1 for all the techniques was evaluated and counting 

rule with initial weight of 1 for energy, 2 for Teager energy and 1 for pitch was evaluated and results are 

shown in Table 3.5 . 

Table 3.5: Results from counting rule 

Techniques Hits % False alarms % 

Energy 49 57 

Teager Energy 80 42 

Pitch 81 55 

Counting Rule with 
unequal initial weights 

79 27 

Counting Rule with 
equal initial weights 

77 32 

Database: Switchboard; Speech type: Spontaneous; Number of Word Boundaries: 3000 (approximately) 
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Table 3.6: Results from previous publications 

S. No Publication name 
Words/ sentences 

used 
Percentage of 

hits 
Percentage of 

false alarm  

1 Ramana Rao [1996] 

50-sentences, 5 to 15 
words per sentence 

and 10 speakers, not 
spontaneous 

85  for four Indian 
languages 

65  for German 
28 

2 Rajendran [1996] 
50 sentences read by 

5 native speakers 
587 word boundaries 

74 14 

3 Iwano and Hirose [1999] 
Used Mora language 
and total words is 326 

Not spontaneous 
77 15 

4 Agarwal and Jain [2010] 
3- speakers 
750- words 

Non- spontaneous 
72  to 93 14 to 31  

 

Linear Opinion Pool (LOP) was also used to fuse, by assigning equal weights predefined as 1 to all the 

techniques, the decisions from the three techniques and the results are shown in Table 3.7 . Log opinion 

pool was used with different weights assigned, 1 for energy and pitch and 2 for Teager Energy, based on 

performance of each technique individually. Counting rule performed much better than the linear opinion 

pool and log opinion pool as shown in Table 3.7 . 

Table 3.7: Comparison of counting rule, linear opin ion pool and log opinion pool 

Technique Hits % False Alarms % 

Linear Opinion Pool 73 34 

Log Opinion Pool 74 29 

Counting Rule 79 27 

Database: Switchboard; Speech type: Spontaneous; Number of Word Boundaries: 3000 (approximately) 
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3.8.2 Inference From Results: 

The hits percentage was allowed to increase at the cost of false alarms. The weights of each of the 

techniques shown in Table 3.4  were modified iteratively by the counting rule. Although the false alarms 

were high in each of the techniques as shown in Table 3.5 , the counting rule was able to remove the 

false alarms with minimum loss of hits. It is shown in Table 3.6  that although different techniques to 

identify the word boundaries performed well, the database used by them was not spontaneous, which is a 

major challenge in speech processing. In this research only spontaneous speech was used from 

Switchboard database. Even with spontaneous speech, the three techniques Energy, Teager Energy, 

Pitch and the fusion model, the counting rule yielded good percentage of hits.  
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CHAPTER 4 

FUTURE WORK 
 

4.1 Keyword Spotting 

 

Secondary goal of this research is keyword spotting. Keyword spotting is the task of identifying the 

presence of the desired words in an arbitrary speech. Three different approaches shown in the Figure 4.1  

can be used to spot keywords. 

 

 

Figure 4.1: Different approaches to keyword spottin g 

Cross Correlation  
of utterance with 

keyword 

Word boundary 

detection 

Extract words 
from the 
utterance  

Compare with 
Keyword to verify 

its presence  

Speech 

Phoneme 

Segmentation 

 

Extract speech 

features of the 

utterance  



40 
 

 

After identifying the word boundaries, the words are extracted from the utterance. Short words, which are 

of a shorter length than the keyword, can be removed to reduce the search space. The features of the 

words extracted are them compared with the keywords to verify the presence. Keyword spotting can also 

be achieved by phoneme segmentation. The utterance is segmented into phonemes and the features 

extracted are compared with the features of the keyword to verify its presence. Cross correlation 

measures the similarity between two signals. This can be used to measure the similarity between the 

keyword and the utterance to spot the keywords.  

 

4.2 Word Boundary Detection  

 

A word boundary detection algorithm for Hindi language using the prosodic features like pitch and 

intensity was implemented by Agarwal and Jain et al [2010]. Cues about the behavior of intensity and 

pitch are observed to detect the word boundaries in Hindi language. Behavior of intensity and pitch are 

used in conjunction to detect the candidate word boundaries rather than fusing the candidates from each 

of the techniques. The algorithm has a highest hit rate of 98% and least of 72% with a false alarm rate of 

14% to 31%.This approach also helps in reducing the false alarms. Intensity can also be used along with 

the three techniques used in this research to identify the word boundaries and the data can be fused for 

more reliability. The knowledge of acoustic features in particular voiced and unvoiced segment plays an 

important role in many speech analysis systems.  

Accurate endpoint detection is crucial for good speech recognition accuracy. Energy-based endpoint 

detection algorithms are computationally efficient and perform adequately in quiet conditions but they 

have little to no immunity to background noise. Sahar and Khaled et al [2002] proposed a new approach 

relying on the energy and spectral characteristics to determine whether a frame is speech or non-speech. 

The main idea is to characterize the background or silence at the beginning of an utterance with 

discriminating statistics and then relying on these statistics to classify speech vs. non-speech. The 

speech vs. non-speech classification relies on two measures:  
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1. The current frame energy relative to the average background/silence energy level, and  

2. Euclidean cepstral distance between the cepstral vector of the current frame and the mean 

cepstral vector representing the background/silence. 

For a speaker-independent recognizer at 20 dB SNR, it improves the false rejection rates by 45% for 

babble noise, and 29% for both office and lobby noise. Such a classification can be useful in word 

boundary detection which can increase the accuracy of the word boundary detection algorithm by 

rejecting the non-speech frames. 

Segmentation of speech into voiced, unvoiced and phonemes can be used to identify the word 

boundaries. Finding the cues of word boundaries using segmentation and fusing the decisions along with 

energy, Teager Energy and pitch can improve the detection rates of the algorithm.  
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Appendix 
Matlab code 

 
 
 

Main file for fusing decisions from energy, Teager Energy and pitch: 
 
clear all  
close all  
clc  
[x,fs] = wavread( 'C:\Users\Sandeep\Documents\Research\Codes\Sandeep Codes\new 
codes\c.wav' );  
l = length(x);  
de = zeros(l,1); %detection vector for energy  
dt = zeros(l,1); %detection vector for Teager Energy  
dp = zeros(l,1); %detection vector for pitch  
m = mean(x);  
m = abs(m);  
%moving average filter  
a=1;  
h = 0.5;  
b=[h h h h];  
x = filter(b,a,x);  
  
% reading the transcriptions  
fid = fopen( 'C:\Users\Sandeep\Documents\Research\Codes\Sandeep Codes\new 
codes\sw2273A-ms98-a-word.text' , 'r' );  
data = textscan(fid, '%s %f %f %s' );  
%close file  
fclose(fid);  
start_time = data{2};  
start_time = start_time(1:29); % change the length based on the length of the 
speech file  
start_sample = start_time*fs;  
lf= length(start_time);  
word_data = data{4};  
word_data = word_data(1:lf);  
  
j=1;  
k(j)=0;  
%identifying the silence time and removing it  
for  i=1:lf  
    f1 = strcmp( word_data(i), '[silence]' ); %local variable  
    f2 = strcmp( word_data(i), '[noise]' );  
    
    if  (f1==1 || f2==1)  
         k (j+1)=i;  
         j = j+1;  
         if  (k(j)-k(j-1)==1)  
            start_sample(i)=0;  
         end  
     end     
end  
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start_sample = start_sample';  
  
ip = pitch_wb(x,fs,lf,start_sample);  
it = teager_wb(x,fs,m,lf,start_sample);  
ie = energy_wb(x,fs,m,lf,start_sample);  
%ie = ones(1,15);  
ip = ip';  
it = it';  
%ie = ie';  
  
lt = length(it);  
le = length(ie);  
lp = length(ip);  
ix = ie;  
iy = it;  
iz = ip;  
  
%adusting the indexes from different techniques  
ze = 0;  
zt = 0;  
for  i = 1:le  
    
    vt(1:lt,1)=ix(i);  
    vp(1:lp,1)=ix(i);  
     
    difference1 = vt-it;  
    difference1 = abs(difference1);  
    [ct,j] = min(difference1);  
     
    if  (ct<700)  
    iy(j) = ix(i);  
     ze = ze+1;  
    end  
     
    difference2 = vp-ip;  
    difference2 = abs(difference2);  
    [cp,k] = min(difference2);  
     
    if  (cp<600)  
    iz(k) = ix(i);  
     zt = zt+1;  
    end  
     
     
end  
  
zp = 0;  
for  i = 1:lp  
    
    vz(1:lt,1)=iz(i);     
    difference1 = vz-it;  
    difference1 = abs(difference1);  
    [ct,j] = min(difference1);  
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    if  (ct<500)  
    iz(i)= iy(j) ;  
    zp = zp+1;  
    end  
     
end  
de(ix) = 1;  
dt(iy) = 1;  
dp(iz) = 1;  
  
wp = 1;  
we = 1;  
wt = 2;  
mt = 0;  
me = 0;  
mp = 0;  
mtk(1) =0;  
mek(1) =0;  
for  i = 1:2500 %optimization of fusion  
     
    w = wp*dp+ we*de + wt*dt ;  
    in = find(w>2);  
    lef = length(in);  
    for  j = 1:lt  
        vt1(1:lef,1)=iy(j);  
        difference1 = vt1-in;  
    difference1 = abs(difference1);  
    [ct,k] = min(difference1);  
    hk(j) = ct;  
    if (ct==0)  
        mt=mt+1;  
        
    end  
    end  
     
    for  j = 1:le  
        ve1(1:lef,1)=ix(j);  
        difference1 = ve1-in;  
    difference1 = abs(difference1);  
    [ce,k] = min(difference1);  
    if (ce==0)  
        me=me+1;  
         
    end  
     end  
     
    for  j = 1:lp  
        vp1(1:lef,1)=iz(j);  
        difference1 = vp1-in;  
    difference1 = abs(difference1);  
    [cp,k] = min(difference1);  
    if (cp==0)  
        mp=mp+1;  
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    end  
    end  
     
    mtk(i+1) = mt;  
    mek(i+1) = me;  
    mpk(i) = mp;  
     
    if (mtk(i)<mtk(i+1))  
    wt = wt + (1/mt);  
    else  
        wt = wt - (exp(wt)/mt);  
    end  
     
    if (mek(i)<mek(i+1))  
    we = we + (1/me);  
    else  
        we = we - (exp(we)/me);  
    end  
    
    if (mpk(i)<mpk(i+1))  
    wp = wp + (1/mp);  
    else  
        wp = wp - (exp(wp)/mp);  
    end  
      
     wtk(i) = wt;  
     wek(i) = we;  
     wpk(i) = wp;  
end  
  
li = length(in);  
  
figure (4)  
plot(x)  
xlabel( 'Samples' )  
ylabel( 'Amplitude' )  
title( 'speech file and Candidate Wb s after Fusion' )  
hold on 
axis tight  
for  i = 1:li  
  
    figure(4)  
   line([in(i) in(i)],[0 -0.2], 'color' , 'r' , 'LineWidth' ,3)  
     
end  
  
for  j = 1:lf  
    figure(4)  
    line([start_sample(j) start_sample(j)],[0 0.2], 'color' , 'g' , 'LineWidth' ,3)  
end  
  
  
h = 0;  
trade_off = 800;  
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int = in';  
for  i= 1:lf  
    vectorz(1:li)= start_sample(i);  
    difference = int-vectorz;  
    difference = abs(difference);  
    [c,j] = min(difference);  
    c = abs(c);  
    if  (c < trade_off && start_sample(i)~=0)  
    h = h+1;  
    end  
end  
  
hits_percentage_fusion = h/li*100 ; %#ok<*NOPTS> 
act = length(find(start_sample)) %number of actual word boundaries.  
  
len_words = diff(start_time);  
short_words = length(find(len_words<0.1 & len_words >0));  
all_candidates = lt+lp+le-zp-ze-zt; %total candidates from all the techniques  
  
  
fprintf( 'fusion results all candidates from 3 techniques = %4d \n hits = %4d 
total cadidates = %4d  short words = %3d \n ' ,all_candidates 
,h,li,short_words)  
xlswrite( 'thesis_results' , [act, all_candidates ,h,li,short_words,lf], 'fusion 
results' , 'B19:G19' )  
 

Word boundary detection using pitch: 

 
function  [ip,fs] = pitch_wb (x,fs,lf,start_sample)  
  
%calling the swipep function and estimating pitch  
[p,~,s] = swipep(x,fs,[75 500],0.01,[],1/20,0.5,0.2 );  
pd = diff(p);  
len= length(pd);  
pd(len+1)=0;  
k = find(real(pd)~=pd);  
l1= length(k);  
  
  
for  i= 1:l1  
    pd(k(i)) = 0;  
end  
e= pd;  
  
% figure(3)  
% plot(x)  
% xlabel('Samples')  
% ylabel('Amplitude')  
% axis tight;  
% title('Speech wave form and cadidate word boundar ies using pitch')  
% %  
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%  
%  
% for j = 1:lf  
%     figure(3)  
%     line([start_sample(j) start_sample(j)],[0 
0.2],'color','g','LineWidth',3)  
% end  
  
  
threshold = 12; %threshold to avoid very short distant candidate wo rd 
boundaries  
cut_off = -threshold;  
t=0; %threshold for pitch  
f = 1; %initialization od index  
l=(length(x)/length(pd)); %scaling of the index according to the requirement  
trade_off = 600; %maximum number of samples allowed between actual a nd 
candidate WB  
for  i=3:len-3  
     
    if  ( e(i-2)==t && e(i-1)==t &&  e(i)~=t &&  e(i+1)~=t  && (i-cut_off)>= 
threshold )  
%        figure(3)  
%        subplot(2,1,1)  
       cut_off = i;  
       index_candidate(f) = ceil(i*l);  
         f = f+1;  
%       line([ceil(i*l) ceil(i*l)],[0 -0.2],'color' ,'r','LineWidth',3)  
    elseif  ( e(i-2)~=t && e(i-1)~=t && e(i)==t && e(i+1)==t & & (i-cut_off)>= 
threshold)  
%             figure(3)  
%             subplot(2,1,1)  
             cut_off = i;  
             index_candidate(f) = ceil(i*l);  
             f = f+1;  
%       line([ceil(i*l) ceil(i*l)],[0 -0.2],'color' ,'r','LineWidth',3)  
 elseif  ( e(i-2)<t && e(i-1)<t && e(i)>t && e(i+1)>t && (i -cut_off)>= 
threshold)  
%             figure(3)  
%             subplot(2,1,1)  
             cut_off = i;  
             index_candidate(f) = ceil(i*l);  
             f = f+1;  
%       line([ceil(i*l) ceil(i*l)],[0 -0.2],'color' ,'r','LineWidth',3)  
    end  
         
   
end  
%error calculation  
  
n= length(index_candidate);  
ip = index_candidate;  
h = 0;  
  
for  i= 1:lf  
    vector(1:n)= start_sample(i);  
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    difference = index_candidate-vector;  
    difference = abs(difference);  
    [c,j] = min(difference);  
   if  (c < trade_off && start_sample(i)~=0)  
    h = h+1;  
    end  
end  
  
hits_percentage_pitch = h/n*100 ; %#ok<*NOPTS> 
act = length(find(start_sample)); %number of actual word boundaries.  
l_pd = length(pd);  
  
fprintf( 'pitch frames = %4d hits = %4d total cadidates = %4 d \n ' ,l_pd,h,n)  
xlswrite( 'thesis_results' , [l_pd,h,n], 'pitch' , 'C19:E19' )  
 
 

 

SWIPE code: 

function  [p,t,s] = swipep(x,fs,plim,dt,dlog2p,dERBs,woverla p,sTHR)  
% SWIPEP Pitch estimation using SWIPE'.  
%    P = SWIPEP(X,Fs,[PMIN PMAX],DT,DLOG2P,DERBS,ST HR) estimates the pitch  
%    of the vector signal X every DT seconds. The s ampling frequency of  
%    the signal is Fs (in Hertz). The spectrum is c omputed using a Hann  
%    window with an overlap WOVERLAP between 0 and 1. The spectrum is  
%    sampled uniformly in the ERB scale with a step  size of DERBS ERBs. The  
%    pitch is searched within the range [PMIN PMAX]  (in Hertz) with samples  
%    distributed every DLOG2P units on a base-2 log arithmic scale of Hertz.  
%    The pitch is fine-tuned using parabolic interp olation with a resolution  
%    of 1 cent. Pitch estimates with a strength low er than STHR are treated  
%    as undefined.  
%     
%    [P,T,S] = SWIPEP(X,Fs,[PMIN PMAX],DT,DLOG2P,DE RBS,WOVERLAP,STHR)  
%    returns the times T at which the pitch was est imated and the pitch  
%    strength S of every pitch estimate.  
% 
%    P = SWIPEP(X,Fs) estimates the pitch using the  default settings PMIN =  
%    30 Hz, PMAX = 5000 Hz, DT = 0.001 s, DLOG2P = 1/48 (48 steps per  
%    octave), DERBS = 0.1 ERBs, WOVERLAP = 0.5, and  STHR = -Inf.  
% 
%    P = SWIPEP(X,Fs,...,[],...) uses the default s etting for the parameter  
%    replaced with the placeholder [].  
% 
%    REMARKS: (1) For better results, make DLOG2P a nd DERBS as small as  
%    possible and WOVERLAP as large as possible. Ho wever, take into account  
%    that the computational complexity of the algor ithm is inversely  
%    proportional to DLOG2P, DERBS and 1-WOVERLAP, and that the  default  
%    values have been found empirically to produce good results. Consider  
%    also that the computational complexity is dire ctly proportional to the  
%    number of octaves in the pitch search range, a nd therefore , it is  
%    recommendable to restrict the search range to the expected range of  
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%    pitch, if any. (2) This code implements SWIPE' , which uses only the  
%    first and prime harmonics of the signal. To co nvert it into SWIPE,  
%    which uses all the harmonics of the signal, re place the word  
%    PRIMES with a colon (it is located almost at t he end of the code).  
%    However, this may not be recommendable since S WIPE' is reported to  
%    produce on average better results than SWIPE ( Camacho and Harris,  
%    2008).  
% 
%    EXAMPLE: Estimate the pitch of the signal X ev ery 10 ms within the  
%    range 75-500 Hz using the default resolution ( i.e., 48 steps per  
%    octave), sampling the spectrum every 1/20th of  ERB, using a window  
%    overlap factor of 50%, and discarding samples with pitch strength  
%    lower than 0.2. Plot the pitch trace.  
%       [x,Fs] = wavread(filename);  
%       [p,t,s] = swipep(x,Fs,[75 500],0.01,[],1/20 ,0.5,0.2);  
%       plot(1000*t,p)  
%       xlabel('Time (ms)')  
%       ylabel('Pitch (Hz)')  
% 
%    REFERENCES: Camacho, A., Harris, J.G, (2008) " A sawtooth waveform  
%    inspired pitch estimator for speech and music, " J. Acoust. Soc. Am.  
%    124, 1638-1652.  
if  ~ exist( 'plim' , 'var'  ) || isempty(plim), plim = [30 5000]; end  
if  ~ exist( 'dt' , 'var'  ) || isempty(dt), dt = 0.001; end  
if  ~ exist( 'dlog2p' , 'var'  ) || isempty(dlog2p), dlog2p = 1/48; end  
if  ~ exist( 'dERBs' , 'var'  ) || isempty(dERBs), dERBs = 0.1; end  
if  ~ exist( 'woverlap' , 'var'  ) || isempty(woverlap)  
    woverlap = 0.5;  
elseif  woverlap>1 || woverlap<0  
    error( 'Window overlap must be between 0 and 1.' )  
end  
if  ~ exist( 'sTHR' , 'var'  ) || isempty(sTHR), sTHR = -Inf; end  
t = [ 0: dt: length(x)/fs ]'; % Times  
% Define pitch candidates  
log2pc = [ log2(plim(1)): dlog2p: log2(plim(2)) ]';  
pc = 2 .^ log2pc;  
S = zeros( length(pc), length(t) ); % Pitch strength matrix  
% Determine P2-WSs  
logWs = round( log2( 8*fs ./ plim ) );  
ws = 2.^[ logWs(1): -1: logWs(2) ]; % P2-WSs 
pO = 8 * fs ./ ws; % Optimal pitches for P2-WSs  
% Determine window sizes used by each pitch candida te  
d = 1 + log2pc - log2( 8*fs./ws(1) );  
% Create ERB-scale uniformly-spaced frequencies (in  Hertz)  
fERBs = erbs2hz([ hz2erbs(min(pc)/4): dERBs: hz2erb s(fs/2) ]');  
for  i = 1 : length(ws)  
    dn = max( 1, round( 8*(1-woverlap) * fs / pO(i)  ) ); % Hop size  
    % Zero pad signal  
    xzp = [ zeros( ws(i)/2, 1 ); x(:); zeros( dn + ws(i)/2, 1 ) ];  
    % Compute spectrum  
    w = hanning( ws(i) ); % Hann window  
    o = max( 0, round( ws(i) - dn ) ); % Window overlap  
    [ X, f, ti ] = specgram( xzp, ws(i), fs, w, o ) ;  
    % Select candidates that use this window size  
    if  length(ws) == 1  
        j=[(pc)]'; k = [];  
    elseif  i == length(ws)  
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        j=find(d-i>-1); k=find(d(j)-i<0);  
    elseif  i==1  
        j=find(d-i<1); k=find(d(j)-i>0);  
    else  
        j=find(abs(d-i)<1); k=1:length(j);  
    end  
    % Compute loudness at ERBs uniformly-spaced frequen cies  
    fERBs = fERBs( find( fERBs > pc(j(1))/4, 1, 'first'  ) : end );  
    L = sqrt( max( 0, interp1( f, abs(X), fERBs, 'spline' , 0) ) );  
    % Compute pitch strength  
    Si = pitchStrengthAllCandidates( fERBs, L, pc(j ) );  
    % Interpolate pitch strength at desired times  
    if  size(Si,2) > 1  
        warning off  MATLAB:interp1:NaNinY  
        Si = interp1( ti, Si', t, 'linear' , NaN )';  
        warning on MATLAB:interp1:NaNinY  
    else  
        Si = repmat( NaN, length(Si), length(t) );  
    end  
    % Add pitch strength to combination  
    lambda = d( j(k) ) - i;  
    mu = ones( size(j) );  
    mu(k) = 1 - abs( lambda );  
    S(j,:) = S(j,:) + repmat(mu,1,size(Si,2)) .* Si ;  
end  
% Fine tune pitch using parabolic interpolation  
p = repmat( NaN, size(S,2), 1 );  
s = repmat( NaN, size(S,2), 1 );  
for  j = 1 : size(S,2)  
    [ s(j), i ] = max( S(:,j), [], 1 );  
    if  s(j) < sTHR, continue , end  
    if  i == 1 || i == length(pc)  
        p(j) = pc(i);  
    else  
        I = i-1 : i+1;  
        tc = 1 ./ pc(I);  
        ntc = ( tc/tc(2) - 1 ) * 2*pi;  
        c = polyfit( ntc, S(I,j), 2 );  
        ftc = 1 ./ 2.^[ log2(pc(I(1))): 1/12/100: l og2(pc(I(3))) ];  
        nftc = ( ftc/tc(2) - 1 ) * 2*pi;  
        [s(j) k] = max( polyval( c, nftc ) );  
        p(j) = 2 ^ ( log2(pc(I(1))) + (k-1)/12/100 );  
    end  
end  
  
function  S = pitchStrengthAllCandidates( f, L, pc )  
% Create pitch strength matrix  
S = zeros( length(pc), size(L,2) );  
% Define integration regions  
k = ones( 1, length(pc)+1 );  
for  j = 1 : length(k)-1  
    k(j+1) = k(j) - 1 + find( f(k(j):end) > pc(j)/4 , 1, 'first'  );  
end  
k = k(2:end);  
% Create loudness normalization matrix  
N = sqrt( flipud( cumsum( flipud(L.*L) ) ) );  
for  j = 1 : length(pc)  
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    % Normalize loudness  
    warning off  MATLAB:divideByZero  
    NL = L(k(j):end,:) ./ repmat( N(k(j),:), size(L ,1)-k(j)+1, 1);  
    warning on MATLAB:divideByZero  
    % Compute pitch strength  
    S(j,:) = pitchStrengthOneCandidate( f(k(j):end) , NL, pc(j) );  
end  
  
function  S = pitchStrengthOneCandidate( f, NL, pc )  
n = fix( f(end)/pc - 0.75 ); % Number of harmonics  
if  n==0, S=NaN; return , end  
k = zeros( size(f) ); % Kernel  
% Normalize frequency w.r.t. candidate  
q = f / pc;  
% Create kernel  
for  i = [ 1 primes(n) ]  
    a = abs( q - i );  
    % Peak's weigth  
    p = a < .25;  
    k(p) = cos( 2*pi * q(p) );  
    % Valleys' weights  
    v = .25 < a & a < .75;  
    k(v) = k(v) + cos( 2*pi * q(v) ) / 2;  
end  
% Apply envelope  
k = k .* sqrt( 1./f  );  
% K+-normalize kernel  
k = k / norm( k(k>0) );  
% Compute pitch strength  
S = k' * NL;  
  
function  erbs = hz2erbs(hz)  
erbs = 21.4 * log10( 1 + hz/229 );  
  
function  hz = erbs2hz(erbs)  
hz = ( 10 .^ (erbs./21.4) - 1 ) * 229;  
 
 

Word boundary detection using Teager Energy: 

 
 
function  [it,fs] = teager_wb (x,fs,m,lf,start_sample)  
  
  
%Teager Energy  calculation  
l= 1;  
N = max(size(x));  
teag(1) = x(1)*x(1);  
teag(2:N-1) = x(2:N-1).*x(2:N-1)-x(3:N).*x(1:N-2);  
  
teag(N) = x(N)*x(N);  
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e= abs(teag);  
  
% Energy(i) now contains the frame-by-frame energy  
threshold = 600;  
cut_off = -threshold;  
t= m; %threshold of energy  
trade_off = 600; %threshold for allowable distance between actual an d 
candidate WB s in frames.  
  
% axis tight  
% figure(2)  
% plot(x)  
% xlabel('Samples')  
% ylabel('Amplitude')  
% title('speech file and candidate Wbs using Teager  Energy')  
% hold on  
len = length(e);  
% axis tight  
energy(len+1)= 0;  
f = 1;  
for  i=3:len-3  
     
    if  (e(i-2)<= t && e(i-1)<t && e(i)>=t && e(i+1)>=t &&  e(i+2)>=t && (i-
cut_off)>= threshold)  
%        figure(2)  
       cut_off = i;  
       index_candidate(f) = i*l;  
         f = f+1;  
%       line([l*i l*i],[0 -0.2],'color','r','LineWi dth',3)  
    elseif  (e(i-2) >= t && e(i-1)>= t && e(i)< t &&  e(i+1)< t && e(i+2)<=t 
&& i-cut_off>=threshold)  
%             figure(2)  
             cut_off = i;  
             index_candidate(f) = i*l;  
             f = f+1;  
%       line([l*i l*i],[0 -0.2],'color','r','LineWi dth',3)  
    end  
         
   
end  
  
  
  
% for j = 1:lf  
%     figure(2)  
%     line([start_sample(j) start_sample(j)],[0 
0.2],'color','g','LineWidth',3)  
% end  
  
%error calculation  
  
n= length(index_candidate);  
it = index_candidate;  
%start_sample = start_sample';  
h = 0;  
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for  i= 1:lf  
    vector(1:n)= start_sample(i);  
    difference = index_candidate-vector;  
    difference = abs(difference);  
    [c,j] = min(difference);  
   if  (c < trade_off && start_sample(i)~=0)  
    h = h+1;  
    end  
end  
  
hits_percentage_teager = h/n*100 ; %#ok<*NOPTS> 
act = length(find(start_sample)); %number of actual word boundaries.  
  
fprintf( 'Teager Energy frames = %4d hits = %4d total cadida tes = %4d \n 
' ,len,h,n)  
xlswrite( 'thesis_results' , [len,h,n], 'Teager Energy' , 'C19:E19' )  
 
 

 

Word boundary detection using energy: 

function  [ie,fs] = energy_wb (x,fs,m,lf,start_sample)  
  
%frame processing  
frame_len=100;  
frame_shift=10;  
l = frame_len/frame_shift;  
num_frames=fix(length(x)/frame_shift-frame_len/fram e_shift);  
  
%Energy calculation  
energy = zeros(num_frames,1);  
for  i=1:num_frames  
frame=x(((i-1)*frame_shift+1):(i*frame_shift+frame_ len));  
energy(i)=sum(frame.*frame);  
end  
e= energy;  
  
% Energy(i) now contains the frame-by-frame energy  
threshold = 90;  
cut_off = -threshold;  
t= m; %threshold of energy  
trade_off = 800; %threshold for allowable distance between actual an d 
candidate WB s in frames.  
  
% figure(1)  
% plot(x)  
% xlabel('Samples')  
% ylabel('Amplitude')  
% title('speech file and Candidate Wb s using Energ y')  
% hold on  
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len = length(e);  
% axis tight  
energy(len+1)= 0;  
f = 1;  
for  i=3:len-3  
     
    if  (e(i-2)<= t && e(i-1)<t && e(i)>=t && e(i+1)>=t &&  e(i+2)>=t && (i-
cut_off)>= threshold )  
%        figure(1)  
       cut_off = i;  
       index_candidate(f) = i*l;  
         f = f+1;  
%       line([l*i l*i],[0 -0.2],'color','r','LineWi dth',3)  
    elseif  (e(i-2) >= t && e(i-1)>= t && e(i)< t &&  e(i+1)< t && e(i+2)<=t 
&& i-cut_off>=threshold)  
%             figure(1)  
             cut_off = i;  
             index_candidate(f) = i*l;  
             f = f+1;  
%       line([l*i l*i],[0 -0.2],'color','r','LineWi dth',3)  
    end  
         
   
end  
  
  
  
% for j = 1:lf  
%     figure(1)  
%     line([start_sample(j) start_sample(j)],[0 
0.2],'color','g','LineWidth',3)  
% end  
  
%error calculation  
  
n= length(index_candidate);  
ie = index_candidate;  
%start_sample = start_sample';  
h = 0;  
for  i= 1:lf  
    vector(1:n)= start_sample(i);  
    difference = index_candidate-vector;  
    difference = abs(difference);  
    [c,j] = min(difference);  
     
    if  (c < trade_off && start_sample(i)~=0)  
    h = h+1;  
    end  
end  
  
hits_percentage_energy = h/n*100; %#ok<*NOPTS> 
act = length(find(start_sample)); %number of actual word boundaries.  
  
fprintf( 'energy frames = %4d hits = %4d total cadidates = % 4d \n 
' ,num_frames,h,n)  
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xlswrite( 'thesis_results' , [num_frames,h,n], 'energy' , 'C19:E19' )  
  
 
 


