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ABSTRACT 

This thesis consists with three topics. Chapter 1 Incentive Contracting with an 

Independent Underwriter: Does It Benefit Insurers? proposes an analytical model to 

investigate the decision factors of an insurance company when choosing between direct 

writing and independent underwriter as distribution channel. It also explores the impact 

of contingent commissions on the underwriting performance of insurance companies. To 

count for the impact of policy renewal, this paper measures the difference of underwriting 

performance between using independent underwriter and direst writing in the single-

period model, as well as in the multi-period model. It is found that the key decision 

factors of distribution system include: underwriting risk, underwriting task complexity, 

underwriting cost, as well as policy renewal. 

Chapter 2 Risk Finance for Catastrophe Losses with Pareto-Calibrated Levy-

Stable Severities proposes a risk finance paradigm for catastrophe losses. The 

conventional risk finance paradigm of enterprise risk management identifies transfer, as 

opposed to pooling or avoidance, as the preferred solution. However, this analysis does 

not necessarily account for differences between light- and heavy-tailed characteristics of 

loss portfolios. Of particular concern are the decreasing benefits of diversification 

(through pooling) as the tails of severity distributions become heavier. In the present 

article, a loss portfolio characterized by nonstochastic frequency and a class of Lévy-

stable severity distributions calibrated to match the parameters of the Pareto II distribution 

is investigated. Then a conservative risk finance paradigm is proposed. It can be used to 
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prepare the firm for worst-case scenarios with regard to both (1) the firm’s intrinsic 

sensitivity to risk and (2) the heaviness of the severity’s tail. 

Chapter 3 A Risk-Based Risk Finance Paradigm proposes an alternative to the 

conventional risk finance paradigm of enterprise risk management that accounts for not 

only a loss portfolio’s expected frequency and expected severity, but also its “risk” as 

captured by an appropriate measure of dispersion/spread.  This new paradigm is based 

upon four distinct properties of a loss portfolio that enhance the benefits of 

diversification:  (1) a high expected frequency; and (2) less than perfect positive 

correlations between individual severities; (3) light-tailed severities; and (4) a predictable 

(i.e., non-erratic) frequency. 
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CHAPTER 1 

INCENTIVE CONTRACTING WITH AN INDEPENDENT UNDERWRITER: 

DOES IT BENEFIT INSURERS? 

1.1. Introduction 

In insurance industry, the distribution system varies along a spectrum from the 

use of a professional employee sales force, to contracting with independent sales 

representatives, to direct response methods such as mail, telephone and most recently, 

internet solicitation. The choice of distribution system, the structure of agent 

compensation, and the regulatory of insurance distribution activities remain the three 

major economic issues in the insurance industry distribution. Although the interaction 

between regulation and choice of distribution system cannot be overseen, the regulation 

factor is considered as exogenous and not being discuss here. This paper focuses on 

insurance company’s choice of the distribution system and compensation scheme in the 

context of property-liability insurance market. 

1.1.1. Main property-liability distribution channels 

A wide variety of distribution methods are used in the property-liability insurance 

industry. This includes the use of: (1) exclusive professional employee sales force who 

dedicate to sell products of a single insurance company; (2) independent agencies who 
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sell products of several competing insurers and owns the customer list upon the 

termination of the contractual relationship; (3) brokers who are also independent 

businesses who may sell products from various insurers; (4) direct response methods such 

as mail, telephone and internet solicitation. For most of the insurance companies, they use 

multiple distribution methods, which will benefit them in marketing relationships and 

alliances with non-insurance concerns.  

Figure 1. shows the breakdown of different distribution systems in the property-

casualty insurance industry in 20111. 

 

Figure 1. Market Share of Distribution System _ 2011 P-C Insurance 

Source: IIABA Market share Report, 2013 
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1 Here independent underwriter refers to both  independent agency and broker 
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Figure 1. documents that in 2011, independent underwriter takes the largest 

market share overall in the property-casualty insurance market, with a 275.2 billion of 

direct premium written; exclusive agency follows with a 164.6 billion of direct premium 

written. Firms that distribute primarily through direct response achieve a 35 billion of 

direct premium written. The market share of independent agency distribution system also 

varies by lines of business written. It is larger for commercial lines, but smaller in 

personal lines of business. Over the years, the independent agency distribution system has 

seen a slow drop in its control of the overall commercial lines market, with 2.1 

percentage points dropped since 2006, as shown in figure 2 below. 

 

Figure 2. 5-Year View of Independent Underwriter Distribution System Market Share in 

Commercial Line 

Source: IIABA Market share Report, 2013 
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and represent the insurance purchaser. Independent agents, however, have formal 
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of the insurance companies. This set-up of contractual relationship means that a broker 
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the policy, whereas many independent sales agents can bind the insurer to offer a policy. 
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However, the difference between independent agents and brokers is blurred since 2004 

with the adoption of the NAIC’S Producer Licensing Model Act (PLMA) by a majority 

of states. Under this act, both independent agents and brokers are referred as insurance 

“producers”. In practice, brokers differentiate from independent agents by severing 

clients’ need of more complex insurance product, whereas independent agents usually 

sell products in personal and small to mid-size commercial line of business. In addition, 

brokers may sometimes offer other fee-basis services such as risk management or loss 

control consulting, which are generally not provided by independent agencies. In this 

paper, brokers and independent agents are both referred as independent underwriter. 

1.1.2. Coexistence of Multiple Distribution Systems 

There are extensive literatures focusing on the questions regarding the efficiency 

of distribution systems and the theoretical and empirical reasons of the coexistence of 

multiple distribution systems. These studies usually group the various distribution 

systems into two main categories, based on the degree of vertical control of the sales 

force, as “direct writer” and “independent underwriter”. Direct writer includes direct 

marketing and exclusive agent. Independent underwriter includes broker and independent 

agent.  

After careful comparison between the direct writer distribution system and 

independent underwriter distribution system, the previous researches have consistently 

found that independent underwriter system associates with relatively higher cost than 

direct writing, and are sometimes with higher profitability. With these observations, if the 

independent underwriter provides similar service with high cost, economic theories 
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would then predict the non-existence of the independent underwriter, according to long-

run competitive equilibrium. However, market observations shows that independent 

underwriter remains as one of the most important distribution systems in commercial 

property-casualty insurance market. Therefore, previous researches have attributed the 

existence of the independent underwriting system to either market-imperfections or 

higher product quality.  

Initially, the market-imperfection hypothesis states that independent underwriting 

system is inefficient compared to direct writing system. This hypothesis was more prevail 

in the 70’s and 80’s when independent underwriting system lost its dominance in the 

insurance market. The market-imperfections hypothesis claims that independent 

underwriter insurers survive with cost inefficiency (Cummins, 1977) because of market 

imperfections, such as price regulation (Joskow, 1973; Cummins & VanDerhei, 1979; 

Weiss, 1990), slow diffusion of information in insurance markets (Dahlby & West, 

1986), or search costs that permit inefficient firms to survive alongside efficient firms 

(Dahlby & West, 1986). In addition, with more precise identification of firms by 

marketing strategy, Barrese & Nelson (1992) found that in private passenger automobile 

insurance market, independent underwriters continue to lose market share, indicating that 

independent underwriters’ service differential is not sufficient to offset their higher cost 

in personal line of business. 

However, the product quality hypothesis argues that higher cost of independent 

agencies is associated with higher product quality, greater service intensity, or better 

mitigation of principle-agent problems between insurer and insurance buyers. It is 

claimed that independent underwriter can provide higher product quality by assisting 



6 
 

customers with superior claims settlement service, offering more product choices to 

customers, reducing policyholders’ search costs and therefore enjoys greater customer 

satisfaction (Barrese et.al. 1995). The product quality hypothesis also argues that 

independent underwriters may, to some extent, solve principle-agent problems such as 

company/buyer conflicts, by credibly threatening to shift business to an alternate insurer. 

For example, Kim, Mayers and Smith (1996) found that independent agents may deal 

more effectively with agency conflicts between policyholder and insurer. 

In terms of coexistence, Posey & Yavas (1995) proved that there exists 

equilibrium where the independent agency and direct writer marketing systems coexist. 

Using pure price search model, characteristics of such equilibrium has been further 

analyzed by Posey & Tennyson (1998). They found that direct writing tend to be used 

when producers associate with low production cost, and consumers associate with low 

search cost. Using frontier efficiency methods, Berger et al., (1997) estimated both cost 

and profit efficiency for direct-writing and independent-agency insurers. They found that 

although independent agencies are cost inefficient, most of the average cost-efficiency 

difference between using independent agencies and direct writing distribution system 

does not carry through as a profit-efficiency difference. Therefore, higher costs of 

independent-agency firms appear to be due primarily to the provision of higher-quality 

services, which are compensated for by additional revenues.  

The choice of whether to use independent underwriter or use direct writing 

usually depends on the difficulty of measuring outcome, the importance of non-selling 

activities, and the nature of insurance target. When there is perceived difficulty of 

measuring outcome (Anderson & Schmittlein, 1984), or when there is a higher 
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importance of non-selling activities, firms will tend to use home contractor (Anderson, 

1985). Independent underwriter, however, is more aggressively used when the products 

are nonstandard items such as umbrellas and earthquake insurance, which requires more 

effort in exposure identification (Cummins & Weisbart, 1977). Regan & Tennyson 

(1996) found that insurers tend to use direct writing when policyholders can be easily 

sorted without sales agent’s participation in screening. Otherwise, when agent 

information is important for risk placement, independent underwriter may be preferred. 

Empirical support of this theory was obtained from analysis of compensation contracts 

and market shares in the context of different marketing forms. Direct writing were found 

to be prevalent in relatively standardized, homogeneous product lines and markets, and 

their agents receive less profit-based compensation than those of independent underwriter 

insurers. In addition, Regan (1997) found that the independent agency system will be 

preferred by insurers marketing complex products or operating in lines or markets where 

uncertainty is higher. 

1.1.3. Compensation Systems  

1.1.3.1 Agency Costs associated with independent Underwriter 

There are two types of agency costs associates with insurance distributions: 

agency cost arising from the asymmetric information between the insurer and the agent; 

as well as the agency cost arising from the asymmetric information between insurer and 

the insured.  

The first type of agency cost is known as moral hazard: if not properly monitored, 

the agent will choose to exert the lowest (unverifiable) amount of effort. Ideally, this 
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problem could be mitigated by flat salary based on the volume of business placed, as long 

as monitoring and enforcement of agent behavior is available. However, the stochastic 

nature of output precludes the use of direct monitoring. In this case, incentive 

compensation system with volume based contingent commissions may be paid in 

addition to flat salary to provide financial incentives to motivate the agent to act in the 

interest of the insurer. Such volume based contingent commission scheme allows insurer 

to capture economies of scale, and to benefit from portfolio diversification by adding 

more individual risks to the portfolio. 

The second type of agency cost is known as adverse selection: the real risk type of 

potential insured is unrevealed to the insurer. Theoretically, without a truth-revealing 

mechanism, the high risk type will tend to hide behind the low-risk type, or purchase 

more insurance to benefit from lower premium. In this case, insurer will either operate 

with loss, or charge every potential insured high premium to cover the potential loss due 

to adverse selection, which in turn, is unfair for the low-risk type. Therefore, it is very 

important to determine risk class in the underwriting process and apply them to 

appropriate price so that actual loss is consistent with expected loss. For risks with simple 

nature such as auto insurance and homeowners insurance, insurer is able use 

classification variables that are observable and verifiable at low cost to sort different risk 

types apart. However, for risks with complex nature, such as inland marine insurance and 

commercial multiperil insurance, the cost of risk misclassification is so high that the 

above method may no longer be feasible. In this case, independent underwriter can be 

used to gather and verify risk information that is otherwise costly for the insurer to 

obtain. 



9 
 

1.1.3.2 Compensation systems for various distribution systems 

There are two types of compensation schemes in insurance distribution systems: 

straight commission (including volume based contingent commission) and profit-

contingent commission. The straight commission is usually a flat-rate that only associates 

with the premium volume. The profit-contingent commission is based on premium 

volume and loss ratio of the business sold for the insurer.2 The choice of compensation 

scheme is usually correlated with the type of distribution system used.  

Exclusive agents are generally paid by straight commission. Although sometimes 

they can be compensated by contingent commission, evidence shows that exclusive 

agents are less likely to be compensated by contingent commission than independent 

agents (Regan & Tennyson, 1996). Besides straight commission, exclusive agents may 

also benefit from retirement plans, certain training and support from the insurer, and may 

be compensated partially by salaries, depending on the contract between exclusive agents 

and insurer.  

Independent underwriter may be compensated by either straight commission or 

contingent commission, or both. Paying straight commission to independent underwriter 

will create severe moral hazard problem: independent underwriters with premium volume 

as only goal may not be motivated to put enough effort in the underwriting process to 

fully determine the risk characteristics of the insureds, thus posing a significant threat to 

insurer (Cheng & Powers, 2008). Contingent commission is usually based on the 

profitability of the independent underwriter's business placed with the insurer, the 

persistency rate, and/or on the volume of business, where the commission rate varies 

                                                           
2 For ease of exposition, profit-contingent commission is referred as contingent commission, and volume 

based contingent commission is referred as straight commission below. 
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across insurance products. According to previous research, the use of contingent 

commission can encourage independent underwriters to better match consumers with 

products (Focht et.al. 2013), and is found to be positively associated with underwriting 

performance (Regan & Kleffner, 2010).   Although contingent commissions 

arrangements varies widely, the majority of the revenues of independent underwriters are 

are profit-based (Cummins & Doherty, 2006). 

There has been debate on whether insurer should use contingent commission to 

compensate independent underwriters. The opponents of contingent commission argue 

that it: (1) increases insurer’s underwriting expenses, at the cost of increased premium 

passed to the policyholders, as showed by Cummins & Doherty (2006) that commissions 

paid by insurers are mostly passed through to policyholders in premiums charged; (2) 

creates conflicts of interests between independent agent and clients, by placing business 

with the insurer who offers the highest compensation package, rather than the one that is 

most suitable for the client, if the client is unaware of such payment arrangement. The 

recent investigation into insurance broker Marsh’s big-rigging activities to steer clients to 

insurers that paid relatively higher contingent commissions is one famous case supporting 

this view. As a consequence, many property-liability insurers have agreed to eliminate 

the use of contingent commissions in their compensation formulas.  

However, it has been found that the use of contingent commission is the optimal 

agent compensation scheme, and is natural development of the competitive insurance 

marketplace that helps to make insurance widely available and affordable (Carson, et al., 

2007) because it: (1) encourages agent to exert more effort on risk assessment and match 

clients with appropriate insurers (Regan & Kleffner, 2010); (2) assists the insurer in 
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retaining existing business  and promote the growth goals of the insurer(Hoyt et al., 

2006); (3) mitigates adverse selection problem from the asymmetric information between 

clients and the insurer by providing information to insurers about the risk type of the 

applicants that the insurer would find costly or difficult to verify (Regan & 

Tennyson,1996; Regan, 1997); (4) provides loss mitigation services to reduce loss ratios 

of the portfolio (Hoyt et al., 2006). After the New York legislation on Marsh case, studies 

have found significant negative returns for insurers following the announcement of the 

investigation, with larger discounts for insurers that use relatively more contingent 

commissions (Ghosh & Hilliard, 2006; Cheng et al., 2007). Since compensating 

independent underwriter with contingent commission is more consistent with modern 

managerial compensation mechanisms since performance based payment should be 

prompted in response to higher quality projects (Bernardo et al., 2001), contingent 

commission serves as the basis in the current research.  

The underlying research considers the condition for an insurer to use independent 

underwriter, and a compensation scheme in which the independent underwriter is 

compensated by a proportion of net profit realized at the end of a business period. First an 

analytical method is used to examine the condition when insurer should use an 

independent underwriter. It is found that cost advantage is not a necessary condition for 

the insurer to use an independent underwriter. The most important decision factor for the 

insurer when he chooses a distribution system is underwriting risk factor. With higher 

underwriting risk and more complex underwriting task, insurer is more willing to use 

independent underwriter, while with lower underwriting risk and less complex 

underwriting task, the insurer will tend to use direct writing instead. Then this research 
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continues to model an optimal incentive contract between an independent underwriter 

and an insurer. It is found that the underwriting risk factor plays a key role in optimal 

compensation scheme: with larger underwriting risk factor, the independent underwriter 

will be compensated more heavily. A dynamic contracting setting considering policy 

renewal is also investigated, and it is found that independent underwriter tends to be used 

when renewal is less important.  

The importance of this study is twofold. First, it enriches the literature on the 

coexistence of independent underwriting insurer and direct writing insurer. In contrast to 

previous studies, this research stands out with a clear analytical result stating the 

condition of when it is optimal for the insurer to use independent underwriter. Second, 

this research proposes an optimal contract that insurer and independent underwriter can 

both benefit in equilibrium.  

The research is organized as follows. Sections 1.2 and 1.3 derive the formal 

equilibrium optimal contract; Section 1.4 discusses insurer's decision of whether or not to 

use independent underwriter analytically; Section 1.5 discusses independent underwriter's 

decision of whether or not to enter the contract, and the optimal effort to exert; Section 

1.6 derives single-period results and empirical implications of the optimal contract; 

Section 1.7 investigates multi-period contract; Sections 1.8 and 1.9 conclude the research. 
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1.2. Model and equilibrium 

1.2.1. Model Set Up 

Consider a commercial insurance market with a single mono-line risk-neutral 

insurer (the “seller”) operating on a direct-writing basis. This insurer faces N potential 

insureds (the “buyers”), each of which is either of type H (high-risk) or type L (low-risk). 

Assume each buyer’s type is known only to himself, but the overall proportion of high-

risk buyers 𝜌𝐻 is common knowledge to the market. So NH  represents the set of high-

risk buyers in the market and NH )1(  represents the set of low-risk buyers in the 

market. 

Assume that the insurer can either assess the risk of potential buyers by himself 

and use direct distribution channel, or retain a risk-neutral independent underwriter, to 

evaluate all potential buyers, and set up two subsidiary pools, one for high-risk buyers 

and the other for low-risk buyers. Under the independent-underwriter system, the 

responsibility of underwriting/sorting the two different risk groups falls to the 

independent underwriter, and the independent underwriter is able to obtain each buyer’s 

risk profile with certain cost. Then the only unresolved issue in the underwriting process 

is whether or not and to what extend the independent underwriter is willing to exert effort 

to underwrite correctly.  

Denote the proportion of correctly underwritten high-risk buyers as Hq , the 

proportion of correctly underwritten low-risk buyers as Lq . Both Hq and Lq are 

unobservable by the insurer. Independent underwriter is able to influence Hq  and Lq by 

exerting a certain amount of underwriting effort at a cost. Let NqN HHHH  be the set 



14 
 

of buyers underwritten as high-risk and are truly high-risk,   NqN LHHL  11  be 

the set of buyers underwritten as high-risk and are truly low-risk,   NqN LHLL  1 be 

the set of buyers underwritten as low-risk and are truly low-risk, and  NqN HHLH  1  

be the set of buyers underwritten as low-risk and are truly high-risk. For ease of 

exposition, N is normalized as 1N for the rest of the article. 

Premium is set according to expected loss per insurance target of the 

underwritten risk category. Thus the expected loss of high-risk type is denoted as H and 

the expected loss of low-risk type is denoted as L . By definition, the expected loss of 

high-risk type should be higher than the expected loss of low-risk type. Therefore, H is 

larger than L . Premium loading  is set according to expense loading e and profit 

loading . Let Hp and Lp denote the actuarially fair premium per business of high-risk 

category and low-risk category respectively: 

H
H

H
e

p 








1
,                  whereas 1,

1

1



 




e
                         (1) 

L
L
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e

p 








1
,                    whereas 1,

1

1



 




e
                         (2)                                                                                       

Therefore, insurer’s before-compensation profit can be written as 

           HHHLLHLHHH

LHLLHHLHLLHH

qqq

LLLYYYLYLossIncome





1111 

Profit
                   (3) 

Low-risk buyer is made worse off when assigned to the high-risk category. 

Assume that the buyers are rational and are well informed of their own risk type, the low-

risk type will not buy insurance from the insurer if they are recognized as high-risk type 

and unfairly charged with higher premium. Therefore, equation (3) does not have the 
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term related with HLN  (those who are underwritten as high-risk but are actually low-risk) 

buyers.  

Independent underwriter is compensated by contingent commission in a scheme 

given by: α (Total Net Profit). Commission loading α will be modeled as an explicit 

compensation strategy of the seller. Meanwhile, the outside option for the independent 

underwriter is given as γ = 0, which is treated as constraint of the compensation.  

Cost is incurred during the underwriting process by the independent underwriter. 

Specifically, the cost should be different for sorting a low-risk type from high-risk type 

and sorting a high-risk type from low-risk type. Restricting ),( HL qqC  to be simple form 

that induces close form interior solutions [3]
, without losing generality, independent 

underwriter’s underwriting cost can be written as:  

   22
)(1),( HHHLHLHL qcqcqqC                                                                 (4) 

Insurer’s underwriting cost, if the insurer decides to underwriter by himself, takes 

the same format but with different parameters: 

   22
)(1),( I

HH

I

H

I

HH

I

L

I

H

I

L

I qcqcqqC                                                              (5) 

1.2.2. Structure and Timing of the Game 

The insurer designs a contract that compels the independent underwriter to exert 

the desired level of effort to maximize insurer’s net profit (incentive compatibility), and 

to voluntarily enter into the contract (individual rationality).  

                                                           
3 Holmstrom and Milgrom (1991) provide a number of interesting insights by considering a variety of cost 

functions. A simple quadratic form is used here since it is adequate to provide a number of interesting 

insights into the impact of performance measures. 
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The timing of the compensation scheme is shown as follows. At the beginning of 

the contract period, the insurer designs a compensation mechanism contingent on the 

incentive compatibility constraint and the individual rationality constraint. The insurer 

also makes decision of whether to underwrite the underlying business by himself or to 

use independent underwriter at this point. Based on the properties of the mechanism, the 

independent underwriter then chooses the optimal underwriting accuracy 𝑞𝐿 and 𝑞𝐻, and 

whether to enter into the contract. No compensation is paid at this moment. At the end of 

the period, insurer’s net profit is realized. Independent underwriter is then compensated 

with a proportion of the net profit α(Total Net Profit). 

 

  

 

 

 

 

 

Figure 3. The Timing of the Game 

 

Assume that the insurance company accepts all business generated and 

underwritten by the independent underwriter. There is no cash flow at the beginning of 

the contract period although sometimes the independent underwriter is compensated with 

a certain amount of overheads, which is unrelated with final net profit. At the end of the 

contract period, the independent underwriter is fully compensated with a pre-negotiated 

proportion of realized net profit of the underwritten business. Since profit-contingent 
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commission usually exists between insurance company and large and well-experienced 

brokerage firm (independent underwriter), both insurer and independent underwriter are 

assumed to be risk neutral here.   

1.2.3. The Mechanism-Design Problem 

The compensation of the independent underwriter can be written as: 

  
        HLHLHLHLHH

LHLLHHLHLLHH

qq

LLLYYYonCompensati









11
                                 (6) 

The insurer’s mechanism design problem is to maximize his expected payoff: 

 
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Subject to the incentive compatibility [IC] constraint of the independent 

underwriter:  

 
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 (8) 

And the individual rationality [IR] constraint of the independent underwriter: 

     0)(1)()1()1()( 22




HHHLHLHLHLHLHLHH qcqcqq

OptionOutsideCostonCompensati

    (9) 

The individual rationality [IR] constraint (9) ensures that the independent 

underwriter voluntarily enters into the contract. Assume that outside option is 0, so that 

the underwriter will not enter the contract with negative net income. The incentive 

compatibility [IC] constraint (8) requires that the independent underwriter finds it optimal 
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to exert the optimal level of effort given by Lq̂  and Hq̂  according to the compensation 

scheme and the underwriting cost.  

1.2.4. Equilibrium  

Following Holmstrom (1979)'s approach in solving agent's moral hazard problem, 

the compensation scheme can be formally written as: 

 
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Solving the above problem, [IC]’s can be obtained as: 

)]1(2/[])1([ HLLL cq                                                                                 (11)     

]2/[)]([ HHLHH cq                                                                                     (12) 

From [IC]’s (equation 11 and equation 12), it is clear that with fixed commission 

loading , the underwriting accuracy of each risk type is: (1) positively related with 

profit loading  , and the expected loss of each risk type given by L and H ; (2) 

negatively related with the proportion of each risk type (i.e. )1( H  for low-risk type 

and H for high-risk type), and underwriting cost c of each risk type. 

These observations are due to the fact that:  (1) compensated by a proportion of 

insurer’s net profit, the underwriter is more profitable with higher profit loading  , thus 

will be more willing to exert higher effort. With larger expected loss, the accuracy of 

underwriting becomes more important. Therefore, independent underwriter needs to exert 

more effort to underwrite accurately; (2) when the underwriting cost of a specific risk 
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type or/and the proportion of this risk type in the market pool increases, the independent 

underwriter will incur more cost in the underwriting process. In this case, holding 

commission loading as fixed, the independent underwriter will tend to slack and lower 

the effort in the underwriting task. 

The second part of observation (1) is very intuitive, because the purpose of 

contingent commission is to encourage the independent underwriter to correctly 

underwrite the business. This observation is consistent with Cheng & Powers (2008), and 

Dutta (2008) finding that performance and pay-performance sensitivity are positively 

correlated. 

1.3. Optimal Compensation Schemes 

The insurer (principal) chooses the commission loading  to maximize expected 

net profit, subject to [IC] constraint, [IR] constraint and independent underwriter’s choice 

of the level of effort ( *

Lq  and *

Hq ) to exert.  

The insurer (principal)’s problem is to maximize virtual surplus: 

 

)](2/)1(2/)()[1(
2222

max LHHLLHLH cc 


                     (13) 

Equation (13) consists of 4 parts: the first part )1(   is the virtual surplus 

retained by insurer (the principle), as a proportion of net profit gained; the second part  

HLH c2/)( 22    is the “high-risk underwriting gross profit”, which shows the total 

gain from correctly underwritten high-risk business. This part can also be considered as 

the total savings from the worst-case scenario of underwriting activity (all high-risk are 

incorrectly underwritten as low risk type); the third part 
LL c2/)1(

22    is “low-risk 
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net profit” that refers to the total net profit insurance company can obtain from low-risk 

business; the fourth part )( LHH    stands for the “complexity of underwriting task”, 

in which )( LH    is considered as “underwriting risk factor”. The “underwriting risk 

factor” can be either positive or negative. When the “underwriting risk factor” is positive, 

the expected loss of high-risk type given by H  exceeds the expected revenue of the low-

risk type given by “actuarially fair premium” L . In this case, there will be a net loss if 

high-risk is incorrectly underwritten as low-risk, where higher )( LH    associates 

with larger net loss. Therefore, the “complexity of underwriting task” )( LHH    is 

actually the bottom line of the worst case scenario: the potential loss from the underlying 

business if all high-risks are incorrectly underwritten as low risk. Note that in virtual 

surplus, all terms are with positive sign except for the “complexity of underwriting task”

)( LHH   . So holding other factors as constant, insurer’s total net profit is 

negatively related with complexity of underwriting task. 

LEMMA 1:  Assume equations (10-13) hold, the optimal compensation 

mechanism of the independent underwriter will be at equilibrium  

HL qq ,*,  in which:  
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 (16) 

Proof: see Appendix A 
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LEMMA 1 gives the optimal commission loading *  at equilibrium. Given this 

optimal commission loading, independent underwriter will choose his optimal amount of 

effort to exert, given by the optimal underwriting accuracy of the low-risk type *

Lq  and 

the optimal underwriting accuracy of the high-risk type *

Hq . LEMMA 1 indicates that the 

independent underwriter’s underwriting accuracy *

Lq and *

Hq are both positively related 

with underwriting risk factor )( LH   , as well as the complexity of the underwriting 

task )( LHH   , as shown in equations (15) and (16). Detailed analysis can be found 

in proposition 8. 

1.4. Insurers’ Rationale 

Given the optimal compensation scheme, insurer would make a decision between 

the two distribution channels: direct writing and independent underwriter. 

Proposition 1 It is profitable (not necessarily optimal) for the insurer to use direct 

writing if and only if complexity of underwriting task )( LHH   is no larger than 

I

LL

I

HLH cc 4/])1[(4/])([
2222                                                      (17) 

Proof: see Appendix A 

This proposition shows the region where it would be profitable for the insurer to 

use direct writing: when the underlying business is not too complex. Otherwise, the 

insurer could either use an independent underwriter, or not to assume the underlying risk. 

Note that this condition does not provide optimal region to use direct writing. The 

potential profit when using independent underwriter can still be higher than when using 

the direct writing channel. This observation is further discussed in proposition 6. 
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Lemma 2 Profit margin for insurer to use independent underwriter instead of 

underwriting by himself can be formally written as: 
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
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Proof: see Appendix A 

This profit margin compares insurer’s profit of using independent underwriter 

versus direct writing. It is obtained by subtracting insurer’s profit when using direct 

writing from the profit when using independent underwriter. Important insight can be 

observed from this condition: independent underwriter is preferred when this profit 

margin is positive. 

Proposition 2 Insurer’s profit margin from using independent underwriter is 

positively related with insurer’s costs in direct writing I

Hc and I

Lc , negatively related with 

independent underwriter’s underwriting costs Hc and Lc .  

Proof: see Appendix A 

According to this proposition, underwriting cost is one of the advantage provided 

by independent underwriter: if the independent underwriter is more efficient in 

underwriting, indicated by smaller underwriting costs Hc and Lc , insurer can enjoy higher 

profit margin. 

Proposition 3 With positive underwriting risk factor )( LH   , insurer’s profit 

margin is positively related with proportion of high risk business in the market. 

Proof: see Appendix A 
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This proposition shows the impact of underwriting risk factor on insurer’s choice 

of distribution channel: if underwriting risk factor is positive, the higher proportion of 

high risk business there is in the market, the more benefit can the independent 

underwriter provide the insurer.        

Proposition 4 Holding other factors as fixed, independent underwriter 

distribution channel is more beneficial when underwriting risk factor )( LH   is larger.  

Proof see Appendix A 

Underwriting risk factor )( LH    compares actuarial fair premium generated 

by low-risk buyers L  and expected loss of high-risk buyers H : when underwriting risk 

factor )( LH   is positive, premium collected L will not be enough to compensate the 

expected loss H incurred, when a high-risk is incorrectly underwritten as a low-risk. 

Without a truth-revealing mechanism, high-risk buyers will have higher incentive to hide 

their true risk-type, because they may enjoy larger benefit from hiding their information 

with larger underwriting risk factor. In this case, using independent underwriter can be 

considered as a risk sharing mechanism where the independent underwriter handles the 

underlying risk and shares potential profit/loss as well. This is consistent with Regan and 

Tennyson (1996) empirical finding that independent underwriter may be preferred when 

policyholders are not easily sorted without sales agent participation in screening, and 

when agent information is important for risk placement. 

To further illustrate this finding, a restriction on the cost function is posed so that 

the insurer and the independent underwriter have the same cost. Results are demonstrated 

in Proposition 5 and Proposition 6. 
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Proposition 5 Given independent underwriter has the same cost as the insurer, 

with positive underwriting risk factor )( LH   , when the underlying business is 

unprofitable to use direct distribution channel, it may still be profitable to use 

independent underwriter. 

Proposition 5 shows that cost advantage is not a necessity for the existence of 

independent underwriter. In contrast to conventional rationale that independent must have 

cost advantage to, independent underwriter is found to benefit the insurer here (makes the 

insurer more profitable), with the same exact cost as the insurer. Other than cost 

advantage, independent underwriter can make a market niche by advantageous functions: 

risk sharing. Underwriting risks in specialty areas such as inland marine insurance and 

commercial multiperil insurance, independent underwriter has larger pool of similar risk, 

thus is able to better diversify risks (assuming the underlying risks are diversifiable) 

within at a larger scope.  

Proposition 6 Given independent underwriter has the same cost as the insurer, it 

is optimal for insurer to use independent underwriter if and only if the product of 

underwriting risk factor )( LH    and )5.0*(   is positive: 

0)5.0*)((   LH
                                                                                    (19) 

Proof: see Appendix A 

This is an interesting and neat observation: as noted above, underwriting risk 

factor )( LH   compares the expected loss of high-risk type and the expected profit 

from low-risk type. If the underlying business is risky (i.e. with positive underwriting risk 

factor )( LH   ), the insurer will need to compensate the independent underwriter more 
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than half of the total profit (i.e. 05.0*  ) to stay profitable. Otherwise, the 

independent underwriter should be compensated by less than half of the total profit. 

 

1.5. Independent Underwriter’s Rationale 

To insure the independent underwriter enter into the contract, individual 

rationality constraint is required. Since it is assumed that the independent underwriter 

will enter the contract as long as positive profit is obtained, the following proposition can 

be found: 

Proposition 7 

The independent underwriter will enter the contract if and only if the following 

conditions are satisfied: 



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3/22/1
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



or

LH
                                                       (20) 

Proof: see the Appendix A 

Proposition 7 states that when the underlying business is risky (with positive 

underwriting risk factor LH   ), the independent underwriter expects to receive more 

than 50% but no more than 2/3 of the profit share as their compensation. Explanation of 

this condition will be that for risky business, large profit share is necessary to (1) 

incentivize the independent underwriter and (2) make independent underwriter stay 

profitable. But since the profit loading also represents risk, the independent underwriter 

will avoid excessive risk by requiring profit share to be less than 2/3. 
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 However, when the underlying business is less risky (with negative underwriting 

risk factor LH   ), the independent underwriter can be either compensated by less than 

50% of the total profit, or by more than 2/3 of the total profit. When compensated by 2/3 

of the total profit, the underlying business can be essentially considered as primarily 

belong to the independent underwriter rather than the insurer.  

Another implication of Proposition 7 is risk sharing: when the underlying 

business is risky, risk sharing become more important: neither party would be willing to 

assume the entire risk. And since via the independent underwriter has better and more 

direct control of the risk via underwriting performance, independent underwriter’s risk 

share is expect to be heavier than the insurer (insurer takes at most 1/2 of the risk whereas 

independent underwriter takes at most 2/3 of the risk); when the underlying business is 

not risky, risk sharing become less important: either party would be willing to assume the 

entire risk.  

Proposition 8 

Independent underwriter’s choice of optimal underwriting accuracy *

Lq and *

Hq are 

positively related with the complexity of the underwriting task )( LHH    

Proof see Appendix A 

This proposition implies that when underwriting task is more complex, the 

independent underwriter will choose to exert more effort in the underwriting process to 

boost underwriting accuracy. Regan (1997) studied insurance distribution system choice 

based on 1990 accounting data from a sample of 149 insurance groups and found that if 

independent agency insurers operate in more complex lines of business, then they should 
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exert relatively more efforts in underwriting inspections and audits as measured by the 

proportion of the firm's expenses allocated to surveys and audits. 

 

1.6. Characteristics of the Optimal Contract 

If the insurer decides to use independent underwriter, the independent underwriter 

will be offered with contract of optimal compensation scheme stated in section 3. This 

optimal contract is in equilibrium with the following characteristics: 

1.6.1. Market Characteristic and the Optimal Contract  

Proposition 9   In equilibrium, commission loading * exceeds 0.5 if and only if 

underwriting risk factor )( LH   is positive                

Proposition 10 In equilibrium, commission loading *  increases with 

underwriting risk factor )( LH    

Proof: see Appendix A 

Propositions 9 and 10 state that in equilibrium, insurance company should 

compensate the independent underwriter with commission loading * that exceeds one 

half of the total profit, when the premium collected from incorrectly underwritten high-

risk L is not enough to cover the expected loss H . When this gap gets larger, the 

independent underwriter is expected to get higher complementation (larger * ) to be 

incentivized to exert more effort to underwrite correctly. 
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 This finding complies with Dutta (2008) that risk and incentives are positively 

associated for general managerial expertise and Bernardo et al. (2001) that “…optimal 

sharing-rule increases in importance of managerial effort…” In addition, the larger is the 

underwriting risk factor, the higher value can the independent underwriter potentially 

provide, such as Regan & Tennyson (1999) and Posey & Tennyson (1998) claimed that 

independent underwriters’ higher costs are associated with the potential added values 

they could provide. 

1.6.2. Underwriting Cost and the Optimal Contract 

Proposition 11 In equilibrium, commission loading *  is positively related with 

independent underwriter’s cost Hc  and Lc , if and only if underwriting risk factor

)( LH   is positive. 

Proof: see the Appendix A 

This proposition states that in equilibrium, commission loading * should 

increase with underwriting cost when there is positive underwriting risk factor

)( LH   . This finding is different with previous accounting literature stating 

compensation is negatively related with cost when agent is risk averse. (Dutta, 2008; 

Holmstrom, 1979; Holmstrom & Milgrom, 1991). In Holmstrom & Milgrom (1991) 

framework, the agent is risk averse so shifting the risk to the agent entails an efficiency 

cost. Therefore, the optimal contract in that framework reflects a tradeoff between the 

incentive benefit of conditioning the agent’s compensation on the observed level of 

profit, and the cost of inefficiency allocating the risk to the risk-averse party. In the 

model of this paper however, independent underwriter is assumed to be risk neutral. The 
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result is therefore different with previous accounting literature. As have stated previously, 

positive underwriting risk factor means potential loss when a high-risk is incorrectly 

underwritten as low-risk. In this case, it is necessary to incentivize the independent 

underwriter to underwrite correctly. And when underwriting cost goes up, the 

independent underwriter will tend to exert less effort to maintain profitability. Therefore, 

the independent underwriter should be incentivized more heavily with increased cost.  

1.7. Multi-Period Contracting with Policy Renewal 

Ownership of renewal grants independent underwriter contracting advantage ever 

since the second period on. In practice, independent underwriter has the right to put 

renewal policy with any insurer. Therefore, policy renewal is modeled as auction process 

in which insurer bids against other insurers to win the policy renewal as auction target, as 

shown by Figure 4 and Figure 5. 

 

 

 

 

 

 

 

 

Figure 4. The Timing of the Game of t Periods 
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In each period, contracting scenario can be demonstrated in the following GAME 

tree:  

 

Underwriter: independent underwriter; (
1

1+𝑖
): discounting factor; Pt: total profit obtained in the tth 

period; Ct
I: underwriting cost in the tth period; 

t̂ : profit loading in the tth period 

Figure 5. The Multi-period Game Tree 
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1.7.1. Auction 

From the second period on, the insurer will need to bid against other insurers for 

the renewal. For ease of exposition, assume that there are only two identical insurers 

competing for the renewal, each of them makes a sealed bid of profit share , highest 

bidder wins. Also assume that the probability of winning is uniformly distributed in 

which:  

  )()'Pr()Pr( Fbidsinsurerotherwin                                                (21) 

Profitα)0= α= α(1(loss)Profit+Pr)(1- α(win)payoff=Prexpected Insurer's      (22) 

Proposition 12 From period 2 on, insurer will offer  =1/2 to maintain renewal 

as a best response4. 

Proof: see Appendix A 

For period 2t , independent underwriter's optimal underwriting accuracy 

satisfies: 
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4 It is fairly straightforward to show that with generic α, the results found in Proposition 13 and Proposition 

14 still hold. 
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1.7.2. Insurer's Rationale 

In a multi-period policy contracting setting, insurer will use independent 

underwriter rather than underwriting by himself if and only if he finds doing so brings 

him larger profit, from a multi-period contracting prospective. There are two scenarios 

associated with this set-up:  

 Scenario 1: insurer uses independent underwriter: 

Insurer's total payoff when he uses independent underwriter is obtained as: 
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 Scenario 2: insurer uses direct writing 

Insurer's total payoff when he uses direct writing distribution channel can be 

written as: 
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Lemma 3 Insurer will decide to use independent underwriter if the total 

discounted profit margin is positive: 
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Proposition 13 Insurer will be more willing to use independent underwriter with 

a shorter term of renewal. 

Proof: see Appendix A 
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Proposition 14 Insurer will be more willing to use independent underwriter with 

a larger discount rate. 

Proof: see Appendix A 

Propositions 13 and 14 show the relationship between the importance of renewal 

and insurer's decision. When policy period is shorter and/or the discount rate is larger, 

renewal becomes less important. In either case, insurer will be more willing to use 

independent underwriter.  

1.8. Empirical Implications 

This research provides a guideline for the insurer when choosing between the 

distribution system of independent underwriter and direct writing, as well as the optimal 

contract between an insurer and independent underwriter, in both single period and multi-

period setting, with the following conclusions: 

When choosing distribution systems, the decision rules are as follows: 

 It is profitable for insurer to underwrite by himself only when the 

complexity of underwriting task is below a certain threshold, as shown in Proposition 1.  

 Costs are indeed important decision factors for insurer, when choosing 

distribution system, as demonstrated in proposition 2: holding other conditions as fixed, 

cost advantage makes independent underwriter more preferable for the insurer. 

 Holding other conditions as fixed, larger underwriting risk factor makes 

independent underwriter more preferable, as demonstrated in proposition 3 and 

proposition 4. This finding explains paradox mentioned in previous literature: even 
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without cost advantage, independent underwriter can still be an attractive option for the 

insurer through the risk sharing mechanism provided by the independent underwriter. 

To gain a better insight of this finding, a restriction has been posted on the cost 

functions assuming that the independent underwriter has the same cost as the insurer, 

with the following conclusions: 

 When insurer finds it unprofitable to use direct writing, using independent 

underwriter can still be profitable, even though the independent underwriter may not have 

cost advantage, as demonstrated in proposition 5. This observation can help to explain the 

paradox of coexistence between independent underwriting and direct writing distribution 

system, when the independent underwriter does not have cost advantage. 

 When the underlying business is risky (i.e. with positive underwriting risk 

factor), the independent underwriter is expected to be compensated by more than one half 

of the total profit, as demonstrated in proposition 6. 

 From the independent underwriter’s prospective, it will be optimal to accept 

insurer’s offer if individual rationality restriction is satisfied. And the independent 

underwriter will choose to exert the optimal amount of effort accordingly: 

 When the underlying business is risky, the independent underwriter should 

be compensated by more than 1/2 but no more than 2/3 of the total profit, to ensure that 

the underlying business is profitable but not too risky for the independent underwriter. 

When the underlying business is not risky, the independent underwriter can be 

compensated by either less than 50% or more than 2/3 of the total profit, as demonstrated 

in proposition 7. 
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 Independent underwriter’s choice of optimal underwriting accuracy is 

found to be positively related with complexity of the underwriting task, as demonstrated 

in proposition 8. 

If the insurer decide to use independent underwriter, and the independent 

underwriter is willing to join the business, the optimal compensation contract should have 

the following properties: 

 Holding other factors as fixed, the optimal commission loading exceeds 

0.5 as long as underwriting risk factor is positive, and is positively related with 

underwriting risk factor and independent underwriter's underwriting cost, as 

demonstrated in propositions 9 through 11. 

 When considering policy renewal, insurer's decision of whether to use 

independent underwriter has the following properties:  

 Independent underwriter will be utilized more when renewal is less 

important and competition is less severe, as demonstrated in proposition 13 and 

proposition 14. 

1.9. Conclusions 

In this article, a principal-agency model has been used to study the interactive 

behavior of a risk-neutral insurer and a risk-neutral independent underwriter in property-

liability lines of business. It is found that: (1) the insurer chooses between direct writing 

distribution channel and independent underwriter, based on underwriting risk factor and 

the importance of renewal (in a multi-period policy setting); (2) the insurer can 

implement an optimal contract to maximize his profit, while the independent underwriter 
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also maximizes her profit under this contract; (3) the optimal contract has certain 

characteristics that complies with business scenario. 

One very interesting finding is that underwriting risk factor LH   is the 

contracting key. It compares the expected loss of high-risk type H  and the premium 

generated from low-risk type L , when a true high-risk is incorrectly underwritten as a 

low-risk. It is found that this underwriting risk factor is the key to (1) insurer's decision of 

channel; (2) independent underwriter's decision of optimal effort to exert; (3) optimal 

contract in equilibrium.  

This paper presents a formal mathematical modeling to: (1) solve the paradox of 

coexistence of independent underwriting insurer and direct writing insurer; (2) present an 

analytical boundary within which it is optimal for the insurer to use independent 

underwriter and vice versa; (3) present an optimal contract in which both insurer and 

independent underwriter benefit in an equilibrium. 
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CHAPTER 2 

RISK FINANCE FOR CATASTROPHE LOSSES 

WITH PARETO-CALIBRATED LÉVY-STABLE SEVERITIES 

2.1. Introduction 

2.1.1. The Risk Finance Paradigm 

In the field of enterprise risk management, the random losses to which a firm is 

exposed in a given time period are commonly analyzed within a two-dimensional space 

spanned by expected frequency and expected severity (see, e.g., Zuckerman, 2010).  The 

former quantity, usually plotted along the horizontal axis, denotes the expected number of 

occurrences of a particular type of event during the given time window, whereas the latter 

quantity, plotted along the vertical axis, denotes the expected value of the individual 

severities arising from events of a certain type. 

This two-dimensional space is analogous to, but technically different from the 

probability-versus-severity space often used to analyze risk in fields such as public health 

and environmental science (see, e.g., Cox, 2008).  Essentially, the expected frequency-

versus- expected severity formulation is appropriate when the individual points in the 

two- dimensional plane are viewed as loss portfolios, consisting of sums of (possibly 

random) numbers of severities, whereas the probability-versus-severity framework is 
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appropriate when the individual points are viewed as single random events that either do 

or do not occur (i.e., Bernoulli random events). 

After identifying and assessing risks in terms of their frequency and severity 

components, enterprise risk managers embark on the more complex and costly steps of 

risk control and risk finance. Risk control typically prescribes frequency mitigation for 

exposures with high expected frequencies and low expected severities, severity mitigation 

for exposures with high expected severities and low expected frequencies, and avoidance 

for exposures with both high expected frequencies and high expected severities (see, e.g., 

Kwon and Skipper, 2007, p. 22 and p. 306).  The textbook approach to risk finance is 

given by the paradigm of Figure 6 (see, e.g., Baranoff et al., 2009, p. 96). 

 

 

 

 

Expected 
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AVOIDANCE 
(through Risk Control) 

Severity 
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(Informal Diversification) 
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Low                                                                             High 
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Figure 6. Conventional Risk-Finance Paradigm 

 

Having avoided, as a matter of risk control, those unacceptably costly exposures 

with both high expected frequencies and high expected severities, the firm can focus on 

the exposures exhibiting either high expected frequencies or high expected severities 

alone. In the former case, the likely presence of a great number of similar and statistically 

independent claims presumably permits the company to take advantage of diversification 
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by retention (i.e., pooling). In the latter case—which includes regional catastrophes such 

as hurricanes, earthquakes, and even terrorist attacks—there presumably is an insufficient 

number of claims to diversify successfully, and so the company is more likely to employ 

hedging by purchasing insurance (i.e., transfer). For exposures with both relatively low 

expected frequencies and relatively low expected severities, the company will continue to 

pool these risks, but will do so informally (i.e., with less explicit contemplation of the 

benefits of diversification). 

2.1.2. Problems of Catastrophe Losses 

Although the scheme indicated by Fig. 6 seems intuitively plausible, it presents 

two problems for firms considering the financing of catastrophe losses: 

(1) By indicating transfer for loss portfolios with low expected frequencies but 

arbitrarily high expected severities, the conventional paradigm suggests that there will 

always be some insurance company willing to assume (and presumably pool) those 

catastrophe exposures. However, this is inconsistent with actual market experience, in 

which certain types of catastrophe losses—for example, damages from terrorist attacks—

are not readily covered by private insurance. Given that such exposures are not insurable, 

it may make sense to amend Fig. 6 by adding an avoidance rectangle above the transfer 

rectangle. 

(2) There is an inconsistency between the effect of increasing expected 

frequencies on losses with low expected severities, and the effect of increasing expected 

frequencies on losses with high expected severities. In the former case, diversification 

applies because pooling is effective for higher expected frequencies, whereas in the latter 
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case, diversification does not appear to work because the firm must resort to avoidance. 

One possible explanation for this discrepancy is that losses with higher expected 

severities also possess heavier tails, thus inhibiting diversification. However, there is no 

obvious theoretical or empirical reason why this should be true. 

Rather than simply tweaking the conventional paradigm in an ad hoc manner, this 

paper proposes to address the above two problems through the formal mathematical 

modeling of loss portfolios and the careful study of the boundaries separating the regions 

of pooling, transfer, and avoidance. Given the potentially significant role of severity tails, 

this research will pay particular attention to the decreasing benefits of pooling as the tails 

of severity distributions become heavier. 

2.2. The Basic Model 

2.2.1. A Lévy-Stable Loss Portfolio 

Let’s begin by positing a simple loss portfolio,L = ∑ Xi
n
i=1 , in which the 

frequency component (i.e., the number of loss-generating events) is a nonstochastic 

positive integer, n, and the severity component (i.e., the individual loss amounts) is given 

by a sequence of independent and identically distributed (i.i.d.) Lévy-stable random 

variables, 𝑋𝑖, with finite expected value. Choose the Lévy-stable family because it 

affords a continuum of power-law tails that is useful for exploring the effect of heavy 

tails on diversification, and require that the mean be finite so that the expected-severity 

component of the two-dimensional risk finance analysis is well defined. (In addition, it is 

reasonable to assume that, under ordinary circumstances, a firm would be unwilling to 

assume a loss portfolio with infinite mean.) 
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Generally, one would prefer to work with power-law severity distributions that, 

like the actual severities they model, are defined on only the nonnegative real numbers. 

Prominent examples are the Pareto I, Pareto II, and generalized Pareto distributions, 

which have been used extensively in the actuarial literature. The two-parameter Pareto I 

and Pareto II distributions are characterized by their respective probability density 

functions (PDFs), 𝑓𝐼(𝑥) = 𝛼𝜃𝛼/𝑥𝛼+1, 𝑥 > 0 and 𝑓𝐼𝐼(𝑥) = 𝛼𝜃𝛼/(𝑥 + 𝜃)𝛼+1, 𝑥 > 0, 

where 𝜃 > 0 and the means are finite for 𝛼 > 0. The generalized Pareto family possesses 

a third parameter that permits incorporation of not only the Pareto I and Pareto II 

distributions, but also the shifted and ordinary exponential distributions. 

Pareto distributions have been found to provide good empirical models of large 

severities in a variety of insurance and reinsurance contexts, including fire claims (see, 

e.g., McNeil, 1997), medical claims (see, e.g., Cébrian et al., 2003), and automobile 

liability claims (see, e.g., Verlaak et al., 2009).  This family of distributions also has been 

justified theoretically based upon the role of the generalized Pareto distribution as a 

limiting distribution for random variables exceeding a threshold (see, e.g., McNeil, 1997 

and Embrechts et al., 2003) and the use of power laws to model natural events, such as 

earthquakes and hurricanes, underlying catastrophe severities (see, e.g., Ibragimov et al., 

2008). 

Unfortunately, sums of i.i.d. Pareto random variables do not offer analytically 

tractable convolution expressions. For this reason, the following research will work with 

a set of Lévy-stable distributions calibrated to be asymptotically equivalent to those 

arising from the Pareto II case (i.e., the simplest Pareto distribution whose sample space 

is the entire set of positive real numbers). Specifically, this paper selects the parameters 
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of the Lévy-stable distribution so that the sums of the associated i.i.d. severities converge 

in distribution to the sums of corresponding i.i.d. Pareto II (𝑎, 𝜃) severities as the number 

of loss events, n, becomes large. Other families of heavy-tailed distributions, such as the 

noncentral t family and Tukey’s g and h family (see, e.g., Martinez and Iglewicz, 1984), 

might be used in place of the Lévy-stable family. However, these other distributions are 

not easily justified as approximations to sums of i.i.d. Pareto random variables. 

The Lévy-stable distribution is usually described by its characteristic function, 

𝜓𝑋(𝜔) = exp(−𝛾𝛼𝜔𝛼) exp (𝑖[𝛿𝜔 + 𝛾𝛼𝜔𝛼𝛽tan (𝜋𝛼/2) × (1 − 𝛾1−𝛼𝜔1−𝛼)]) 

for 𝜔 > 0. This particular parameterization, equivalent to S(𝛼;  𝛽;  𝛾;  𝛿; 0) of 

Nolan (2008) may be interpreted as follows: 𝛼 ∈ (0, 2] is the tail parameter (with smaller 

values of 𝛼 implying heavier tails, and 𝛼 = 2 in the Gaussian case); 𝛽 ∈ [−1, 1] is the 

skewness parameter (with negative values implying negative skewness, positive values 

implying positive skewness, and 𝛽 = 0 in the Gaussian case); 𝛾 ∈ (0, ∞) is the 

dispersion parameter (which is proportional to the standard deviation in the Gaussian 

case—that is, 𝛾 = 𝑆𝐷[𝑋]/√2); and 𝛿 ∈ (−∞, ∞) is the location parameter (which equals 

the median if 𝛽 = 0, and also equals the mean if 𝛼 ∈ (1, 2] and 𝛽 = 0, as in the Gaussian 

case). 

For 𝑋𝑖 ~  i.i.d. Lévy-stable (𝛼, 𝛽, 𝛾, 𝛿), the desired Pareto-calibrated parameters 

are: 

𝛼 = {
𝑎   if  𝑎 ∈ (1, 2) 
2   if  𝑎 > 2        

 5                                             (28) 

𝛽 = {
1   if  𝑎 ∈ (1, 2) 
0   if  𝑎 > 2        

                       (29) 

                                                           
5 The case of a = 2 is omitted because it involves a singularity at which X is Gaussian with infinite variance. 
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𝛾 = {
𝜃                                               if  𝑎 ∈ (1, 2) 

𝜃/[21/2(𝑎 − 1)(𝑎 − 2)1/2]   if  𝑎 > 2        
                   (30) 

𝛿 = {
𝜃/(𝑎 − 1) + 𝜃tan (𝜋𝑎/2)    if  𝑎 ∈ (1, 2) 
𝜃/(𝑎 − 1)                                if  𝑎 > 2        

                   (31) 

 

Given the convolution properties of the Lévy-stable distribution, (see, e.g., Nolan, 

2008) the parameters indicated in Equations (28) through (31) then imply that: 

𝐿=∑ 𝑋𝑖
𝑛
𝑖=1  ~ Lévy-stable (𝑎, 1, 𝑛1/𝑎𝜃, 𝑛𝜃/(𝑎 − 1) + 𝑛1/𝑎𝜃tan (𝜋𝑎/2)) for 𝑎 ∈ (1, 2) 

(32) 

and 

𝐿=∑ 𝑋𝑖
𝑛
𝑖=1  ~  Lévy-stable (2, 0, 𝑛1/2𝜃/[21/2(𝑎 − 1)(𝑎 − 2)1/2], 𝑛𝜃/(𝑎 − 1))          (33) 

⇔ Gaussian (𝑛𝜃/(𝑎 − 1), 𝑛𝜃2[(𝑎 − 1)2(𝑎 − 2)])   for   𝑎 > 2, 

Although the choice of a nonstochastic frequency, n, is made to simplify the 

asymptotic analysis, this assumption can be relaxed to permit sufficiently well-behaved 

stochastic frequencies, N, whose means increase with n. For example, if 𝑋𝑖 is modeled as 

a mixture of a Pareto II random variable and a single point mass at 0 (to capture the 

impact of an insurance deductible or reinsurance retention), then the sum 𝐿=∑ 𝑋𝑖
𝑛
𝑖=1  may 

be rewritten as 𝐿=∑ 𝑋′𝑗
𝑛
𝑗=1 , where the sequence 𝑋′𝑗 is formed of the positive 𝑋𝑖 , and N ~ 

Binomial (n, Pr {𝑋𝑖 > 0}). This would require a recalibration of the parameters in 

Equations (28) through (31), but would not alter any asymptotic results because the effect 

of the point mass would vanish as 𝑛 → ∞. Furthermore, Chapter 3 shows via simulation 

that the results of the present article hold for N ~ Poisson (n), but caution that the same 

results are not valid if the coefficient of variation of N (i.e., SD[N]/E[N]) remains positive 

as 𝑛 → ∞. 
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2.2.2. A Simple Risk Measure 

In analyzing a firm’s decision whether to pool or transfer the loss portfolio L, it is 

assumed that its management compares the expected cost of this exposure to its expected 

benefit. As explained in the next section, the expected cost is considered to be 

proportional to some measure of the portfolio’s risk, conceived as a type of “spread,” and 

the expected benefit to be captured by a profit loading proportional to the portfolio’s 

expected value. 

For Lévy-stable severities with 𝛼 = 2 (i.e., the Gaussian case), risk (as spread) can 

be measured by the variance or standard deviation; however, for all Lévy-stable severities 

with 𝛼 ∈ (1, 2), these quantities are infinite, and so it is necessary to select an alternative 

measure. Interestingly, despite the growth of a large literature on applications of Lévy-

stable distributions to model financial data,6 there has been little work on the 

development of risk measures appropriate for Lévy-stable data. Fama and Samuelson 

independently addressed the problem of risk-versus-return analyses when financial assets 

have Lévy-stable distributions with infinite variances, and both proposed using the Lévy-

stable distribution’s dispersion parameter, γ (which is proportional to the standard 

deviation in the Gaussian case), as a measure of risk. However, this choice was largely ad 

hoc, and motivated by a desire to provide a standard-deviation-like way of capturing the 

impact of portfolio diversification. 

                                                           
6 Mandelbrot and Fama were the first to argue that Lévy-stable distributions provide good models of 

financial asset returns. This early work spawned a vast literature on the estimation of Lévy-stable models 

for asset returns. Prominent examples from the last two decades include Jansen, 1991; McCulloch, 1997;  

Rachev & Mittnik, 2000; Gabaix et al. (2003). 
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In previous work, Powers & Powers, (2009) proposed the cosine-based standard 

deviation, 

𝐶𝐵𝑆𝐷[𝑋]  =  (1/)cos−1(E[cos((X −  ))])                         

where  satisfies 𝐸[sin((𝑋 −  ))]  =  0, and  > 0 is a free parameter as a risk 

measure for heavy-tailed distributions. As ω → 0+, this measure approaches the 

conventional standard deviation if it is finite, and the parameter ω may be chosen to 

maximize the marginal “information”7 associated with the spectral density, |𝜓𝑋(𝜔)|
2
, of 

the random variable X. Selecting ω in this way for the Lévy-stable family yields: 

𝐶𝐵𝑆𝐷[𝑋] = cos−1(exp (−1/2))21/𝛼𝛾 ≈ (0.9191)21/𝛼𝛾                  (34) 

In a similar manner, it is possible to define the cosine-based variance as 

𝐶𝐵𝑉𝑎𝑟[𝑋] = (𝐶𝐵𝑆𝐷[𝑋])2                        

and then employ the same ω to solve for 

𝐶𝐵𝑉𝑎𝑟[𝑋] = (0.8448)(21/𝛼𝛾)2                                   (35) 

in the Lévy-stable case. 

The risk measures in Equations (34) and (35) are not only natural extensions of 

the ordinary standard deviation and variance, respectively, but also readily applicable to 

analytical work because of their simple expressions in terms of the parameters α and γ. 

For purposes of measuring the risk of a Lévy-stable portfolio of losses, this paper 

therefore will subsume these two quantities into a single risk measure, R[X] =(21/𝛼𝛾)𝑝, 

in which the parameter p ≥ 1 is selected to capture the firm’s intrinsic sensitivity to risk 

                                                           
7 In information theory, the quantity−𝐸[ln(𝑓(𝜔))] = − ∫ ln(𝑓(𝜔)) 𝑓(𝜔)𝑑𝜔

Ω
 denotes the information 

associated with the PDF f (ω), and the marginal information afforded by the particular value ω is therefore 

given by − ln(𝑓(𝜔)) 𝑓(𝜔). Place the term “information” in quotation marks to indicate that the 

(unnormalized) spectral density |𝜓𝑋(𝜔)|2 is not necessarily a proper PDF. 
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(i.e., a larger value of p indicates greater sensitivity to risk, and less ability to benefit 

from effects of diversification). Note that for a fixed value of α, this risk measure 

provides a simple generalization of the dispersion parameter used by Fama and 

Samuelson. 

2.3. Firm Decision Making 

2.3.1. The Pooling/Transfer Boundary 

To construct the boundary between those exposures that a firm decides to pool 

and those that it decides to transfer, assume that the firm is willing to pool the loss 

portfolio L only if the expected cost of this exposure is less than its expected benefit. As 

mentioned above, treat the expected cost as proportional to the portfolio’s risk, R [L]; this 

agrees with the intuition that the greater the risk of the portfolio, the more financial 

damage is done to the firm, on average. As also mentioned, treat the expected benefit as 

proportional to the portfolio’s expected value, E [L]; this conforms to the notion that the 

firm’s expected total losses grow in proportion to its total revenues, which generate a  

constant rate of profit, on average. 

In short, the firm should find pooling acceptable only if the portfolios expected 

benefit through expected profit outweighs its expected cost through risk of financial 

harm. Otherwise, it should transfer the portfolio to an insurance company (whose 

decision making will be discussed later). Mathematically, this implies that the firm is 

willing to pool L only if 

R [L] / E [L] < k              (36) 
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for some k > 0. For loss portfolios with finite variances, this is consistent with the 

common actuarial practice of setting the required premium equal to the expected total 

loss plus a positive constant times either the conventional standard deviation (for p = 1) 

or the conventional variance (for p = 2). 

Applying inequality (36) to the portfolio distributions in Equations (32) and (33) 

yields: 

(21/𝑎𝑛1/𝑎𝜃)𝑝

𝑛𝐸[𝑋]
< 𝑘 ⟹

[21/𝑎𝑛1/𝑎𝐸[𝑋](𝑎 − 1)]𝑝

𝑛𝐸[𝑋]
< 𝑘 ⟹ 𝐸[𝑋]

< 𝑘−1/(1−𝑝)2𝑝/𝑎(1−𝑝)(𝑎 − 1)𝑝/(1−𝑝)𝑛(𝑝−𝑎)/𝑎(1−𝑝) 

for a ∈ (1, 2)              (37) 

and 

(21/2𝑛1/2𝜃/[21/2(𝑎 − 1)(𝑎 − 2)1/2])𝑝

𝑛𝐸[𝑋]
< 𝑘 ⟹

[𝑛1/2𝐸[𝑋]/(𝑎 − 2)1/2]𝑝

𝑛𝐸[𝑋]
< 𝑘 ⟹ 𝐸[𝑋]

< 𝑘−1/(1−𝑝)(𝑎 − 2)−𝑝/2(1−𝑝)𝑛(𝑝−2)/2(1−𝑝) 

for a > 2                                 (38) 

respectively. Then note that inequalities (37) and (38) both describe regions of the 

expected frequency-by-expected severity (i.e., n × E[X]) coordinate plane whose 

boundary curves are given by power functions of the form: 

E[X] = 𝜑𝑛𝜁             (39) 

for positive coefficients 𝜑 = 𝜑(𝑘, 𝑎, 𝑝) and exponents 

𝜁 = 𝜁(𝑎, 𝑝) = {
(𝑝 − 𝑎)/𝑎(1 − 𝑝) for 𝑎 ∈  (1, 2)

(𝑝 − 2)/2(1 − 𝑝) for 𝑎 >  2
 

A careful examination of the ζ values reveals that the pooling/transfer boundary 

curves must be of one of the following three morphologically distinct types: 
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(I) decreasing, concave-upward functions as long as 

p > a for a ∈ (1, 2) or p > 2 for a > 2;                                 (40) 

(II) increasing, concave-downward functions as long as 

p ∈ (2a/(1 + a), a) for a ∈ (1, 2) or p ∈ (4/3, 2) for a > 2; and        (41) 

(III) increasing, concave-upward functions as long as 

p ∈ (1, 2a/(1 + a)) for a ∈ (1, 2) or p ∈ (1, 4/3) for a > 2.                              (42) 

These three types of boundary curves are illustrated and discussed below. Their 

regions of applicability in the (a, p) plane are considered in Section 2.4. 

2.3.2. The Transfer/Avoidance Boundary 

To explore the transfer/avoidance boundary requires a shift in perspective. Rather 

than considering the firm’s risk finance decision making, one must consider the risk 

control step of its risk management process, in which the firm determines which 

exposures to avoid. Fortunately, this analysis can be made fairly straightforward by 

assuming: (1) that the firm will choose to transfer, rather than avoid, a given loss 

portfolio only if its insurance company finds it sufficiently profitable to provide coverage 

for the exposure by including it in the insurer’s internal pool of risks;8 and (2) that the 

insurance company’s underwriting decision is conceptually identical to the original 

firm’s pooling/transfer decision, with “providing coverage” taking the place of “pooling,” 

and “rejecting coverage” taking the place of “transfer” (i.e., the insurance company 

                                                           
8 This is equivalent to saying that the firm’s selection between transfer and avoidance is dictated by the 

underwriting criteria of the insurance market. 
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should compare the expected cost of the loss portfolio to its expected benefit, and assume 

the portfolio only if the latter is greater than the former).9 

For simplicity, assume further that all differences between the insurance 

company’s risk preferences and those of the original firm are captured by the cost-to-

benefit decision threshold, k, with p remaining unchanged, and that the insurer’s k, to be 

denoted by kI, is greater than that of the original firm (so that the insurance company is in 

some sense less “risk averse”). It then follows that the insurer’s providing-

coverage/rejecting-coverage boundary—equivalent to the original firm’s 

transfer/avoidance boundary—will be above and parallel to the original firm’s 

pooling/transfer boundary. For a fixed value of a = 1.8, and hypothetical choices of p, k, 

and kI , these two boundaries are illustrated for the Type I, Type II, and Type III cases in 

Figs. 7 through 9, respectively. 

These three risk finance paradigms form the basis for developing a conservative 

paradigm in the following section. 

2.4. Analysis 

2.4.1. Comparisons with the Conventional Paradigm 

A close inspection of Figs. 7 through 9 reveals that the Type I risk finance 

paradigm, with avoidance in the upper-right corner and pooling along the bottom, is most 

similar to the conventional paradigm of Fig. 6. Apart from the replacement of the simple 

                                                           
9 Clearly, these assumptions do not permit the insurance company to provide coverage for the firm’s loss 

portfolio and then transfer this exposure to one or more layers of reinsurance. Exclude this possibility 

because it does not enhance the analysis conceptually, but complicates matters by creating a marginal 

extension of the transfer region (at the expense of the avoidance region) for each layer of reinsurance 

employed. 
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rectangular boundaries of Fig. 6 with the decreasing, concave-upward curves of Fig. 7, 

the most noticeable differences between these two schemes are: (i) that the Type I 

paradigm provides a clearly distinct region for transfer on the right side (i.e., for high 

expected frequencies), between pooling and avoidance; and (ii) that avoidance ultimately 

dominates both transfer and pooling for arbitrarily high expected severities (in the upper-

left corner) and arbitrarily high expected frequencies (in the lower-right corner).10 

Instructively, observations (i) and (ii) directly address problems (1) and (2) of the 

introduction. This is because (ii) indicates the need for an avoidance region above 

transfer for low expected frequencies, and (i) and (ii) both show that the benefits of 

diversification begin to wane for higher expected frequencies, whether expected 

severities are high or low. The explanation for this weakening of diversification is the 

relatively smaller values of a and larger values of p specified by conditions (40) for Type 

I boundary curves. 

 

 

 

                                                           
10 Although the dominance of avoidance for arbitrarily high expected frequencies (in the lower-right corner) 

is not obvious from Fig. 7, it can be shown quite easily by applying conditions (40) to Equation (39). 
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Figure 7. Type I risk finance paradigm. 

Note: Type I regions based upon parameter values a = 1.8, p = 1.9, k = 20, 000, and kI = 40,000. 

 

 

 

 

 

 

 

Figure 8. Type II risk finance paradigm. 

Note: Type II regions based upon parameter values a = 1.8, p = 1.5, k = 100, and kI = 150. 
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Figure 9. Type III risk finance paradigm. 

Note: Type III regions based upon parameter values a = 1.8, p = 1.1, k = 0.4, and kI = 0.5. 

 

Fig. 10 summarizes the relationships among conditions (40)–(42) and the 

corresponding morphologically distinct types of boundary curves (Type I, Type II, and 

Type III, respectively). This figure shows that the Type I boundary curves of Fig. 7 are 

consistent with an apparently conservative set of assumptions in which: (1) the severity 

component of L possesses relatively heavier tails, as reflected in smaller values of a; and 

(2) the firm is particularly sensitive to the uncertainty of L, and so employs a relatively 

larger value of p in its risk measure. By conservative assumptions, this paper means 

suppositions that prepare the firm for worst-case scenarios with regard to the values of a 

and p by erring on the side of  caution—in other words, favoring transfer over pooling 

and avoidance over transfer—if the parameters a and p are known imperfectly. In short, 

such assumptions would imply lower values for all points along each of the boundary 

curves in a paradigm of a given Type (I, II, or III), leading to what one will call a more 

conservative paradigm. 

 



53 
 

 

Figure 10. Regions for morphologically distinct boundary curves. 

 

2.4.2. Toward a Conservative Paradigm 

It is important to recognize that the conservative aspects of the Type I paradigm 

manifest themselves primarily on the right-hand side of Fig. 7. A comparison of the 

upper-left corner of Fig. 7 with the corresponding corners of Figs. 8 and 9 shows that the 

Type I paradigm actually could be the least conservative in that region because it 

entertains the possibility of both transfer and avoidance there, whereas the other 

paradigms specify avoidance alone. 

Of course, the upper-left corner of the risk finance paradigm is precisely the focus 

of this article: the case of catastrophe losses. Therefore, it is imperative to confirm 

analytically which category of boundary curves is truly most conservative in that corner. 

At the same time, one would like to corroborate formally these observations about the 

rest of the paradigm. To this end, one must choose among three approaches to 

constructing a conservative paradigm: (1) addressing worst-case scenarios for a and p 

simultaneously; (2) addressing worst-case scenarios for a first (holding p fixed), and then 
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exploring the effects of changes in p; or (3) addressing worst-case scenarios for p first 

(holding a fixed), and then exploring the effects of changes in a. 

From a theoretical point of view, it might seem that approach (1) is best because it 

immediately considers the truly worst cases possible. However, from the perspective of a 

practicing enterprise risk manager likely to be transitioning from the conventional risk 

finance paradigm of Fig. 6, it is believed that approach (3) is most useful. This is because 

it addresses the rather subjective, difficult-to-measure, and difficult-to-explain risk-

sensitivity parameter before moving on to the more easily estimated and better 

understood severity tail parameter. 

Following this approach, compare the actual values of the ordinates of Equation 

(39) as the parameter p varies in Fig. 10, while holding a, n, and k fixed. This is 

accomplished by computing partial derivatives of E[X] with respect to p along the curves 

described by Equation (39), and noting that: 

(1) if 𝜕E[X] / 𝜕p < 0 for fixed a, n, and k,         (43) 

then the Type I region provides the most conservative (i.e., lowest) boundary 

curves as p→ ∞ because this region occupies the top of Fig. 10; and 

(2) if 𝜕E[X] / 𝜕p > 0 for fixed a, n, and k,          (44) 

then the Type III region provides the most conservative (i.e., lowest) boundary 

curves as p→ 1+ because this region occupies the bottom of Fig. 10. 

As shown in the Appendix, if a ∈ (1, 2), then condition (43) is true for all 

𝑛 > 𝑛∗ = [21/𝑎(𝑎 − 1)/𝑘]𝑎/(𝑎−1)                                   (45) 

whereas condition (44) is true for all 

𝑛 < 𝑛∗ = [21/𝑎(𝑎 − 1)/𝑘]𝑎/(𝑎−1)           (46) 
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Similarly, if a > 2, then Equation (43) is true for all 

𝑛 > 𝑛∗ = 1/[𝑘2(𝑎 − 2)]            (47) 

whereas Equation (44) is true for all 

𝑛 < 𝑛∗ = 1/[𝑘2(𝑎 − 2)]                                 (48) 

Thus, Type III boundary curves are most conservative on the left-hand side of the 

paradigm (including the upper-left corner) as defined for numbers of loss events, n, less 

than some critical number of events, 𝑛∗. Alternatively, Type I boundary curves are most 

conservative on the right-hand side, for n greater than 𝑛∗. 

These observations are illustrated conceptually in Fig. 11, a risk finance paradigm 

for fixed a that captures the conservative features of both the Type I and Type III curves 

by employing schematic piecewise linear functions in the appropriate regions. This paper 

emphasizes that this figure is not intended to yield precise quantitative information, but 

rather to provide a rough, qualitative description of the firm’s risk finance behaviors in 

preparing itself for worst-case scenarios regarding p, for fixed a. In this sense, it is a 

suitable successor to the conventional paradigm of Fig. 6. 
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As can be seen from this figure, the apex of the pooling/transfer boundary (which 

occurs at 𝑛∗, a function of a and k) must lie to the right of the apex of the 

transfer/avoidance boundary (which occurs at  𝑛∗
𝐼 , the same function of a and kI ). This 

is because the value of the firm’s decision threshold, k, is smaller than the insurance 

company’s decision threshold, kI. Hence, the value of kI is crucial to determining whether 

or not coverage will be available in a given catastrophe insurance market, and a 

sufficiently large value of this threshold, ceteris paribus, will cause the new paradigm of 

Fig. 11 to resemble Fig. 6 more closely. 

To study the effects of changes in the tail parameter, a, first note from Equations 

(45) and (46) that, if a ∈ (1, 2), then  𝑛∗ is an increasing function of a whose slope is 

inversely related to k, and that  𝑛∗ → 0+ as a → 1+. In other words, the heavier the tail of 

the severity distribution, the smaller  𝑛∗ will be, and this change occurs faster for firms 

that are more “risk averse.” Both of these effects are rather intuitive because one would 

expect the negative impact of heavy tails on diversification to push  𝑛∗ to the left (i.e., to 

recognize that the decline in diversification benefits begins at a smaller value of n), and it 

seems quite natural that more “risk averse” firms would be more affected by any changes 

in tail heaviness. 

From Equations (47) and (48) one can see that, if a > 2, then  𝑛∗ is a decreasing 

function of a whose slope is positively related to k, and that  𝑛∗ →∞ as a → 2+. In this 

case, the decline in  𝑛∗  over a is somewhat surprising because one would not expect 

heavier severity tails to push  𝑛∗  to the right; in particular, one would not expect  𝑛∗  to 

become unbounded as a → 2+, while remaining finite as a → 2−. Interestingly, the 

disparate behavior on the two sides of a = 2 is an artifact of the Pareto calibration in 
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which the individual severity Xi is Lévy-stable with bounded dispersion θ (but infinite 

standard deviation) as a →2−, but Gaussian with unbounded standard deviation θ/[(a − 

1)(a − 2)1/2] as a → 2+. Consequently, the usefulness of the model for values of a in a 

small neighborhood of 2 requires further study. 

2.5. Conclusions 

For catastrophe losses, the conventional risk finance paradigm identifies transfer, 

as opposed to pooling or avoidance, as the preferred solution. However, using a loss 

portfolio characterized by non-stochastic frequency and a class of Pareto-calibrated 

Lévy-stable severity distributions, it is shown that the conventional analysis does not 

account for differences attributable to either the firm’s intrinsic sensitivity to risk or the 

heaviness of the severity’s tail. To address these shortcomings, a conservative risk 

finance paradigm is proposed that can be used to prepare the firm for worst-case 

scenarios with regard to both risk sensitivity and tail heaviness. 

Naturally, the underlying model is subject to certain limitations. First, the 

assumption of nonstochastic frequency is realistic in only restricted settings, and second, 

the assumption of Pareto-calibrated Lévy-stable severities, while offering a 

mathematically tractable method of exploring the continuum of power-law tails, imposes 

a specific form on the shape of the severity distribution that is not appropriate in all 

cases. 

As a continuous research, various relaxations of the frequency and severity 

assumptions can be placed.  
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This continuous work, as in the Chapter 3 of this thesis, requires extensive 

numerical computation, but offers the potential of greater insight into the general 

applicability of the proposed conservative risk finance paradigm.  
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CHAPTER 3 

A RISK-BASED RISK FINANCE PARADIGM 

3.1. Introduction 

3.1.1. The Conventional Risk Finance Paradigm 

In enterprise risk management (ERM), the portfolio of total losses to which a firm 

is exposed in a given time period may be expressed by the sum 

L = X1 + . . . + XN, 

where N denotes the frequency of loss events (taken as a random variable defined 

on the nonnegative integers), and the Xi are individual severities (taken as positive, real-

valued random variables).  Such portfolios are commonly analyzed within a two-

dimensional space spanned by expected frequency (E[N]) and expected severity (E[Xi]) 

(see, e.g., Zuckerman, 2010), with the most appropriate method of risk finance indicated 

by the placement of L within the matrix of Figure 6. in Chapter 2 (see, e.g., Baranoff et 

al., 2009, p. 96). 

For the case of loss portfolios with low expected severities, the logic behind the 

conventional paradigm is fairly straightforward:  those portfolios with low expected 

frequencies are not very risky, and therefore can be financed as ordinary operational 

expenses; whereas those with high expected frequencies are best handled by pooling 

because they are amenable to risk reduction through diversification.  For the case of loss 
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portfolios with high expected severities, the rationale is somewhat different:  those 

portfolios with low expected frequencies are too risky to be handled by informal or 

formal retention, and must be transferred through insurance or some other hedging 

mechanism; whereas those with high expected frequencies are simply too risky to be 

financed even by transfer, presumably because markets do not exist to accept such risks. 

To enjoy the benefits of diversification, the random variable L must possess (at 

least) two salutary statistical properties:  (1) a high expected frequency (i.e., a large value 

of E[N]); and (2) less than perfect positive correlations between individual severities (i.e., 

Corr[Xi, Xj] < 1 for all i not equal to j).  For portfolios with low expected severities, the 

first of these properties is stated explicitly by the conventional paradigm, and the second 

is implied.  What is left unexplained is why portfolios with high expected severities 

cannot benefit from diversification in the same way as those with low expected severities. 

To resolve this issue, either by explaining the failure of diversification for 

portfolios of high expected severities, or by revising the conventional paradigm to correct 

this inconsistency, requires that one examine statistical properties of L beyond simply the 

expected frequency and expected severity.  Chapter 2 describes a program by explicitly 

considering the impact of the severity distribution’s tail behavior on the benefits of 

diversification.  In the present Chapter, this work is extended by offering a more 

comprehensive analysis of L. 

3.1.2. A Risk-Based Approach 

One characteristic of L not explicitly addressed by the conventional paradigm 

already has been noted:  the less than perfect positive correlations between individual 
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severities.  Ironically, a second unaddressed characteristic is the actual “risk” of L; that is, 

its dispersion or spread, as measured by a quantity such as the standard deviation, 

variance, coefficient of variation, inter-quartile range, etc. 

In exploring the role of dense-tailed11 severities in risk finance, the cosine-based 

standard deviation is employed here, 

CBSD[L] = (1/)cos-1(E[cos((L - ))]), 

where  satisfies E[sin((L - ))] = 0, and  > 0 is a free parameter chosen to 

optimize an information-theoretic criterion.  This quantity extends the ordinary standard 

deviation to distributions for which the second moment is infinite, and for losses from the 

four-parameter Lévy-stable(,,,) distribution12 is written as 

CBSD[L] = cos-1(exp(-1/2)) 21/  (0.9191) 21/, 

which is increasing in the dispersion parameter, , and decreasing in the tail 

parameter, .13 

To identify regions of pooling, transfer, and avoidance in the expected frequency-

by-expected severity plane, it is then computed an extension of the coefficient of 

variation – the ratio  

                                                           
11 By dense-tailed, it means that severities with infinite second moments (or equivalently, infinite standard 

deviations or variances).  The term heavy-tailed is used for the same purpose, and other authors use terms 

such as fat-tailed or long-tailed.  Dense-tailed is preferred here because it emphasizes the fact that a large 

amount of weight (probability) is compressed in the tail of the distribution, and does not suggest that some 

distributions embody more weight than others. 
12 The four parameters may be characterized as follows:    (0,2] is the tail parameter (with smaller values 

of  implying denser tails, and  = 2 in the Gaussian case);   [-1,1] is the skewness parameter (with 

negative [positive] values implying negative [positive] skewness, and  = 0 in the Gaussian case);   (0,) 

is the dispersion parameter (which is proportional to the standard deviation in the Gaussian case – i.e.,  = 

SD[L]/2); and   (-,)
 
is the location parameter (which equals the median if  = 0, and also equals the 

mean if   (1,2] and  = 0, as in the Gaussian case).  This corresponds to the S(,,,;0) 

parameterization of Nolan (2008). 
13 Since this cosine-based standard deviation is affected by the tail parameter, , tail density, along with 

dispersion/spread, will be incorporate into this concept of risk. 
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R[L] = (CBSD[L])
s
/E[L], 

where s is a parameter that reflects how sensitive the enterprise is to risk14 – and 

proposed that pooling [transfer] be selected if R[L] ≤ [>] k and transfer [avoidance] be 

selected if R[L] ≤ [>] kI, for some constants k < kI.  Essentially, this means that enhanced 

benefits of diversification will cause firms to prefer transfer over avoidance in a manner 

analogous to preferring pooling over transfer, a principle that Chapter 2 supported by 

arguing that transfer can occur only if the firm’s insurance company is able to pool the 

risk it assumes, and that the firm must choose avoidance otherwise.  In other words, kI 

captures the insurance company’s risk appetite in the same way that k captures the firm’s 

risk tolerance15. 

3.2. Dense-Tailed Severities 

To assess the impact of the severity tail density on risk, the study in Chapter 2 is 

restricted to the case of total losses with non-stochastic frequency.  In particular, it 

modeled the portfolio of total losses as a sum 

L = X1 + . . . + Xn, 

where n is a positive integer denoting a fixed number of loss events, and the Xi are 

Lévy-stable(,,,) severities whose parameters are calibrated to be asymptotically 

                                                           
14 Specifically, larger values of s ≥ 1 indicate greater sensitivity to risk, so that (CBSD[L])2 and (CBSD[L])1 

are analogous to the ordinary variance and ordinary standard deviation, respectively, with the former being 

an additive risk measure, and the latter a sub-additive risk measure. 
15 Clearly, the parameters s and k are related through the firm’s underlying risk profile, which could be 

summarized in its entirety by a utility function in an expected-utility framework. The principal distinction 

between the two quantities is that the former identifies the aspect of L’s probability distribution that the 

firm finds most relevant in assessing risk, whereas the latter measures the degree to which the firm is able 

to bear the risk assessed. 
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equivalent to those arising from a two-parameter Pareto distribution (see, e.g., Zaliapin et 

al., 2005).  In this way, L can be treated as a Lévy-stable random variable for all positive 

integers n, and thus can be used to explore the impact of both severity tail density and 

increasing frequency on the benefits of diversification. 

In the previous chapter, it is shown that the boundary between the regions of 

pooling and transfer – as well as that between the regions of transfer and avoidance – 

always takes on one of three distinct shapes in the expected frequency-by-expected 

severity plane:  (I) decreasing and concave upward; (II) increasing and concave 

downward; and (III) increasing and concave upward.  Furthermore, the shape of the 

boundary curve is determined entirely by the pair of parameters  and s, with:  Type I for 

s >  and   (1,2) or s > 2 and  > 2; Type II for s  (2/(1+),) and   (1,2) or s  

(4/3,2) and  > 2; and Type III for s  (1,2/(1+)) and   (1,2) or s  (1,4/3) and       

 > 2. 

Roughly speaking, these results show that for a fixed level of s, the benefits of 

diversification tend to decrease as  decreases (i.e., as the severity tail becomes denser), 

whereas for a fixed level of , the benefits of diversification tend to decrease as s 

increases (i.e., as the firm becomes more sensitive to risk).  These results can be 

illustrated schematically using the diagram in Figure 11 in Chapter 2. 

This paradigm is conservative in recognizing that (1) the benefits of 

diversification tend to increase over n, but that (2) for smaller values of , these benefits 

actually can diminish over n if the value of s is sufficiently large.  Since the expected 

frequency-by-expected severity plane is not sufficiently detailed to distinguish between 

smaller and larger values of , it follows that a cautious firm should anticipate the 
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possibility of more transfer and avoidance for very large values of n.  Instructively, the 

apex of the pooling/transfer boundary (at n = n*) must occur to the right of the apex of the 

transfer/avoidance boundary (at n = n*
I) because the value of the firm’s parameter k is 

smaller than the insurance company’s parameter k I. 

3.3. Erratic Frequencies 

In this section, consider the risk associated with the stochastic frequency, N.  

Returning to the original model, 

L = X1 + . . . + XN, 

The following research studies the impact of the variability of N on the risk 

measure R[L], and consequently on the pooling, transfer, and avoidance regions of the 

firm’s risk finance paradigm. 

A simple starting point is to let N be a Poisson random variable with mean  > 0.  

Joining this assumption to Chapter 2’s Pareto-calibrated Lévy-stable severities, it is 

possible to compute – by statistical simulation – pooling/transfer and transfer/avoidance 

boundary curves for values of the parameters  and s in each of the ranges associated 

with Type I, Type II, and Type III curves, respectively. 

As shown in Figures 12, 13, and 14, these simulated boundaries are identical in 

shape (i.e., direction and curvature) to those computed analytically in Chapter 2 for non-

stochastic n.  Thus, although the actual numerical values of the simulated curves are 

somewhat lower than the corresponding values in the non-stochastic case (to account for 

the variability introduced by the random frequency), it is found that the Poisson 
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distribution is sufficiently “well behaved” to maintain the same general paradigm in the 

expected frequency-by-expected severity plane. 
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Figure 12. Type I Boundary Curves (Poisson N) 

12a. Dense-Tailed Case 

( = 1.5, s = 1.6, k = 215) 

 

 

 
12b. Light-Tailed Case 

( = 2.5, s = 2.1, k = 30,000) 
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Figure 13. Type II Boundary Curves (Poisson N) 

13a.  Dense-Tailed Case 

( = 1.5, s = 1.4, k = 21) 

 

 

 
 

 
13b. Light-Tailed Case 

( = 2.5, s = 1.4, k = 10) 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500 600 700 800 900 1000

Expected Severity

Expected Frequency

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500 600 700 800 900 1000

Expected Severity

Expected Frequency



68 
 

 
 

Figure 14. Type III Boundary Curves (Poisson N) 

14a. Dense-Tailed Case 

( = 1.5, s = 1.1, k = 0.38) 

 

 

 

 

 
 

14b. Light-Tailed Case 

( = 2.5, s = 1.25, k = 1.2) 
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This moderately surprising result leads to a fundamental question:  Are there 

other, non-Poisson, frequency distributions that are sufficiently erratic to cause 

significant deviations in the shapes of the pooling/transfer and transfer/avoidance 

boundary curves?  Interestingly, it is not difficult to show that this question may be 

answered in the affirmative, and that the coefficient of variation of N, CV[N] = 

SD[N]/E[N], plays a critical role in determining just how “badly behaved” a particular 

distribution is. 

Given that dense-tailed frequency distributions rarely appear in ERM applications, 

it is reasonable to assume that both the standard deviation and variance of N are finite.  

Making a similar assumption for the severities, Xi, CBSD[L] can be replaced in the 

preceding expression for the risk measure R[L], and work with the simpler quantity, 

R[L] = (SD[L])
s
/E[L]. 

Writing both E[L] and SD[L] in terms of the more fundamental parameters E[N], 

SD[N], E[Xi], and SD[Xi], it is fairly straightforward to show that, as the expected 

frequency, E[N], increases to infinity, so does the quantity R[L], unless the following 

three conditions hold:  (1) s  (1,2]; (2) CV[N] converges to 0; and (3) (SD[N])
s
/E[N] 

converges to a finite number. 

Having restricted attention to light-tailed severities, the three conditions in each of 

Figures 12b, 13b, and 14b can be checked, and verified that they are satisfied only in the 

last two (because s = 2.1 in 12b).  Since a finite [infinite] value of R[L] corresponds to an 

increasing [decreasing] boundary curve, it follows that the curves in 13b and 14b must be 

increasing, whereas the curve in 12b must be decreasing, exactly as plotted.  

Furthermore, it is trivial to show that conditions (1) through (3) hold for the parameter 
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values of 13b and 14b, but not 12b, in the case of non-stochastic n, explaining why 

Poisson N and non-stochastic n yield the same results. 

To identify a random frequency whose behavior deviates from the non-stochastic 

case requires that it is found that either CV[N] converging to something greater than 0, or 

(SD[N])
s
/E[N] diverging to infinity.  Since the first of these conditions implies the 

second, but the second does not imply the first, it follows that N must be chosen so that 

CV[N] > 0 in the limit.  Given this level of erratic behavior, R[L] must increase to infinity 

as does E[N], and so there can be no Type II or Type III boundary curves. 

3.4. Conclusions 

From the preceding analyses, one can see that there are four distinct properties of 

a loss portfolio, L, that enhance the benefits of diversification:  (1) a high expected 

frequency; and (2) less than perfect positive correlations between individual severities; 

(3) light-tailed severities; and (4) a predictable (i.e., non-erratic) frequency.  A fifth 

consideration – the firm’s sensitivity to risk, s – is also important, but is not a 

characteristic of the loss portfolio itself. 

To capture all of these properties in a single risk finance paradigm, one must 

depart from the simple expected frequency-by-expected severity plane.  As an alternative, 

the circular risk finance paradigm of Figure 15 is proposed, which divides the four 

separate properties above neatly into two frequency dimensions:  Predictable  Erratic 
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and High  Low; and two severity dimensions:  Independent  Associated16 and Light-

tailed  Dense-tailed. 

 

 

Figure 15.  Risk-Based Risk Finance Paradigm 

 

As can be seen from this figure, the loss portfolios that are most appropriately 

pooled are those with both predictable and high frequencies, as well as both independent 

and light-tailed severities, as indicated by the green zone at the center of this paradigm.   

                                                           
16 associated rather than positively correlated is used as the antinome of independent because statistical 

correlations are not well defined for dense-tailed severities. 
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Any deviation from one or more of these four characteristics will make pooling 

less appropriate, and thus require hedging through insurance, as indicated by the yellow 

zone, or possibly even avoidance, as indicated by the worst-case red zone. 
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APPENDIX A 

PROOF OF CHAPTER 1 

Proof of Lemma 1  

With compensation scheme: 
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Virtual surplus can be described as the following maximization problem: 
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Therefore equilibrium *  can be solve by taking first order derivative of the 

above equation as: 
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Proof of proposition 1: 

From equation (3) and equation (5), insurer’s net profit when he is underwriting 

the business itself can be written as: 

   22
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So the insurer’s problem becomes: 

   22

ˆ,ˆ

)ˆ(ˆ1)(ˆ)1()1(ˆ)(maxarg, I

HH

I

H

I

LH

I

LHLH

I

LHL

I

HLHH
qq

I

H

I

L qcqcqqqq
I
H

I
L

   (A13)

 

Taking first order differentiation with respect to
I

Lq̂ and
I

Hq̂ the optimal value of I

Lq

and I

Hq  can be obtained as: 
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It can be shown that 
I

Hq  and 
I

Lq  are indeed the maximum value, following same 

procedure as in Lemma 1. 

Plug 
I

Hq  and 
I

Lq  back to (A12), insurer’s net profit when he underwrites by 

himself can be obtained as: 
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Therefore, the condition when insurer should underwrite by himself and has 

positive net profit is: 
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Proof of Lemma 2: 

Insurer’s net profit when uses independent underwriter can be obtained by 

plugging equilibrium *  into equation (A6)  
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as:   
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(A17) 

Therefore, the benefit from using independent underwriter can be represented by 

the difference between (A17) and (A15)

 










































)(
4

1
)1(

4

1
)(

1
)1(

1
)(

)(
)(

4

1
)1(

4

1
)(

2

1

2222

2222

22

2222

LHHI

L

LI

H

LH

L

L

H

LH

LHH
LHH

L

L

H

LH

cc

cc

cc

mself)writing hiofit(underwriter)-Prdent underng indepenProfit(usi








       (A18) 

Rewrite (A18), the Profit Margin can be written as a cleaner format: 
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Proof of Proposition 2 

Take first order derivative with respect to 
I

Hc and 
I

Lc about profit margin (A19), it 

can be obtained that: 
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Take first order derivative with respect to Hc about profit margin (A19), it can be 

obtained that: 
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Since the optimal commissions loading 
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Therefore, substituting 22222 ]
2

1
)1(

2

1
)([

L

L

H

LH
cc

   with
2*

22

)12(

)(







 LHH ,  

2*

**

22222

22

2

22

)12(

)1(4

]
2

1
)1(

2

1
)([

)(
2

1
)(

4

1

MarginProfit 






















L

L

H

LH

LHH

H

LH

H

cc

c

c

                       (A24) 

All terms are non-negative except for )1(4 **  . Since the commissions 

loading *  is strictly less than 1, )1(4 **   should be strictly negative. 
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Therefore, 0
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
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
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Proof of 0
MarginProfit 


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Lc
 follows the same procedure.  

Proof of Proposition 3 

Take first order derivative with respect to H of equation (A19): 
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Since the optimal commissions loading 
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It follows that  
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Proof of Proposition 4 

Take first order derivative with respect to )( LH   on (A19) get: 
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Plug in (A26), it follows that  *
)(

MarginProfit 
H

LH







   

Proof of Proposition 5 

Assume insurer has the same cost function Hc and Lc as the independent 

underwriter, then the profit margin (A19) can be rewritten as: 
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(A28) 

Following proposition 1, if
LLHLHLHH cc 4/)1(4/)()(

2222   , it 

is unprofitable for insurer to underwrite by himself. 

Therefore, plug
LLHLHLHH cc 4/)1(4/)()(

2222    into the profit 

margin given by (A28), after some algebra, the lower boundary of the profit margin can 

be written as:  
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Proof of proposition 6 

If the profit margin of using independent underwriter (assuming the insurer and 

the independent underwriter have the same underwriting costs) is negative, then the 

insurer will not use independent underwriter. Otherwise, the insurer will choose to use 

independent underwriter.  

Substituting LLHLH cc /)1(/)(
2222   with )5.0/()( *   LHH  

in (A28), it follows that  
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Proof of Proposition 7 

[IR] constraint is: 

    0ˆˆ1)(ˆ)1()1(ˆ)(
2222
 HHHLHLHLHLHLHLHH qcqcqq  (A31) 

Plug in )]1(2/[])1([ HLLL cq   , and ]/2/[)]([ HHLHH cq   , [IR] constraint 

can be re-written as: 
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Replacing relative terms with (A26), [IR] constraint can be further simplified as: 
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It then follows that if risk factor 0)(  LH  , then 0][ IR  iff

0)24)(32(   ; if risk factor 0)(  LH  , then 0][ IR  iff 0)24)(32(   . 

Therefore, [IR] constraint can be written as: 
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Proof of Proposition 8 

It follows directly by taking differentiation of 
*

Lq  (A10) and 
*

Hq (A11), with 

respect to )( LHH   . 

Proof of Proposition 9 

It follows directly from equation (A7) 

Proof of Proposition 10 

It follows directly by differentiating 
  at (A7) with respect to )( LH   . 

Proof of Proposition 11 
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Therefore, when 0 LH  , 0/  

Hc ; otherwise 0/  

Hc      
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Therefore, when 0 LH  , 0/  

Lc ; otherwise, 0/  

Lc  

Proof of Proposition 12 

Profitα)0= α= α(1(loss)Profit+Pr)(1- α(win)payoff=Prexpected Insurer's  (A37) 

Take first order derivative with respect to α: 

FOC ( ):     1-2 =0;                                                                                      (A38) 

SOC ( ):     -2< 0; so  =1/2 is indeed maximizes the function.                   (A39) 

Therefore, insurer's best response bid will be  =1/2.                 

Proof of Lemma 3 

For each period t>=2, independent underwriter's optimum underwriting accuracy 

complies with (α=1/2): 
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Take first order derivative with respect to Ltq̂ and Htq̂ it can be obtained that: 
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Take second order derivative with respect to Ltq̂ and Htq̂  get:
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Therefore, Ltq̂ and Htq̂  indeed maximize (A40). 

Plug Ltq̂ and Htq̂ into insurer's payoff and following some algebra, insurer's payoff 

for each period t>=2 can be written as: 
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Therefore, insurer’s total payoff when he uses independent underwriter is 
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Insurer's total payoff when he underwriters by himself can be written as: 
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Subtracting insurer's total profit from underwriting by himself from insurer's total 

profit from using independent underwriter, total profit margin from using independent 

underwriter can be written as: 
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Proof of Proposition 13 
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Total profit margin will decrease with contract period t if and only if when the 

following term is positive:  
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Since the total profit margin (A47) can be rewritten as: 
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The second term of (A50) comes from period 1, so the following substitution can 

be made: 
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It then follows that:  
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So when 0 LH  , [IR] requires: 
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Since 0 LH  in this case, 0)(12/1  LHH  . 

For (A51) to hold, it requires 0)(12/1)49(  LHHA   

For both cases, (A49) need to be positive. Therefore, (A48) should be negative.  

Therefore, total profit margin should be negatively related with the length of 

contract period t.  

Proof of Proposition 14 
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For multi-period contract, 10)1(  tbecauset  

Therefore, 0
)1/1(


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MarginProfitTotal  because the term (A49) is positive.  
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APPENDIX B 

PROOF OF CHAPTER 2 

PART 1: DERIVATION OF CONDITIONS (45) AND (46): 

From Equation (39), set 𝐸[𝑋] = 𝑘−1/(1−𝑝)2𝑝/𝑎(1−𝑝)(𝑎 − 1)𝑝/(1−𝑝)𝑛(𝑝−𝑎)/𝑎(1−𝑝) 

for 𝑎 ∈(1, 2). It then follows that: 

𝜕

𝜕𝑝
[𝑘−1/(1−𝑝)2𝑝/𝑎(1−𝑝)(𝑎 − 1)𝑝/(1−𝑝)𝑛(𝑝−𝑎)/𝑎(1−𝑝)] 

=
𝜕

𝜕𝑝
{𝑘−1/(1−𝑝)[21/𝑎(𝑎 − 1)]𝑝/(1−𝑝)𝑛(𝑝−𝑎)/𝑎(1−𝑝)} 

=
𝜕

𝜕𝑝
[𝑘−1/(1−𝑝)][21/𝑎(𝑎 − 1)]𝑝/(1−𝑝)𝑛(𝑝−𝑎)/𝑎(1−𝑝) 

+𝑘−1/(1−𝑝)
𝜕

𝜕𝑝
{[21/𝑎(𝑎 − 1)]𝑝/(1−𝑝)}𝑛(𝑝−𝑎)/𝑎(1−𝑝) 

+𝑘−1/(1−𝑝)[21/𝑎(𝑎 − 1)]𝑝/(1−𝑝)
𝜕

𝜕𝑝
[𝑛(𝑝−𝑎)/𝑎(1−𝑝)] 

= 𝑘−1/(1−𝑝) [−
𝑙𝑛(𝑘)

(1 − 𝑝)2
] × [21/𝑎(𝑎 − 1)]𝑝/(1−𝑝)𝑛(𝑝−𝑎)/𝑎(1−𝑝) 

+𝑘−1/(1−𝑝)[21/𝑎(𝑎 − 1)]𝑝/(1−𝑝) × [
𝑙𝑛(21/𝑎(𝑎 − 1))

(1 − 𝑝)2
] 𝑛(𝑝−𝑎)/𝑎(1−𝑝) 

+𝑘−1/(1−𝑝)[21/𝑎(𝑎 − 1)]𝑝/(1−𝑝)𝑛(𝑝−𝑎)/𝑎(1−𝑝) × [−
𝑙𝑛(𝑛)(𝑎 − 1))

(1 − 𝑝)2𝑎
] 

= [
𝑘−1/(1−𝑝)

(1 − 𝑝)2
] [21/𝑎(𝑎 − 1)]𝑝/(1−𝑝)𝑛(𝑝−𝑎)/𝑎(1−𝑝) 
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× 𝑙𝑛(21/𝑎(𝑎 − 1)/[𝑘𝑛(𝑎−1)/𝑎]), 

 

which is negative for 𝑛 > [21/𝑎(𝑎 − 1)/𝑘]𝑎/(𝑎−1) and positive for 𝑛 <

[21/𝑎(𝑎 − 1)/𝑘]𝑎/(𝑎−1) 

PART 2: DERIVATION OF CONDITIONS (47) AND (48): 

From Equation (39), set 𝐸[𝑋] = 𝑘−1/(1−𝑝)(𝑎 − 2)−𝑝/2(1−𝑝)𝑛(𝑝−2)/2(1−𝑝) for 𝑎 >

2. 

It then follows that: 

𝜕

𝜕𝑝
[𝑘−1/(1−𝑝)(𝑎 − 2)−𝑝/2(1−𝑝)𝑛(𝑝−2)/2(1−𝑝)] 

=
𝜕

𝜕𝑝
[𝑘−1/(1−𝑝)](𝑎 − 2)−𝑝/2(1−𝑝)𝑛(𝑝−2)/2(1−𝑝) 

+𝑘−1/(1−𝑝)
𝜕

𝜕𝑝
[(𝑎 − 2)−𝑝/2(1−𝑝)]𝑛(𝑝−2)/2(1−𝑝) 

+𝑘−1/(1−𝑝)(𝑎 − 2)−𝑝/2(1−𝑝)
𝜕

𝜕𝑝
[𝑛(𝑝−2)/2(1−𝑝)] 

= 𝑘−1/(1−𝑝) [−
𝑙𝑛(𝑘)

(1 − 𝑝)2
] (𝑎 − 2)−𝑝/2(1−𝑝)𝑛(𝑝−2)/2(1−𝑝) 

+𝑘−1/(1−𝑝)(𝑎 − 2)−𝑝/2(1−𝑝) [−
𝑙𝑛(𝑎 − 2)

2(1 − 𝑝)2
] 𝑛(𝑝−2)/2(1−𝑝) 

+𝑘−1/(1−𝑝)(𝑎 − 2)−𝑝/2(1−𝑝)𝑛(𝑝−2)/2(1−𝑝) [−
𝑙𝑛(𝑛)

2(1 − 𝑝)2
] 

= [
𝑘−1/(1−𝑝)

(1 − 𝑝)2
] (𝑎 − 2)−𝑝/2(1−𝑝)𝑛(𝑝−2)/2(1−𝑝) 

× 𝑙𝑛(1/[𝑘(𝑎 − 2)1/2𝑛1/2]) 

which is negative for 𝑛 > 1/[𝑘2(𝑎 − 2)] and positive for 𝑛 < 1/[𝑘2(𝑎 − 2)]  


