
BEYOND LOCAL NEIGHBORHOODS: LEVERAGING                                
INFORMATIVE NODES FOR IMPROVED GRAPH                                                     

NEURAL NETWORKS PERFORMANCE 
 
 
 
 
 

A Dissertation 
Submitted to 

the Temple University Graduate Board 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

DOCTOR OF PHILOSOPHY 
 
 
 
 
 
 

by 
                                                  Peiyu Liang 

December 2024 
 
 
 
Examining Committee Members: 
 
Xubin He, Advisory Chair, Computer and Information Sciences 
Yu Wang, Computer and Information Sciences 
Hongchang Gao, Computer and Information Sciences 
Zhigen Zhao, External Reader, Statistics, Operations and Data Science 

 

 



ii

©
Copyright

2024

by

Peiyu Liang

All Rights Reserved



iii

ABSTRACT

Many real-world datasets, such as those from social and scientific domains, can

be represented as graphs, where entities are depicted as nodes and their relationships

as edges. To analyze the properties of individual entities (node classification) or the

community as a whole (graph classification), graph neural networks (GNNs) serve

as a powerful tool. Most GNNs utilize a message-passing scheme to aggregate in-

formation from neighboring nodes. This localized aggregation allows the network to

learn representations that incorporate the context of each node, thereby enhancing

its ability to capture complex local structures and relationships.

Despite their success, many GNNs heavily rely on local 1-hop neighborhood in-

formation and a stacked architecture of K layers. This dependency can result in

poor handling of long-range dependencies and lead to issues like information over-

squashing. Consequently, there is a pressing need for advanced methodologies that

can systematically aggregate more informative nodes beyond the default graph struc-

ture to achieve more accurate classification results.

In this thesis, we highlight the challenges of information over-squashing and the

limited capacity of existing GNNs to capture long-range dependencies, focusing on

addressing these issues through innovative informative node selection and end-to-end

learning strategy using three approaches. Our first approach, Two-view GNNs with

adaptive view-wise structure learning strategy, posits that more informative nodes

should have proximal node representations within a graph structure constructed on

such attributes. We reconstruct a new graph structure based on the proximity of

node representations and simultaneously learn a graph object from both the newly

constructed and default graph structures for relationship reasoning. Additionally, we

employ an adaptive strategy that learns inter-structure relationships based on classi-

fier performance. While this approach achieves more accurate classifications, it is still

limited by relying on a single or two graph structures. Our second approach, Cauchy-

smoothing GCN (CauchyGCN), utilizes the default graph structure but regards more

informative nodes as those closely embedded in the embedding space. CauchyGCN
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develops a new layer-wise message-passing scheme that follows the properties of the

Cauchy distribution, preserving smoothness between closely embedded nodes while

penalizing distant 1-hop neighbors less severely. This approach shows competitive

results compared to other advancements. From our first two approaches, we observe

that (1) Understanding the graph requires learning from multiple perspectives, and

informative nodes could reside beyond the default graph structure. (2) Preserving

smoothness among informative nodes is beneficial for e↵ective learning. Our third

approach, Topological-induced Graph Transformer (TOPGT), defines the additional

useful graph structures as topological structures and leverages a self-attention mech-

anism to assess the importance of closely embedded nodes. This approach achieves

state-of-the-art performance compared to existing methods in the domain.

Finally, we summarize our contributions through the three approaches that ad-

dress the challenges that this thesis highlights. Additionally, I discuss potential future

work to explore and utilize informative node information beyond local neighborhoods,

aiming to develop large pre-trained GNNs capable of tackling various downstream

tasks across di↵erent domains.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Graphs, which consist of nodes representing entities and edges representing re-

lationships, are fundamental structures in various real-world domains. Researchers

have explored a range of machine learning and deep learning techniques to address

tasks such as node classification (classifying individual entities within a large net-

work) and graph classification (classifying entire graph communities). Among these

techniques, graph neural networks (GNNs) have emerged as a highly e↵ective tool for

graph learning, demonstrating exceptional performance across diverse applications.

These include recommendation systems [1], social networks [2], chemistry [3], trans-

portation [4], computer vision [5], and natural language processing [6]. Figure 1.1

illustrates examples of these applications 1.

Figure 1.1.: Application examples of graph neural networks 1.

Like other deep learning architectures, such as recurrent neural networks (RNNs)

and convolutional neural networks (CNNs), GNNs incorporate essential elements like

linear layers, residual connections, activation functions, and dropout to enhance their

1https://medium.com/@bscarleth.gtz/introduction-to-graph-neural-networks-an-illustrated-guide-
c3f19da2ba39



2

training processes. However, GNNs stand out in the realm of graph learning due to

their unique graph convolutional layers, which enable them to e↵ectively leverage the

underlying graph structure to model both input and output data. The core function-

ality of graph convolutional layers in GNNs revolves around two primary components.

First, they employ a structural message-passing scheme that computes node repre-

sentations by aggregating information from neighboring nodes within the local 1-hop

neighborhood. This approach allows GNNs to capture the immediate context of each

node, providing a rich representation that reflects local interactions and relationships.

Second, GNNs typically consist of a stack of K layers, which enables the aggregation

of information not just from direct neighbors but also from nodes that are up to K

hops away. This multi-hop aggregation significantly enhances the expressivity of the

network, allowing it to model more complex dependencies and interactions across the

graph. By connecting nodes that are further apart, GNNs facilitate a broader commu-

nication mechanism, enabling the capture of long-range dependencies that are crucial

for tasks such as graph classification and node classification. In addition to these core

components, GNNs also integrate various techniques to improve performance and ro-

bustness. For example, normalization layers are often included to stabilize training,

while dropout layers help prevent overfitting by randomly deactivating a subset of

neurons during training.

One of the significant limitations of GNNs is their strong inductive bias towards

the underlying graph structure. This bias necessitates that all nodes learn exclusively

from theirK-hop neighbors, often neglecting the unique attributes of individual nodes

and the consistency of labels. As a result, GNNs can struggle to capture essential

relationships, particularly in cases where information from nodes more than one hop

away is required. In large-scale graph scenarios, this challenge is exacerbated, making

it di�cult for GNNs to e↵ectively model long-range dependencies. Moreover, as K

increases, GNNs can face issues related to over-smoothing. This phenomenon occurs

when the number of layers K exceeds the graph’s radius, leading to increasingly ho-

mogeneous node representations. In such cases, nodes that may belong to distinct

classes can become indistinguishable, as their features converge towards similar val-
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ues. This problem is illustrated in Figure 1.2, where nodes are fully interconnected

yet belong to di↵erent classes—represented by distinct colors such as red, blue, and

yellow. With a graph radius of 3 and the application of 4-layer graph convolutions,

the nodes in this example exemplify how over-smoothing can render them nearly

indistinguishable. As the layers deepen, the nuanced di↵erences in node features di-

minish, making it challenging for the model to di↵erentiate between classes. This

convergence undermines the model’s ability to e↵ectively enrich node representations

thus limiting its performance in various downstream tasks, such as node classification

and graph classification.

Figure 1.2.: Illustration of over-smoothing problem in graph neural networks.

Addressing these issues is critical for advancing the capabilities of GNNs. Exist-

ing work is exploring various strategies, including the integration of attention mech-

anisms, which allow models to weigh the importance of di↵erent neighbors and pri-

oritize relevant information [7]. Additionally, incorporating techniques for enhancing

representation diversity and exploring innovative architectures that break away from

traditional layer stacking can help mitigate the e↵ects of over-smoothing and im-

prove the capture of long-range dependencies [8, 9]. By refining the design of GNNs

to reduce the impact of these limitations, one can enhance their applicability and

e↵ectiveness across a broader range of complex graph-based tasks.
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1.2 Motivation

While GNNs have demonstrated considerable e↵ectiveness in various tasks, many

existing methods still heavily depend on the original properties of the graph, which

can constrain their expressiveness. On one hand, the connectivity patterns derived

from the original graph reflect factual relationships among entities, but this structure

does not guarantee labeling consistency among all connected nodes. As GNNs oper-

ate, the graph convolutional layers project nodes with similar proximities into a shared

embedding space based on information from their neighbors. In scenarios where nodes

are sparsely connected and possess di↵erent class labels, this approach can lead to

the transfer of noisy or misleading information, ultimately resulting in incorrect clas-

sifications. On the other hand, graphs are inherently rich in higher-order structures

and diverse connection patterns that may not be fully captured by the original graph

topology. Relying exclusively on these properties limits the ability of GNNs to un-

cover the intrinsic characteristics of the data. For instance, reconsidering the graph

structure to connect nodes based on their input similarity rather than merely their

factual relationships could enhance the model’s performance. This perspective shifts

the focus from a purely structural representation to a more nuanced understanding of

the relationships between entities. Recent advancements have highlighted the value

of identifying recurring and significant neighboring patterns for better graph learn-

ing. By recognizing these patterns, GNNs can better adapt their learning processes,

allowing for more informed aggregation of features from relevant nodes. Additionally,

the exploration of topological features provides insights into higher-order connectivity

patterns at both the node and subgraph levels. This exploration can unveil complex

interactions that go beyond immediate neighbors, enhancing the model’s capacity to

capture the multifaceted nature of graph data. Furthermore, incorporating techniques

such as attention mechanisms or dynamic graph restructuring can enable GNNs to

prioritize and adaptively focus on the most informative connections, thus mitigating

the limitations imposed by the original graph structure. By leveraging these advanced

methodologies, GNNs can achieve a more e↵ective and robust representation of the
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underlying data, ultimately leading to improved performance in a variety of appli-

cations, from social network analysis to drug discovery. The ongoing exploration of

these dimensions in graph learning is crucial for unlocking the full potential of GNNs

and expanding their applicability across diverse domains.

1.3 Contribution

In this thesis, we propose three novel approaches that aim to explore and leverage

informative features from nodes beyond the local 1-hop neighbors. These methods are

designed to enhance the expressiveness of GNNs for classification tasks, encompass-

ing both node-level and graph-level classifications. Figure 1.3 provides a high-level

overview of our three approaches aim at addressing the structural bias of the graph

(i.e., message passing beyond neighbors of one hop) in GNNs.

Figure 1.3.: High-level overview of our three approaches.
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The contribution of these three approaches can be summarized as follows.

1. Adaptive Structure Learning (ASL) aims at graph learning by leveraging dif-

ferent connectivity patterns. ASL considers both the original graph structure

and the node proximity-augmented structures to extract additional informative

features from intrinsically proximal nodes that are not limited to 1-hop con-

nections. This approach optimizes the capabilities of two-view GNNs in graph

classification tasks while also capturing the inter-view relationships through a

novel adaptive view-wise structure learning strategy.

2. Cauchy-smoothing-based graph convolutional network (CauchyGCN) aims at

graph learning by focusing on closely embedded and mutually connected nodes

in the embedding space, extending beyond just 1-hop neighbors. It also relaxes

penalties for distant nodes that lack proximity in the embedding space. This

approach balances local and global smoothness preservation through a novel

Cauchy-smoothing message-passing scheme, thereby enhancing the performance

of message-passing GNNs in node classification tasks.

3. Topology-induced Graph Transformer (TOPGT) focuses on graph learning by

enabling every node to attend to all other nodes over the graph using learnable

attention weights through a self-attention mechanism, e↵ectively breaking away

from the original graph structure. This approach enhances the attention be-

tween nodes by taking into account not only their node features and subgraph

structures but also their higher-order topological features. As a result, TOPGT

achieves state-of-the-art performance in graph classification tasks.

1.4 Synopsis of the Thesis

Throughout this thesis, we focus on discussing the expressive limitations of GNNs

related to the inductive bias of the graph structure. We present three approaches

to address this issue by exploring informative features extending beyond local 1-hop

neighbors. This thesis is organized as follows.
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Chapter 2 provides an overview of background and related work. In this section,

Section 2.1 presents useful graph notations relevant to graph learning. Section 2.2

introduces two key graph-related tasks that are the primary focus of the methods

discussed in this thesis. Section 2.3 describes the evolution of GNNs from convo-

lutional neural networks, highlighting the initial categorization of these approaches.

Section 2.4 discusses one of the pivotal paradigms in GNNs: message-passing-based

GNNs. Finally, Section 2.5 covers one of the most recent paradigms that e↵ectively

addresses the major limitations of traditional GNNs.

In Chapter 3, we present our Adaptive Structure Learning (ASL) approach within

the framework of two-view GNNs. Section 3.1 outlines the scope of this approach,

discusses the existing challenges in two-view GNNs, and highlights our contributions.

Section 3.2 reviews related work in multi-view GNNs and the techniques on which our

approach is based. Section 3.3 details our adaptive structure learning strategy that

aims to improve graph classification through augmented graph structures. Section 3.4

presents a comprehensive empirical study, comparing our methods with state-of-the-

art approaches in graph classification performance, method analysis, and ablation

studies. Finally, Section 3.5 summarizes the contributions and achievements of this

approach.

In Chapter 4, we introduce our Cauchy-smoothing-based GCN (CauchyGCN) ap-

proach within the framework of message-passing GNNs. Section 4.1 outlines the

scope of this approach, discusses the major limitations in the field, and highlights

our contributions. Section 4.2 reviews Laplacian smoothing-based GNNs, focusing

on their layer-wise propagation rules, message-passing schemes, and advancements

in the domain. Section 4.3 details our methodology, including the motivation to

leverage the Cauchy distribution as a theoretical basis. We propose a novel Cauchy-

smoothing-based message-passing scheme that enhances local smoothness while ad-

dressing challenges present in Laplacian smoothing. Additionally, we introduce a

clustering analysis to improve global smoothness for model optimization. Section 4.4

presents a comprehensive empirical study that compares our methods with state-of-

the-art approaches in terms of node classification performance, robustness analysis,
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and propagation depth analysis. Finally, Section 4.5 summarizes the contributions

and achievements of this approach.

In Chapter 5, we present our Topology-induced Graph Transformer (TOPGT) ap-

proach. Section 5.1 addresses the limitations of existing graph transformers, outlines

the motivation behind our approach, and highlights our contributions to the field.

Section 5.2 reviews topological data analysis, introducing relevant notations used in

graph learning and advancements in graph transformers. In Section 5.3, we detail

our novel topology-induced graph transformer, discussing the process of extracting

topological information, our topology-induced structural encoding strategy, and the

topology-aware self-attention mechanism. Section 5.4 presents a comprehensive em-

pirical study comparing our methods with traditional GNNs and the latest graph

transformers in terms of graph classification performance. We also conduct ablation

studies on all components of our methods and analyze their robustness under edge

attacks. Finally, Section 5.5 summarizes the contributions and achievements of this

approach.

Lastly, we conclude our research and list future research in Chapter 6.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Graph Notation

An attributed graph can be represented as G = (V , E), where V = {vi : i =

1, . . . , |V|} is a node set and E ✓ V ⇥ V is an edge set. We use N = |V| to denote

the size of the node set. In our study, we consider a node feature matrix X =

[x1, . . . , xN ] 2 RN⇥f0 , where xi 2 R1⇥f0 is the f0-dimensional feature vector for each

node vi. The edges between nodes are captured by an N⇥N non-negative symmetric

adjacency matrix A with entries {aij}1i,jN , such that aij = aji = 1 if (vi, vj) 2 E ,

and aij = aji = 0, otherwise. When considering the adjacency matrix with a self-loop

e↵ect, we denote it as Ã = A + I, with entries {ãij}1i,jN , where I is an identity

matrix of size N . A diagonal degree matrix D̃ = diag(d̃1, . . . , d̃N) is based on Ã, where

d̃i =
P

j
ãij. Laplacian matrix L = I � A is an important component of GNNs from

the spectral domain, which we will describe later. A normalized Laplacian matrix

that represents the graph G can be written to L̃ = I � ˆ̃A, where ˆ̃A = D̃
� 1

2 ÃD̃� 1
2

is the normalized adjacency matrix with entries {ˆ̃aij}1i,jN . Moreover, we use Ni

to indicate a 1-hop neighboring node set of the center node vi. It is important to

note that this neighborhood definition is permutation invariant, meaning it remains

unchanged regardless of the order of nodes in the graph.

2.2 Graph-related Tasks

Given an attributed graph G = (V , E), there are various downstream tasks, includ-

ing classification and regression at the node, edge, and graph levels. Each of these

tasks leverages the attribute information inherent in graphs using di↵erent learn-

ing strategies. In this thesis, we focus specifically on node and graph classification.

Both tasks significantly benefit from the relational information encoded within graph

structures and node features. GNNs excel at capturing complex dependencies and

interactions, leveraging the interconnectedness of nodes to enhance classification accu-
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racy. By aggregating information from local neighborhoods and recognizing patterns

across the graph, GNNs can discern subtle relationships that may not be apparent

through traditional machine learning approaches. This capability is vital in various

applications, including social network analysis, bioinformatics, and fraud detection,

where understanding the intricate relationships between entities is key to accurate

classification.

Node classification focuses on predicting the labels of individual nodes based on

their features and the relationships defined by the default graph structure. This

task often employs semi-supervised learning techniques, which are particularly ad-

vantageous when there is a scarcity of labeled data, for where only a small subset

of nodes in a graph is labeled with their corresponding classes, while the majority

remain unlabeled. By utilizing both labeled and unlabeled nodes, models can en-

hance their performance through inferring the labels of unlabeled nodes based on

their connections. For instance, in a social network context, node classification might

involve predicting users’ interests or preferences based on their connections with oth-

ers and the attributes outlined in their profiles. Here, the GNN aggregates features

from neighbors to capture not only the local context but also the influence of K-hop

community structures, leading to more accurate predictions.

Graph classification, on the other hand, involves assigning labels to entire graphs,

necessitating a comprehensive understanding of the graph’s topology and attributes.

This task typically employs supervised learning strategies, where models are trained

on a dataset of labeled graphs. The goal is to learn representations that encapsulate

the relevant structural and feature-based information for e↵ective classification. An

example of graph classification can be found in cheminformatics, where one might

predict the category of chemical compounds based on their molecular structures.

GNNs captures not just the individual atoms (nodes) and bonds (edges) but also

the subgraph structures, motifs, or higher-order relationships that are crucial for

determining the chemical properties and functionalities of the compounds.

As the complexity of the graphs increases, the ability of GNNs to learn from both

node-level and graph-level features allows for more nuanced and e↵ective representa-
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tions, ultimately improving performance across a wide range of graph-based tasks. As

research in this area progresses, ongoing innovations will likely continue to enhance

the capabilities of GNNs, making them even more adept at tackling the challenges

posed by real-world graph data.

2.3 From Convolutional Neural Networks to Graph Neural Networks

(a) 2D Convolution (b) Graph Convolution

Figure 2.1.: 2D Convolution vs. Graph Convolution [10].

GNNs emerged as a natural extension of convolutional neural networks (CNNs) to

handle graph-structured data. As shown in Figure 2.1, while CNNs excel in handling

grid-like data (such as images) by leveraging spatial hierarchies and local connectivity,

GNNs extend the convolutional concept to allow for the aggregation of information

from a node’s neighbors to learn the complex relationships and dependencies within

graph structures. Since then, GNNs can be broadly categorized into two approaches,

spectral-based and spatial-based.

Spectral-based GNNs with a mathematical foundation in graph signal processing.

This approach learns a graph filter g applied to a graph signal X, represented as g ·X.

This graph convolution is processed using Fourier transform F to project X and g in

an orthonormal space, resulting in the equation F
�1(F(g)F(X)) = U(U>g · U>X).
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The basis U is obtained through the eigendecomposition of the normalized graph

Laplacian matrix L̃ (see definition in 2.1), where U 2 RN⇥N represents the matrix of

eigenvectors arranged by eigenvalues order, and ⇤ is a diagonal matrix of eigenvalues.

The eigenvectors of the normalized Laplacian matrix form an orthonormal space,

satisfying U>U = I. The first work on spectral convolutional networks was introduced

by [11]. However, due to the high computing complexity and non-robust structure of

eigendecomposition of the normalized graph Laplacian matrix, many variants studies

[12–15] after [11] aim to learn faster and optimal matrices for convolution operations.

Spatial-based GNNs focus on learning directly from the graph’s structure without

relying on spectral properties. This approach utilizes the local neighborhoods of each

node to perform message passing, where each node aggregates information from its

neighbors to update its representation. The fundamental idea is to define a message

function that computes the influence of neighboring nodes, often employing mecha-

nisms such as attention or weighted averaging. For example, a typical update rule

might be expressed as h(k)
i

=
P

j2Ni
⇥h(k�1)

j
+ b, where h(k)

j
is the updated feature of

node i at iteration k, and for k = 0, h(0)
j

= xj. Here, Ni represents the neighbors of

i (see definition in Section 2.1), ⇥ is a learnable weight matrix, and b is a bias term.

This paradigm allows for flexibility and scalability, as it can handle graphs of varying

sizes and structures. Notable models in this category include GraphSAGE [16] and

GAT [7], which have demonstrated e↵ectiveness in a range of applications.

2.4 Message-passing-based GNNs

Graph Convolutional Networks (GCN) [14] is a pivotal advancement in GNNs,

o↵ering a computationally e�cient approach to graph convolution. This is achieved

through a localized first-order approximation (i.e., P = 1) of Chebyshev polynomials

Tp(x). The graph filter defined can be defined as follows,

g✓0 · x ⇡
P=1X

p=0

✓0
p
Tp(L̃)x

⇡ ✓00x+ ✓01(L� I)x,

(2.1)
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where L̃ = 2
�max

L� I and �max is the max egienvalue of ⇤. By letting ✓ = ✓00 = �✓
0
1,

Eq.( 2.1) can be written to,

g✓ · x ⇡ ✓
⇣
I +D� 1

2AD� 1
2

⌘
x. (2.2)

Finally, by normalizing the adjacency matrix A, the graph convolution layer in GCN

can be expressed as,

H = ˆ̃AX⇥, (2.3)

where ˆ̃A is defined in Section 2.1. Here, H represents the updated feature, which

results from projecting the input features X into a learnable feature space ⇥ through

spectral graph signal processing. Meanwhile, GCN bridge the gap between spectral-

based and spatial-based GNNs by allowing their spectral approach, represented in

Eq.(2.3), to be expressed in a spatial context,

hv = ⇥>

0

@
X

u2{Nv[v}

ˆ̃Av,uxu

1

A 8v 2 V . (2.4)

This spatial approach interprets convolution as a process of aggregating information

over localized 1-hop neighborhoods within the graph structure ˆ̃A. To learn from q-hop

neighborhoods for q > 1, sequential updates are required, following Eq. 2.4, which

involves stacking q graph convolutional layers.

Since then, a series of advancements have led to incremental improvements in

GCN, many of which derive from the spatial approach due to its e�ciency, scalability,

and general applicability. Most of these innovations aim to address the limitations

posed by GCN. For instance, GCN is constrained by its shallow architecture; stacking

more than three graph convolutional layers can result in over-smoothing [9, 17, 18],

causing node representations to become too similar and diminishing their ability to

e↵ectively capture long-range dependencies [19]. This issue arises from the message-

passing scheme in GCN, which operates under the flawed assumption that all nodes

that are 1-hop neighbors of a central node are equally important. To tackle this

problem, several solutions have been proposed, such as skip connections [8,20], flexible

neighborhood extensions [9,21], and relaxing the penalization on distant neighbors [7,
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22]. While these approaches help preserve original node information and mitigate

over-smoothing, they can still fall prey to the ”curse of structural inductive bias.”

2.5 Transformer-based Graph Neural Networks

Recently, transformers [1–3, 5, 6] have revolutionized both natural language pro-

cessing (NLP) and computer vision (CV) by addressing key limitations of traditional

models. In NLP, traditional models like recurrent neural networks [23] struggled

with long-range dependencies and sequential processing, leading to ine�ciencies and

di�culties in capturing context. Transformers, with their self-attention mechanism,

enable the model to weigh the importance of di↵erent words in a sentence simulta-

neously, facilitating better understanding of context and relationships. Similarly, in

CV, transformers have introduced a new way to process images by treating them

as sequences of patches, allowing for enhanced feature extraction and global con-

text awareness. This shift has resulted in significant improvements in performance

across various tasks, enabling models to learn more e↵ectively from large datasets

and achieve state-of-the-art results.

Building on the success of transformers in NLP and CV, there has been a signifi-

cant shift towards applying these models to graph-based data, e↵ectively addressing

the limitations of message-passing GNNs, which often su↵er from structural induc-

tive bias. Specifically, the self-attention mechanism in transformers provides a more

flexible approach by enabling the model to consider relationships across the entire

graph rather than being confined to local connections. This capability directly alle-

viates the structural inductive bias that plagues traditional message-passing GNNs,

allowing for a richer and more comprehensive understanding of graph structures. For

a more detailed discussion of this domain, see Section 5.2.2.
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CHAPTER 3

TWO-VIEW GNNS WITH AN ADAPTIVE VIEW-WISE

STRUCTURE LEARNING STRATEGY FOR ACCURATE

GRAPH CLASSIFICATION

Graphs inherently possess multiple underlying structures. Beyond the default struc-

ture, which often represents factual relationships between nodes, augmented struc-

tures can provide unique informative local information. To enhance graph learning,

it is crucial to e↵ectively utilize this diverse structural information. While several

multi-view GNNs exist for early or late view-wise fusion, many overlook the important

correspondence between nodes and views. This chapter introduces a novel multi-view

GNNs with an adaptive view-wise structure learning strategy, focusing specifically

on two-view GNNs. Our method aims to simultaneously capture valuable local in-

formation from both views while also understanding the interrelationships between

views through node correspondences and view-wise distances. Empirical studies on

graphs from various domains, including molecular, computer vision, and bioinformat-

ics, demonstrate that our method delivers competitive performance, irrespective of

the view-wise fusion technique used.

3.1 Introduction

Drawing from the capabilities of GNNs, multi-view frameworks are designed to

leverage multiple perspectives of data, thereby enhancing the model’s ability to learn

from diverse information sources. Within this framework, GNNs are trained in paral-

lel and independently to capture view-specific representations, which are subsequently

fused into a unified representation.

While multi-view GNNs theoretically have the potential to utilize more than two

views for enhanced learning, several practical challenges often limit the focus to two-

view GNNs. First, incorporating multiple views increases the complexity of the model,

necessitating sophisticated methods for managing and integrating diverse informa-
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tion. This complexity can lead to di�culties in training, tuning hyperparameters,

and achieving stable convergence. Second, the computational cost associated with

processing and aggregating multiple views can be prohibitive, especially for large-

scale graphs. Each additional view demands more resources for storage and compu-

tation, which can hinder scalability and e�ciency. Third, there is often a trade-o↵

between the richness of information and the risk of overfitting; with too many views,

the model may capture noise rather than useful patterns, leading to poorer gener-

alization performance. Thus, two-view GNNs strike a balance between complexity

and expressiveness, resulting in a greater number of studies focusing on this specific

configuration. Moreover, two-view GNNs represent a particularly intriguing case, as

they emphasize two distinct yet complementary views of the same data. By enabling

a more nuanced representation of the underlying relationships in the graph, two-view

GNNs can capture both local and global patterns that might be overlooked in single-

view scenarios. Integrating information from these two perspectives allows them to

e↵ectively mitigate challenges such as over-smoothing and information loss. Exam-

ples include the identification of molecular networks characterized by two underlying

molecular structures [24], the prediction of brain diseases using functional magnetic

resonance imaging (fMRI) and di↵usion tensor imaging (DTI) data sources [25], and

the analysis of user activities on social networks based on both online and o✏ine

interactions [26].

Two-view GNNs, while e↵ective in leveraging complementary perspectives of data,

encounter several noteworthy challenges that can impact their performance and ro-

bustness: 1) Labeling variability : One significant challenge arises from labeling vari-

ability across views. When view-wise representations are learned independently using

unshared GNN parameters, nodes that belong to di↵erent classes within a given fea-

ture space may generate inconsistent representations. This divergence can lead to

di�culties when fusing these representations, as the resulting unified representation

may become inundated with noise, reducing the overall accuracy and reliability of the

model. Ensuring that both views contribute e↵ectively to a coherent classification

outcome requires strategies to align labels and representations. 2) Node correspon-
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dence ambiguity : Another challenge lies in node correspondence ambiguity. Di↵erent

views often exhibit distinct graph structures, complicating element-wise fusion due to

unclear node correspondences across views. For instance, modality-wise pooling—a

common fusion technique—selects specific features from view-specific representations

on an element-wise basis. However, without a clear mapping of nodes between the

views prior to fusion, there is a risk of underutilizing valuable information and intro-

ducing noise into the unified representation. This ambiguity can significantly under-

mine the potential benefits of integrating two views. 3) Inter-view correlation neglect

and knowledge underutilization:Although graph representations from di↵erent views

should inherently exhibit some level of correlation, neglecting to capture these inter-

view correlations can hinder the utilization of complementary knowledge. Each view

holds unique insights about the underlying data, and failing to recognize their rela-

tionships means missing out on opportunities to enrich the learning process. E↵ective

models should strive to exploit these correlations, integrating knowledge from di↵er-

ent views to enhance overall understanding and performance. For instance, applying

techniques that explicitly model inter-view dependencies could improve representa-

tion learning by capturing the shared information that exists between the views.

Addressing these challenges is crucial for the advancement of two-view GNNs,

enabling their full potential in the downstream applications. By developing strategies

that enhance representation alignment, clarify node correspondences, and leverage

inter-view correlations, one can improve the robustness and e↵ectiveness of two-view

GNN architectures. In this chapter, we present an optimal transport-based adaptive

view-wise structural learning approach for two-view GNNs, focusing to address the

aforementioned challenges:

1. To mitigate labeling variability, we propose an unsupervised learning method

that focuses on the distances between views.

2. We resolve the the ambiguity in node correspondence by leveraging optimal

transport metric for view-wise alignment.
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3. To tackle the neglect of inter-view correlations and knowledge underutilization,

we adopt a dual approach involving node-level and graph-level considerations.

At the node level, we see corresponding nodes as inter-view correlations, intend-

ing to minimize the distance between these nodes to preserve shared knowledge.

At the graph level, in addition to unsupervised minimization of inter-view dis-

tances, we guide the model to maintain balance by adapting to the classifier’s

performance. This prevents views from diverging too far, neglecting shared

knowledge, or converging too closely, underutilizing complementary knowledge.

Our method demonstrates its e↵ectiveness by achieving improved graph classification

results on six benchmark datasets. We also conduct experimental evaluations and

ablation studies to further validate our approach.

3.2 Related Work

In this section, we provide a brief overview of related work in multi-view graph

neural networks and the optimal transport distance metric.

3.2.1 Multi-view Graph Neural Networks

Multi-view GNNs are designed to learn a graph object from multiple perspectives,

aiming to enhance prediction accuracy through the combination of diverse data. Typ-

ically, each view is trained independently to learn the unique local information under

each view of the graph. Existing methods in multi-view GNNs showcase a variety

of fusion strategies, each with its strengths and weaknesses. For instance, Song et

al. [25] develop a voting strategy that balances outputs from di↵erent graph signals,

allowing for a more nuanced integration of diverse perspectives. Ktena et al. [27]

utilize a Hadamard product layer to capture view-wise similarity, e↵ectively combin-

ing features while maintaining the individual characteristics of each view. Zhang et

al. [28] take a di↵erent approach by concatenating graph-level knowledge to ensure
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that all modalities contribute to the final representation, thus preserving valuable

information across views.

Despite these advancements, many existing multi-view GNNs often overlook the

interrelationships between views, which can significantly limit their e↵ectiveness. The

independent training of views may result in missed opportunities for synergy, where

the shared information and complementary insights across views could enhance the

overall learning process. This neglect of inter-view relationships can lead to subopti-

mal fusion, where the combined representation fails to capture the richer context that

could be derived from understanding how di↵erent views interact with one another.

3.2.2 Optimal Transport

Optimal transport (OT) is a powerful distance metric that quantifies the minimum

cost required to transform one probability distribution into another. Its application

in deep learning has gained considerable traction in recent years, demonstrating sig-

nificant advantages across various domains. For instance, in content-based image

retrieval, OT has shown robustness in partial matching and flexibility in handling

variable-length signals, outperforming traditional histogram matching methods that

measure similarity in few-shot learning scenarios [29, 30]. Additionally, OT has been

e↵ectively employed to measure transfer costs between word embeddings in infor-

mative retrieval contexts [31]. Recently, OT has attracted significant interest in the

realm of node classification, particularly concerning graph alignment [32–34]. In this

setting, OT is used to align corresponding nodes or topological structures between

graphs, facilitating unlabeled node predictions. However, integrating OT into deep

learning frameworks presents optimization challenges, leading many existing studies

to rely on o↵-the-shelf machine learning models or single-layer neural networks.

In this work, we aim to tackle these optimization hurdles by integrating OT into

deep graph learning frameworks. By leveraging the unique properties of OT, we seek

to enhance graph-level classification tasks within two-view GNNs. This approach not
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only promises to improve the accuracy of node classification but also expands the

potential of OT in capturing complex relationships within graph structures.

3.3 Adaptive View-wise Structure Learning Strategy

Our adaptive view-wise structure learning strategy for two-view GNNs aims to

obtain more informative insights by leveraging the complementary information pro-

vided by two graph structures and adaptively learning their interrelationships. The

proposed network construction and objective function are outlined in Section 3.3.1

and Section 3.3.2, respectively. The optimal transport-based approach is detailed in

Section 3.3.3

3.3.1 Network Construction

Figure 3.1 depicts the network architecture of our proposed method. Our network

consists of two independent GNNs, with one processing the default graph structure

G1 = (X,A) and the other processing an augmented graph structure based on node

similarity G2 = (X,A0). To learn view-wise node embeddings that follow the in-

put graph structure, each GNN employs three graph convolutional layers, allowing

each central node to learn from at most 3-hop neighbors. The model parameters

for a GNN are denoted as ⇥ = {✓1, ✓2, ✓3}, with associated hidden dimension size of

{d✓1 , d✓2 , d✓3}. The convolution operation in GNNs can be implemented using various

techniques, including ChebNet [13] and GCN [14]. The view-specific representations

learned by GNNs are then fused using a specified technique, as in most existing multi-

view GNNs. However, our method also incorporates a view-wise structure learning

layer to capture and learn the interrelationships between the views. This allows for

a more comprehensive understanding of the graph’s underlying structure and poten-

tially improves classification performance (results can be found in Section 3.4.2).
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Figure 3.1.: An overview of the proposed adaptive view-wise structure learning strategy

in two-view GNNs.
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3.3.2 Objective Function

Let the predictive model’s objective function be defined as:

O(y) = argmin
y

{L0 + Lreg} . (3.1)

The first term, L0, is the supervised loss, often measured using cross-entropy to

penalize the distance between predicted and ground truth class labels. For a sample

with true class label YT and predicted probability distribution P̂T , the cross-entropy

loss is:

L0 = �
CX

c=1

YT log(P̂T ) . (3.2)

In this work, we denote YT as the true class label and P̂T as the predicted probability

of the true class label for a sample. The second term, Lreg additionally regularizes

model parameters. It is required to be a di↵erentiable function that can be logical

inferences for end-to-end optimization. In our work, we design this term for learning

the inter-view relationship in an unsupervised learning manner, LASL. By taking the

learned representation Z1 and Z2 from two views, LASL is defined as:

LASL(Z1, Z2) = reg ·OT (Z1, Z2) . (3.3)

Here, the term reg is adaptive and relies on classifier performance through a mo-

mentum algorithm. While we minimize the structural distance between views in an

unsupervised manner, reg strikes a balance, ensuring it is neither too small to miss out

on complementary knowledge nor too large to disregard shared knowledge. To achieve

this balance, we link reg to the classifier’s performance, quantified by the probability

P̂T of being the true class. If P̂T suggests that the current unified representation

is accurate (a high value of P̂T ), we optimize the classifier without imposing strict

constraints on the inter-view relationship learning. Conversely, if P̂T indicates inac-

curacies (a high value of (1� P̂T )), we optimize both the classifier and the inter-view

relationship learning for improved performance. Considering an exponential decay

rate for the moment estimate, � 2 [0, 1), Algorithm 1 presents pseudo-code for com-

puting reg during training epochs t 2 [0,MAX EPOCH). OT (Z1, Z2) represents
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our view-wise structure learning strategy based on the optimal transport approach.

We provide more details in Section 3.3.3.

Algorithm 1: An algorithm to compute reg in ASL.

Input: Exponential decay rate for the moment estimate, � 2 [0, 1)

Output: reg value at training epoch t

1 for t 2 [0,MAX EPOCH) do

2 Get the predicted probability of being the true class P̂T from the P̂ ;

3 if time step t = 0 then

4 Compute: reg  (1� P̂T );

5 else

6 Compute: reg  � · reg + (1� �) · (1� P̂T ) ;

7 end

8 t t+ 1 ;

9 end

As a result, the objective function of the proposed method is:

minL , L0 + � · LASL(Z1, Z2) , (3.4)

with � 2 (0, 1) being a hyper-parameter.

3.3.3 Optimal Transport-based Approach

Inter-view relationships are often overlooked in existing two-view GNNs. Due to

unshared weights and late fusion, labeling variability and ambiguous node correspon-

dences can challenge the unified representation. As such, the view-wise structure

learning strategy in two-view GNNs is desired and must satisfy the following con-

ditions: 1) graph-level representations from di↵erent views should not be assigned

to di↵erent classes if they represent the same object, 2) corresponding nodes be-

tween views must have stronger connections than non-corresponding nodes, and 3)

the strategy should be e�ciently solvable using stochastic gradient descent.
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To this end, we leverage the idea of optimal transport as the view-wise structure

learning strategy to learn the inter-view relationships. The optimal transport metric

based on Z1 and Z2 is calculated as,

OT (Z1, Z2) =
X

i2Z1

X

j2Z2

cij f̃ij , (3.5)

where cij is the pairwise distance and f̃ij is the optimal transport (structural learning)

flow between corresponding node u and v. We now introduce the computational

specifics of OT (Z1, Z2) and provide a detailed discussion of its role as a view-wise

structure learning strategy in two-view GNNs. This strategy addresses the three key

needs outlined in the previous section.

The first step involves establishing node correspondences between views. This

process hinges on a distance matrix that represents the dissimilarities between nodes.

The dimensions of this matrix depend on the number of nodes present in both views.

We employ the cosine distance metric to compute cij in Eq. (3.5),

cij = 1� cos(z1i, z2j) ,

= 1�
zT1iz2j

kz1ikkz2jk
, 8i, j 2 RN ,

(3.6)

where z1i 2 Rd✓3 is the feature vector for node u in Z1 and z2j 2 R✓3 is the feature

vector for node v in Z2. Smaller values of cij signify the correspondence between

nodes (i, j) and the intention of a structural learning flow between them for shared

knowledge preservation.

After successfully identifying corresponding nodes using the distance matrix, the

next factor to consider is the node weights, which play a crucial role in determining

the structural learning flow between these corresponding nodes. To illustrate this,

let’s consider a practical example: imagine we have movies A, B, and C, with pairs

(A, B) and (A, C) representing corresponding movies. Now, when recommending a

movie to a user based on their preference for movie A, it makes more sense to prioritize

the more popular (or possibly other specific merits) movie if both candidate movies

have the same similarity to movie A. Therefore, in cases where distances are equal

within a set of corresponding nodes, nodes with higher weights should receive a greater
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allocation of structural learning flow to their corresponding nodes, particularly if those

corresponding nodes also possess higher weights.

Unlike the approach used in [34, 35], which assigns a uniform weight to all nodes

in node classification tasks, we incorporate two essential factors when determining

node weights in graph classification tasks. First, we take into account each node’s

feature vector. Each node is assigned a feature score (FS) that summarizes its feature

vector, defined as FS =
P

d✓3
(Z.). Second, to facilitate fusion for a more grounded

unified representation, we assess each node’s contribution score (CS) to the unified

representation based on the chosen fusion technique. In the case of,

• View-wise maximum pooling operation [36], which selects the maximum values

element-wise from Z1 and Z2, i.e., (Huni)i,o = max ((Z1)i,o, (Z2)i,o). In this

operation, we assign a contribution score of one to the selected element in the

unified representation. Consequently, the total contribution score of node i in

Z1 and Z2 is computed as follows:

(CSZ1)i =

d✓3X

o=1

1[(Z1)i,o�(Z2)j,o], 8i 2 Z1 ,

(CSZ2)i =

d✓3X

o=1

1[(Z1)i,o<(Z2)j,o], 8i 2 Z2 ,

(3.7)

where on every feature dimension, (CSZ1)io + (CSZ2)io = 1.

• Concatenation (Huni = Z1||Z2) or Hadamard product (Huni = Z1 � Z2) oper-

ation, where all features are fused into the unified representation. Hence, we

assign a contribution score of 0.5 to every element. Consequently, the total

contribution score of node i in Z1 and Z2 is equal to (CS)i =
Pd✓3

o=1
1
2 . Still, on

every feature dimension, (CSZ1)io + (CSZ2)io = 1.

Next, we proceed to normalize the score (CS)i of each node to the value of the feature

dimension d✓3 in the final layer of the GNN:

(cCS)i =
(CS)i
d✓3

. (3.8)
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As a result, a node weight is calculated as follows:

w = max{0, FS ⇥ cCS} . (3.9)

Here, we employ the max(·) function to ensure non-negative weights.

Given the two crucial components, distances c and weights w, the optimal trans-

port can determine which nodes should engage in structural learning with one another

and establish the magnitude of the structural learning flow between them. This can

be accomplished by solving a linear programming problem to obtain the optimal

transport (structural learning) flow f̃ that is disclosed in Eq. (3.5). Consider nodes i

and j in Z1 and Z2 with weights wi and wj respectively, f̃ij can be solved as follows:

minimize
fij

X

i2Z1

X

j2Z2

cijfij , (3.10)

s.t fij > 0,
X

i2Z1

fij 6 wj,
X

j2Z2

fij 6 wi,

X

i2Z1

X

j2Z2

fij = min{
X

i2Z1

wi,
X

j2Z2

wj}.

This gives us, f̃ij > 0 if nodes should engage in structural learning, otherwise, f̃ij = 0.

After obtaining the optimal structural learning flow f̃ij, the optimal transport between

Z1 and Z2 is calculated as OT (Z1, Z2) =
P

i2Z1

P
j2Z2

cij f̃ij.

The objective function in Eq. (3.4) is a bilevel optimization problem, where the

outer-level optimization problem is to optimize model parameters of the graph neural

network, and the inner-level one is to optimize the structural learning flow between

corresponding nodes for computing the optimal transport. To optimize this challeng-

ing problem, we design an end-to-end training strategy that e�ciently solves it using

the stochastic gradient descent algorithm. Since it is a convex optimization problem,

we can solve it with an existing convex solver e�ciently in the forward pass. However,

it is challenging to compute the gradient in the backward pass. In particular, when

computing the gradient of the loss function L with respect to the model parameter

✓, we need to compute @f̃(✓)
@✓

. Therefore, to enable the end-to-end training, we should

compute @f̃

@✓
e�ciently.
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To address this challenge, we construct the Lagrangian function for Eq. (3.10) as

follows:

J (f(✓), ⌘, ⌫) = cTf(✓) + ⌘TP (f(✓)) + ⌫TQ(f(✓)) , (3.11)

where ⌘ > 0 and ⌫ are dual variables, P (f(✓)) denotes the inequality constraints, and

Q(f(✓)) represents the equality constraints. Then, according to the KKT condition,

i.e., G , rJ (f̃(✓), ⌘̃, ⌫̃) = 0 where f̃(✓), ⌘̃, and ⌫̃ denotes the optimal solution of

Eq. (3.11), it is easy to obtain @f̃

@✓
by taking the gradient of G with respect to ✓, which

is shown as follows:
@f̃(✓)

@✓
= �(

@G

@f̃(✓)
)�1@G

@✓
, (3.12)

where the right-hand side is easy to compute based on Eq. (3.11) (See Eqs.(9-10)

in [37]). As a result, by plugging this step into the backpropagation procedure, we

train our graph neural network in an end-to-end manner. In essence, we enable inter-

view relationship awareness before the fusion layer, tackle the fusing challenges, and

implicitly enhance the unified representation for better performance in the down-

stream task.

3.3.4 Interpretation of the Optimal Transport-based Approach

Let ⇧ = {(i, j)|f̃ij > 0} be the set of corresponding nodes that should engage in

structural learning through the solution of OT (Z1, Z2). The unsupervised learning

objective of OT (Z1, Z2) in Eq. (3.4) is aiming at minimizing the distances among

the corresponding nodes in ⇧. This is because only (i, j) 2 ⇧ exhibit meaningful

structural learning flows, as f̃ij > 0.

Moreover, minimizing OT (Z1, Z2) can resolve the issue of two concerns in existing

two-view GNNs. First, as Z1 and Z2 are the inputs of OT, minimizing OT (Z1, Z2) is

equivalent to the minimization of distance between Z1 and Z2. This o↵ers a resolution

to the issue of the two modalities falling apart within a given feature space. Second,

minimizing the distances among the nodes in ⇧ implicitly mitigates the challenge of

potential loss of shared knowledge between modalities.
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3.4 Empirical study

To assess the e↵ectiveness of our proposed optimal transport-based adaptive view-

wise structure learning approach for two-view GNNs, we conducted extensive exper-

iments using six benchmark graph classification datasets. We first provide details

about datasets and experimental setup. Then, we present graph classification results

against state-of-the-art approaches across the six benchmark datasets. Lastly, we

o↵ers a comparative analysis of our proposed method.

3.4.1 Datasets and Experimental Setup

Datasets. We use six benchmark datasets for graph classification from TU-

Datasets [38]. In our dataset selection, we span diverse domains, including the

recognition of small molecular networks such as MUTAG, BZR MD, PTC MR, and

ER MD. We also delve into the realm of computer vision by considering the recog-

nition of Cuneiform signs, and we explore brain disease prediction, as exemplified by

KKI. Detailed statistics for these datasets are provided in Table 3.1.

In dataset preparation, we begin with single-modality datasets G = (X,A). We

use them as the first modality G1 = (X,L1(A)). To create the second modality, we

take a di↵erent approach compared to techniques like node permutation [34] or the

Table 3.1.: Statistics of the graph classification datasets used in ASL for two-view

GNNs.

Datasets Graphs Classes Avg. Vertices Features

MUTAG 188 2 17.93 7

BZR MD 306 2 21.30 8

PTC MR 344 2 14.29 18

ER MD 446 2 21.33 10

Cuneiform 267 30 21.27 3

KKI 83 2 26.96 190



29

addition of noise [39], which are commonly used in MVGNNs for node classification

tasks. Instead, we generate a diverse graph topology S based on the Mahalanobis

distances matrix (D 2 RN⇥N) between node features with a randomly generated

transformation matrix (M 2 Rf0⇥f0), and normalize it by a standard Gaussian dis-

tribution [24]. Such that, S = exp(�D/2), with d(xi, xj) =
p

(xi � xj)TM(xi � xj),

for all d(xi, xj) 2 D. As a result, the second input graph G2 = (X,L2(A, S)) is

constructed, featuring a semi-synthetic graph topology.

Implementation Details and Configurations. We adopt a data partitioning

approach following prior studies [24,40, 41]. Our methodology incorporates a 10-fold

cross-validation technique. During training and evaluation of our proposed method,

we utilize a mini-batch size of 32. The data preprocessing steps are consistent with

those outlined in part ‘Datasets ‘.

In line with the network architecture discussed in Section 3.3.1, each Graph Neu-

ral Network (GNN) in our model consists of three graph convolutional layers. These

layers have embedding dimensions set as d✓1 = 16, d✓2 = 64, d✓3 = 128. ReLU activa-

tion functions and dropout layers with a rate of 0.1 follow each convolutional layer.

We employ a convolution operation as described in ChebNet [13], with a Chebyshev

degree (K) of 6, or in GCN [14]. The fusion layer utilizes modality-wise max pooling

to generate a unified representation. In the compatibility learning layer, we apply a

linear layer with an embedding dimension of 128, followed by a ReLU activation layer

and a dropout layer with a rate of 0.1. The read-out layer employs graph-level max

pooling among the nodes to create the graph-level representation for class prediction.

Parameter tuning of the moment estimate parameter � (in Algorithm 1) with a

range of {0.01, 0.02, . . . , 0.99, 1.} , and the hyperparameter � in Eq.(3.4) over the

values {5e�2, 1e�3, 5e�3 . . . , 1e�5, 5e�5
}.

We evaluate the method’s performance using classification accuracy as the primary

metric. We employ the Adam optimizer with a learning rate of 5e � 3 and train for

a total of 200 epochs (T = 200). To solve the Linear Programming (LP) problem in

the optimal transport metric, we leverage the GPU-accelerated convex optimization

solver QPTH [42] and compute gradients during the backward pass.
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3.4.2 Comparison with State-of-the-art Methods

The experimental results for graph classification are presented in Table 3.2. We

observe that our method consistently outperforms all baseline methods across all

datasets. In the following, we analyze the results in two scenarios, i.e., single-view

and two-view.

Table 3.2.: Comparison of graph classification results for ASL in two-view GNNs

against baseline methods.

Datasets

Method MUTAG BZR MD PTC MR ER MD Cuneiform KKI

GIN (1st view) [17] 90.5± 7.4 66.3± 11.3 71.5± 8.2 68.1± 6.1 - 80.6± 17.6

InfoGraph (1st view) [43] 91.4± 0.1 79.4± 0.1 72.1± 0.1 78.2± 0.1 88.4± 0.1 65.6± 0.2

ChebNet (1st view) [13] 91.5± 5.8 78.7± 6.5 70.4± 5.0 78.0± 4.4 87.9± 5.1 78.9± 12.6

ChebNet (2nd view) [13] 92.6± 4.8 79.0± 8.7 69.0± 4.9 76.9± 4.6 87.9± 5.1 81.1± 13.2

ChebNet-Multigraph [40] 93.1± 4.7 81.6± 7.2 73.6± 2.7 79.6± 4.2 88.7± 6.0 83.3± 11.4

ChebNet-MVAGC [24] 93.6± 4.6 81.4± 7.3 72.2± 4.7 80.6± 4.0 88.3± 6.2 81.1± 12.2

ChebNet+ASL (ours) 94.7 ± 4.7 82.6 ± 7.5 74.8 ± 4.5 81.2 ± 3.4 89.5 ± 6.0 86.7 ± 12.9

GCN (1st view) [14] 89.9± 4.9 79.3± 6.5 73.4± 6.8 79.8± 4.2 88.7± 6.5 82.2± 11.3

GCN (2nd view) [14] 89.9± 4.9 78.7± 6.8 72.6± 7.8 79.8± 3.1 88.7± 5.6 78.9± 16.1

GCN-Multigraph [40] 91.5± 3.4 79.4± 7.3 74.3± 4.7 79.0± 4.0 88.4± 5.4 81.1± 12.2

GCN-MVAGC [24] 91.0± 4.1 79.7± 5.4 72.2± 5.6 81.0± 4.1 89.1± 5.4 84.4± 10.2

GCN+ASL (ours) 91.5 ± 4.2 82.7 ± 6.5 74.6 ± 7.3 82.5 ± 3.3 89.5 ± 4.9 85.6 ± 10.0

In single-view scenario, baselines include GIN (1st view), InfoGraph (1st view),

ChebNet (1st view), GCN (1st view), ChebNet (2nd view),and GCN (2nd view).

First, we evaluate the performance of ChebNet and GCN, both renowned as foun-

dational methods in the GNN domain. Their popularity arises from the simplicity

of construction and e�cient learning, especially in the case of GCN. Our findings

demonstrate that the classification accuracy achieved by ChebNet and GCN in learn-

ing either the 1st or 2nd view comparable with that of other methods, namely GIN

and InfoGraph when handling the 1st modality. This highlights our rationale for
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selecting ChebNet and GCN as the base methods in the GNN component of our

proposed method.

Second, we compare our method with single-view methods. Our observations in-

dicate that the classifiers trained by our methods, ChebNet+ASL and GCN+ASL,

consistently outperform those of the single-view methods. This evidence strongly sug-

gests that a unified representation, as trained by our approach, is better for meeting

downstream tasks compared to view-specific single-view representations.

In two-view scenario, baselines include ChebNet-Multigraph, ChebNet-MVAGC,

GCN-Multigraph, and GCN-MVAGC.

To demonstrate the e↵ectiveness of the proposed adaptive view-wise structural

learning, we conduct a comparative analysis against other two-view GNNs, namely

Multigraph and MVAGC. We categorize the compared methods into two groups:

ChebNet-like and GCN-like, aligning with the respective graph convolution operation

employed. The results of our method consistently outperforms both Multigraph and

MVAGC. This performance improvement ranges from 0.4% in the Cuneiform dataset

using GCN-like methods to a substantial 5% increase in classification accuracy for

the KKI dataset using ChebNet-like methods. Our findings strongly support the

e↵ectiveness of adaptive view-wise structural learning in two-view GNNs, leading to

enhanced unified representation and improved classification results.

3.4.3 Method Analysis

In this section, we conduct various experiments to evaluate the e↵ectiveness of

our method by exploring multiple design variants, including the selection of inter-

view distance metrics and the adaptive e↵ects.

We conducted a performance comparison of inter-view distance computation when

employing alternative distance metrics, including Manhattan distance, Euclidean dis-

tance, and cosine distance, as replacements for the optimal transport metric in Eq.

(3.5). It is important to emphasize that these alternative distance metrics assume a

constant graph structure, which leads them to solely measure the distance between
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two views without accounting for the identification of corresponding nodes. Fur-

thermore, these alternatives operate under the assumption of a uniform structural

learning flow between nodes, without considering feature importance or the signifi-

cance of contribution to the unified representation. As depicted in Table 3.3, none

of the alternative distance methods demonstrated superior classification performance

compared to optimal transport. This comparison demonstrates the e↵ectiveness of op-

timal transport in both computing view-wise distances and serving as the foundation

of our view-wise structure learning strategy. Optimal transport’s ability to identify

corresponding nodes and allocate the optimal structural learning flow between them

is a key factor in the success of our approach.

Table 3.3.: Ablation study of di↵erent distance metrics for ASL in two-view GNNs.

Distance Metrics

Datasets Manhattan Euclidean cosine Optimal transport

MUTAG 88.9± 5.4 88.9± 4.9 88.9± 4.9 91.0 ± 4.1

BZR MD 80.0± 5.9 81.1± 6.8 81.1± 6.4 81.7 ± 5.8

PTC MR 67.8± 5.0 71.7± 6.2 72.0± 5.1 75.3 ± 7.9

ER MD 78.1± 3.1 79.2± 5.3 79.4± 3.9 80.1 ± 2.9

Cuneiform 83.5± 11.8 83.9± 9.1 85.1± 10.3 86.5 ± 8.3

KKI 83.3 ± 14.3 82.2± 10.2 80.0± 10.9 83.3 ± 10.2

We also investigate the influence of the adaptive e↵ect designed in the objective

function, i.e., the reg term in Eq.(3.3). As discussed in Section 3.3.2, the proposed

optimal transport-based AMoSL is adapted to the classifier’s performance. However,

we also explore a radical scenario where the adaptive e↵ect is eliminated by setting

the regularization parameter reg=1, allowing unconditional unsupervised learning on

structure distance. Table 3.4 presents the results of structure distance and model

performance under this radical scenario. We use 7to represent reg = 1, for methods

without the adaptive e↵ect, and 3to represent methods with the adaptive e↵ect. In

this experiment, the network is set up to use the ChebNet graph convolution opera-
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Table 3.4.: Ablation study of the adaptive e↵ectiveness for ASL in two-view GNNs .

Datasets
Fusion Distance Accuracy

techniques 7 3 7 3

MUTAG
max 3.75 14.73 89.4± 6.2 91.0 ± 4.1

concat 4.87 11.35 91.0± 5.8 91.5 ± 4.8

BZR MD
max 4.00 14.14 81.1± 6.4 81.7 ± 5.8

concat 4.44 12.55 81.1± 6.0 82.4 ± 7.0

PTC MR
max 24.25 29.96 72.0± 5.5 75.3 ± 7.9

concat 4.76 37.84 71.1± 4.7 71.6 ± 6.0

ER MD
max 3.19 13.39 78.3± 4.4 80.1 ± 2.9

concat 3.75 11.32 78.7± 4.2 79.6 ± 5.0

Cuneiform
max 24.92 30.83 84.6± 11.3 86.5 ± 8.3

concat 20.11 14.70 86.5± 6.5 88.0 ± 8.3

KKI
max 13.96 35.86 82.2± 12.4 83.3 ± 10.2

concat 11.26 37.35 84.4± 11.3 85.6 ± 13.2

tion with K = 1, while other configurations remain consistent with those described

in Section ??. When structure distance learning is always allowed, we observe sig-

nificantly small structure distances, which excessively emphasize the importance of

minimizing distances between view representations. This converges the views too

close in the feature space and hinders the unified representation from utilizing com-

plementary knowledge from di↵erent views. As a result, none of the radical scenarios

can train classifiers that outperform the proposed method. This underscores the sig-

nificance of maintaining a balance between views, thus emphasizing the importance

of the adaptive design in the proposed method.
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3.5 Chapter Summary

In this chapter, we propose a two-view GNN framework to mitigate the graph

structure bias inherent in single-view GNNs. Two-view GNNs, posits that more

informative nodes should have proximal node representations within a graph structure

constructed on such attributes. We reconstruct a new graph structure based on

the proximity of node representations and simultaneously learn a graph object from

both the new constructed and default graph structures for relationship reasoning.

Additionally, by introducing an adaptive view-wise structure learning strategy, we

aim to align view-wise representations and e↵ectively learn inter-view relationships.

Through extensive evaluation, we demonstrate the e↵ectiveness of our approach.

The improved graph classification results highlight the benefits of learning from aug-

mented structures, which provide more informative local information. Additionally,

our adaptive view-wise structure learning strategy outperforms existing two-view

GNNs.
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CHAPTER 4

CAUCHYGCN: PRESERVING LOCAL SMOOTHNESS IN

GRAPH CONVOLUTIONAL NETWORKS

In Graph Convolutional Networks (GCNs), a message-passing scheme explicitly learns

and reasons node representations via aggregation and propagation of neighboring in-

formation over the default graph structure. Most existing message-passing schemes

are grounded in Laplacian smoothing, which seeks to maintain the similarity of node

representations in the hidden feature space (local smoothness) among neighboring

nodes, ensuring their labeling consistency (global smoothness). This often leads to

Laplacian smoothing imposing strict penalization on distant neighbors. Because some

distant neighbors are inter-class or represent some necessary intra-class patterns, strict

penalization of distant neighbors can fail to preserve local smoothness e↵ectively as

expected thus introducing noise, mixing representations, and failing to capture valu-

able hidden patterns. Although recent research has introduced various strategies,

including graph filters, k-hop jumps, and bounded penalties to tackle this issue, these

methods often fall short of explicitly capturing and preserving the local smooth-

ness over the default graph structure. This chapter presents CauchyGCN, which

enhances the preservation of local smoothness. CauchyGCN comprises two key com-

ponents: 1) a Cauchy smoothing message-passing scheme that explains and preserves

local smoothness in each hidden layer, and 2) an unsupervised clustering analysis

that simultaneously improves the classifier’s capacity to learn both local and global

smoothness. We conduct comprehensive experiments using five benchmark datasets

to assess the performance of CauchyGCN in semi-supervised node classification tasks

compared to state-of-the-art GCNs.

4.1 Introduction

While significant advancements have been made in message-passing schemes, many

still rely heavily on Laplacian smoothing [44,45]. Laplacian smoothing operates under

the assumption that neighboring nodes belong to the same class, and it enforces strict
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penalization on distant neighbors intending to maintain the proximity of represen-

tations among neighboring nodes (local smoothness) to ensure labeling consistency

(global smoothness). However, the strict penalization of distant neighbors often re-

sults in Laplacian smoothing being less e↵ective than expected at preserving local

smoothness. Several factors contribute to this ine↵ectiveness. First, distant neigh-

bors could belong to di↵erent classes [46]. For instance, in widely used graph datasets

like Cora [47] and CiteSeer [48], the inter-class neighbors account for approximately

19% and 26%, respectively. Message passing between inter-class neighbors introduces

noise and leads to the mixing of representations [49,50]. Second, some distant neigh-

bors may represent critical intra-class patterns in sparsely connected regions of the

graph [22]. Excessive penalization of these patterns fails to capture valuable hid-

den proximal patterns in local smoothness. Designing a new message-passing scheme

beyond Laplacian smoothing is thus essential to solving these issues.

Figure 4.1.: Comparison of the smoothness preservation between Laplacian smoothing

(top)and Cauchy smoothing (bottom) [51].

To tackle the abovementioned challenges in Laplacian smoothing-based GCNs, we

propose CauchyGCN which focuses on capturing and preserving local smoothness in

an interpretable approach. CauchyGCN achieves local smoothness preservation from

two key components in GCNs: the layer-wise message-passing scheme and unsuper-
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vised clustering analysis. Specifically, we design Cauchy smoothing, which leverages

the desired properties of Cauchy distribution, to capture and preserve the proximal

patterns and similarity relationships over the underlying graph structure. In con-

trast to the emphasis on the variant of the distant neighbors in Laplacian smoothing,

Cauchy smoothing emphasizes the variant of the close neighbors. Figure 4.1 illus-

trates the comparison of smoothness preservation between Laplacian smoothing and

Cauchy smoothing. We further combine Cauchy smoothing and Laplacian smoothing

and strike a balance between them as a new message-passing scheme in CauchyGCN.

Our message-passing scheme reduces noise that might lead to the mixing of inter-

class node representations and mitigates the penalization of non-smooth intra-class

variations, while also enhancing the capture and preservation of valuable local smooth-

ness, encompassing both proximal patterns and similarity relationships. Moreover,

we introduce an end-to-end unsupervised clustering analysis, which simultaneously

enhances global smoothness and improves both inter-cluster distinction and intra-

cluster cohesion.

Our main contributions are as follows: 1) This is the first approach of leveraging

Cauchy distribution to preserve local smoothness in GNNs through a new design

message-passing scheme. 2) We jointly learn node representations and clustering

analysis to improve both local and global smoothness. 3) Extensive experiments

demonstrate that CauchyGCN achieves competitive performance in semi-supervised

node classification compared to existing methods.

4.2 Related Work

In this section, we present the work most closely related to ours, including an

overview of graph convolutional layers, message-passing schemes, and advancements

in message-passing GNNs.
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4.2.1 Graph Convolutional Layer

Considering a node representation xi, a general graph convolutional layer in GCNs

involves projection and propagation layers [52],

x(k)
i

= x(k�1)
i

⇥(k) (Projection) ,

h(k)
i

= f (k)
⇣
x(k)
i
, x(k)

Ni

⌘
(Propagation) ,

(4.1)

where k 2 [1, K] stands for the layer index with K being the last layer. Here, the

projection layer updates the feature vector of node i, denoted as x(k�1)
i

2 Rd✓k�1 ,

from the previous layer k � 1 using a layer-wise trainable projection matrix ⇥(k)
2

Rd✓k�1
⇥d✓k to produce a new feature vector, x(k)

i
2 Rd✓k . In this context, d✓k�1

and

d✓k represent the hidden feature spaces in layers k � 1 and k, respectively. The

propagation layer employs a specified message-passing scheme f(·) to further update

x(k)
i

by incorporating neighboring information x(k)
Ni

from the current feature space,

while h(k)
i

represents the output feature vector of node i. The corresponding layer-

wise propagation rule [14],

O = argmin
h
(k)
i

kh(k)
i
� x(k�1)

i
k
2

| {z }
L0

+�F (k)
⇣
x(k)
i
, x(k)

Ni

⌘

| {z }
Lreg

, (4.2)

optimizes the network to capture significant graph relations within the current hidden

feature space. In Eq. (4.2), L0 enforces the network to maintain label consistency by

controlling the distance between the node representation in the two consecutive layers

(layer k � 1 and layer k), which can be beneficial for tasks like node classification.

Lreg with the hyperparameter � 2 [0, 1] ensures that the message-passing process

adheres to certain smoothness patterns and denoising constraints. In the forward pass,

obtaining an optimal or sub-optimal solution for h(k)
i

via Lreg requires an appropriate

optimization technique for node feature vector x(k)
i
. For instance, when F (k) is convex

and di↵erentiable, the message-passing scheme can be represented as f(x(k)
i
) = @F

(k)

@x
(k)
i

.

In the following sections, we use X (equivalent to x(k�1)) to denote the input node

feature matrix and H (equivalent to h(k)) to denote the output node feature matrix

in layer k.
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4.2.2 Laplacian smoothing-based GCNs

Laplacian smoothing [44, 45] is designed to enhance the smoothness of node rep-

resentation over the graph structure, where the magnitude of tr(HT L̃H) is largely

influenced by the di↵erences between distant neighbors. Laplacian smoothing is de-

fined as,

tr(HT L̃H) =
1

2

NX

i=1

NX

j=1

ˆ̃aij(hi � hj)
2 , (4.3)

where hi is the feature vector of node i, corresponding to the i-th row of the ndoe

feature matrix H. {ˆ̃aij}1i,jN are entries of the normalized adjacency matrix with

self-loop e↵ect (see definition in Section 2.1). When applied to GCNs, let Lreg in

Eq.(4.2) adheres to Laplacian smoothing [14], such that,

OGCN = argmin
H

kH �Xk2 + � · tr(HT L̃H) . (4.4)

This encourages the local smoothness of node representations during the message-

passing process at each layer, with particular emphasis on the smoothness between

distant neighbors (see Proposition Laplacian smoothing). Eq. (4.4) corresponds to

the propagation rule in GCN [14], denoted as OGCN, and stands as the fast and vanilla

benchmark in realm of GCNs.

The proposition of Laplacian-smoothing [45] shows as the following: Laplacian-

smoothing focuses on preserving local smoothness between the node i and its dis-

tant neighbor j during gradient descent. The update rule is given by: (hi � hj)⇤ =

(hi�hj)�2⌘L̃(hi�hj), where ⌘ is the learning rate. The correction term 2⌘L̃(hi�hj)

penalizes the di↵erence between the node representations of node i and j. Conse-

quently, the strict penalization is imposed on the substantial di↵erence between hi

and hj.

The message-passing scheme corresponding to the propagation rule in Eq. (4.4)

can be obtained by performing a single gradient descent step at X [14],

H⇤
GCN = X � ⌘

@OGCN

@H
|H=X

= x� ⌘ (2 (H �X) + 2LH)

= (D�1/2ÃD�1/2 + L� 2⌘L)X = ˆ̃AX ,

(4.5)
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with a step size of ⌘ = 1
2 . As Laplacian smoothing represents a smooth and convex

l2-based regularization, the updated node representation H⇤ can be obtained as a

closed-form solution.

4.2.3 Other Advancements

Because neighboring nodes can belong to di↵erent classes or be distantly embed-

ded, the fast and vanilla framework o↵ered by GCN [14] introduces noise and mixes

representations during the message-passing process as it assumes the constant im-

portance of neighboring information. To tackle this issue, a line of studies relax this

extreme assumption and strive to preserve local smoothness based on the original

data’s locality from either spectral or spatial approaches.

Spectral approaches are theoretically based on graph signal processing, where ad-

vancements delve into refining graph filter definitions to enhance the processing of

the graph’s frequency domain through graph Fourier transforms. PPNP/ APPNP [9]

involves adjusting a node’s neighborhood through teleport probability using person-

alized PageRank [53] on the graph filter. GNN-LF/HF [21] further refine the graph

filter in PPNP/APPNP into low-/high-pass filtering kernels for k-hop neighborhoods,

thereby enhancing its adaptability to accommodate arbitrary coe�cients of polyno-

mial filters by introducing more adjustable factors.

Spatial approaches directly exploit the graph structure, where advancements aim

at improving the capture of connectivity among neighboring nodes. GAT [7] lever-

ages attention mechanisms to emphasize the importance between neighbors. Graph-

SAGE [16] sampling on the neighbors and learns di↵erent local patterns through dif-

ferent aggregation methods. JKNet [8] extends its reach beyond 1-hop neighborhoods

using hierarchical neighborhood information. UGNN [54] employs the node’s intra-

class rate as a neighbor-information scalar. ElasticGNN [22] introduces a smoothing

strategy based on the l1-norm with a soft-thresholding operator to restrict distant

neighboring information.
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Di↵erent from these advancements, CauchyGCN distinguishes itself by capturing

and preserving local smoothness of the nonlinearity but proximity pattern among

closely embedded and mutually connected neighbors, adhering to the Cauchy distri-

bution. We also introduce a weight factor following a Gaussian distribution to explain

which neighbors should preserve their local smoothness.

4.3 Preserving Local Smoothness via Cauchy Smoothing

In this section, we begin by introducing Cauchy smoothing for capturing and

preserving local smoothness in an interpretable approach through a new message-

passing scheme. We then detail the new message-passing scheme, which involves both

Cauchy smoothing and Laplacian smoothing and strikes a balance between these two

smoothing strategies. After that, we present an end-to-end unsupervised clustering

analysis aimed at further improving both global and local smoothness. Lastly, we

elucidate the optimization process of CauchyGCN.

4.3.1 Cauchy Smoothing

While Laplacian smoothing prioritizes smoothness between distant neighbors, it

overlooks smoothness between closely embedded and more mutually connected neigh-

bors. We propose a complementary strategy to address this limitation and enhance

local smoothness.

Cauchy distribution has found applications in various domains [51, 55] to align

objects that carry proximal representations,

�(x, x0, �) =
1

⇡


�

(x� x0)2 + �2

�
. (4.6)

Here, x0 signifies the location factor, � > 0 is a scale parameter, and 1
⇡
is a constant

that is omitted in our proposed method. The key properties of the Cauchy distribution

are detailed in the proposition of Cauchy distribution. Considering the distance dij
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between two data points i and j, Figure 4.2 illustrates decay functions, comparing

the Cauchy distribution with other distributions. The decay functions include:

Cauchy :
1

d2
ij
+ �2

Laplacian : � d2
ij

Gaussian : e�d
2
ij/�

2

Exponential : e�d
2
ij/�

Linear : � dij

As dij increases, the absolute value of the decay function for the Laplacian and Lin-

Figure 4.2.: Comparison of decay function between Cauchy distribution and other distr-

ibutions [51].

ear distribution increases. In contrast, for the Cauchy, Gaussian, and Exponential

distributions, smaller values of dij correspond to larger absolution values of the decay

function. This suggests that Cauchy, Gaussian, and Exponential distributions are

strong candidates for preserving smoothness between closely embedded data points.

Notably, the Cauchy distribution exhibits a smoother transition as the distance be-
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tween two data points increases. Moreover, it stands in stark opposition to the

Gaussian distribution.

Therefore, we introduce Cauchy-based smoothing strategy to preserve the local

smoothness of the nonlinearity but proximity pattern among closely embedded and

mutually connected neighbors. Consider a central node i and j as one of its neighbor-

ing nodes. Our objective is to maximize the magnitude of the Cauchy distribution,

aiming to minimize the distance between their representations (hi and hj),

max
hi

�

(hi � hj)2 + �2
. (4.7)

The proposition of Cauchy distribution shows as the following: Let � represent

a positive constant. In the Cauchy distribution �, the maximum occurs at 1
⇡�

when

x = x0. The magnitude of � decreases as the di↵erence between x and x0 increases.

Additionally, we introduce a weight factor wij to reason and determine which

neighbors should have their local smoothness preserved. This assessment takes into

account both the graph structure and the hidden node proximity pattern,

wij = aij · e
�dij/�

2
. (4.8)

The term aij reflects the connectivity of neighbors in the graph structure. dij = khi�

hjk
2 measures the distance between neighboring nodes under the hidden topological

pattern, adhering to a Gaussian distribution. Because the Gaussian distribution

decays more rapidly than the Cauchy distribution when their parameters � in Eq.

(4.7) and � in Eq. (4.8) are identical, the weight factor compels Cauchy smoothing to

preserve local smoothness among closely embedded neighbors following the Gaussian

distribution but ensures proper strict penalizations following the Cauchy distribution.

As a result, the Cauchy smoothing is defined as,

max
hi

wij · �

(hi � hj)2 + �2
⌘ min

hi

�wij · �

(hi � hj)2 + �2
. (4.9)

The proposition of Cauchy-smoothing illustrates the insights into preserving local

smoothness among closely embedded and mutually connected neighbors via Cauchy

smoothing.
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The proposition of Cauchy-smoothing shows as the following: Cauchy-smoothing

focuses on preserving local smoothness between node i and its close neighbor j during

gradient descent. The update rule is given by: (hi�hj)⇤ = (hi�hj)+2⌘ wij ·�(hi�hj)

((hi�hj)2+�2)2
,

with ⌘ representing the learning rate. The correction term 2⌘ wij ·�(hi�hj)

((hi�hj)2+�2)2
penalizes

the disparity between the node representations of node i and j only when there is

a su�ciently small di↵erence between hi and hj, with the condition that the weight

factor 1 � wij > 0 follows a Gaussian distribution.

4.3.2 Message-Passing Scheme in CauchyGCN

In terms of preserving local smoothness, Laplacian smoothing emphasizes the

variance among distant neighbors, while Cauchy smoothing emphasizes the variance

among close neighbors. It is reasonable to incorporate both Laplacian smoothing

(Eq. (4.3)) and Cauchy smoothing (Eq. (4.7)) to capture local smoothness from

distinct perspectives while necessitating a balancing estimator to help mitigate the

strict penalization from either aspect. Therefore, the layer-wise propagation rule in

CauchyGCN is defined as:

Oc = arg min
H

kH �Xk2 + �1 · tr(H
T L̃H)� �2

X

i

X

j

wij · �

khi � hjk
2 + �2

, (4.10)

where �1 2 [0, 1] and �2 2 [0, 1] are parameters that scale the penalties from Laplacian

smoothing and Cauchy smoothing, respectively.

Now, we need to solve the layer-wise propagation rule in Eq. (4.10) to illustrate

the message-passing scheme of CauchyGCN. However, the di�culty is introduced

since the two smoothing strategies are coupled by the components of H. To address

this issue, we find inspiration in splitting methods [56], particularly those designed

for solving optimization problems of the form f(x) = l(x) + u(x) + '(Ax). This

problem is equivalent to the one presented in Eq. (4.10). By reformulating the

problem, we convert it from a three-function problem to a more manageable two-

function form, expressed as f(x) = L(x) + ✏'(x), where L(x) = l(x) + u(x) and

✏ 2 [0, 1] is a scalar. Following the splitting method, Eq. (4.10) is reformulated to:

L(H) = kH �Xk2 + �1tr(HT L̃H) and '(H) = �2

P
i

P
j

wij ·�
khi�hjk2+�2 , aiming to find
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an optimal solution of H. This allows us to approach the optimization step-by-step.

First, we solve the optimization problem in L(H), which intriguingly aligns with

solving the Laplacian smoothing problem outlined in Eq. (4.5). The one gradient

descent step at X is:

F ⇤ = X � ⌘
@L(H)

@H
|H = X

= X � ⌘�1LX

=
�1

(�1 + �2)
ˆ̃AX + (

�2

(�1 + �2)
X .

(4.11)

where the step size ⌘ = 1
2(�1+�2)

. The optimal solution F ⇤ obtained through �1-scaled

Laplacian smoothing is subsequently utilized to solve the second function, '(F ⇤).

Before delving into the search for the optimal solution of Cauchy smoothing, it is

prudent to calculate the derivative of '(F ⇤) with respect to F ⇤.

Z⇤ =
@'(F ⇤)

@F ⇤ = �2�2

X

i

X

j

wij · �(f ⇤
i
� f ⇤

j
)

�
kf ⇤

i
� f ⇤

j
k2 + �2

�2 , (4.12)

where wij has dij = kf ⇤
i
� f ⇤

j
k
2. Finally, let us take another gradient descent on F ⇤

for Cauchy smoothing,

H⇤ = F ⇤
� ⌘✏

@'(F ⇤)

@F ⇤ = F ⇤
� ⌘✏Z⇤

= � ˆ̃AX + (1� �)

 
X � ✏

X

i

X

j

wij · �(f ⇤
i
� f ⇤

j
)

�
kf ⇤

i
� f ⇤

j
k2 + �2

�2

!
,

(4.13)

where the step size ⌘ = 1
2(�1+�2)

, ✏ 2 [0, 1] is a scalar from the splitting method, and

H⇤ denotes the output node representation at the current layer.

Let � = �1
�1+�2

, we introduce a more scalable parameter � to enhance the equi-

librium between the two smoothing strategies. For special cases, when �2 = 0 leads

a fully Laplacian smoothing as � = 1. Conversely, when �1 = 0 leads a complete

Cauchy smoothing as � = 0. Furthermore, it is important to note that all node

representations in this context are normalized by the square root of the degree ma-

trix (D̃). We denote the distance matrix of all neighboring nodes as �H, as such

�H =
P

aij 6=0
hip
d̃i

�
hjp
d̃j

. The graph convolution process in CauchyGCN follows the
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general framework of graph convolution outlined in Eq. (4.1), and a concise process

is provided in Algorithm 2.

Algorithm 2: Graph convolution in CauchyGCN

Input: Node Representation X; Adjacency Matrix ˆ̃
A; Layer-specific trainable

weight matrix ⇥; Activation Function �(.); Hyper-parameters � 2 [0, 1],

� � 0, and ✏ 2 [0, 1]

Output: Output Node Representation H

1: Initialize k  1, X
(0)
 X, ⇥(1)

 ⇥ ;

3:3: for k 2 [1,K] do

5:5: Projection layer: X(k)
 X

(k�1)⇥(k)

7:7: if � 6= 0 then

8: Laplacian smoothing: F (k)
 �

ˆ̃
AX

(k) + (1� �)X(k)

9: else

10: F
(k)
 X

(k)

11: end

13:13: if � 6= 1 then

14: �F
(k)
 
P

aij 6=0
f
(k)
ip
d̃i

�
f
(k)
jp
d̃j

15: w
(k)
 

ˆ̃
A · e

��F
(k)

/�
2

16: Cauchy smoothing: Z(k)
 

�·w(k)�F
(k)

((�F (k))2+�2)2

17: else

18: Z
(k)
 0

19: end

21:21: Message-passing: H(k)
 �

ˆ̃
AX

(k) + (1� �)(X(k)
� ✏Z

(k))

23:23: Activation + Dropout layer: H(k)
 dropout(�(H(k)))

25:25: Update k  k + 1

26: end
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4.3.3 Clustering Analysis

We introduce a clustering analysis at the output layer to smooth both inter-class

clustering and intra-class clustering, simultaneously enhancing the learning of local

and global smoothness. Specifically, we employ the unsupervised deep clustering tech-

niques in [57], which utilize the KL divergence to compare the clustering distribution

(Q) with an auxiliary self-training target distribution (P ). The KL divergence is

calculated as follows:

KL(PkQ) =
NX

i=1

CX

c=1

pic · log
pic
qic

, (4.14)

where c 2 [1, C] denotes a class, with C being the number of classes in the dataset,

and i 2 [1, N ] denotes a node.

The clustering distribution (Q) captures the similarity between the node represen-

tation X(k)
i

and cluster centroid {µc}
C

c=1. Since the node representations are partially

learned from the Cauchy distribution, we utilize the Cauchy distribution to compute

the clustering distribution, enabling it to also capture heavy tails. The probability

qic of assigning node i to cluster c is computed as follows:

qic =

⇣
1 + kh(k)

i
� µck

2
⌘�1

P
c0
⇣
1 + kh(k)

i
� µc0k

2
⌘�1 , (4.15)

where we assume the scale hyper-parameter � = 1 for the Cauchy distribution. Recall,

H(k) is the node representation from the last layer.

The target distribution P is designed to enhance the performance of the classifier

and correct centroids. The distribution P is defined as follows:

pic =
q2
ic
/scP

c0 q
2
ic0/sc0

(4.16)

where sc =
P

i
qic represents the soft cluster frequencies.

The challenge lies in determining the initial values for centroids µ and updating

them throughout each training epoch in CauchyGCN. The initialization strategy of

centroids, as outlined in [57], assumes a high accuracy of the classifier during the initial

training epoch. However, this assumption presents a challenge for CauchyGCN, given
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that the classifier’s accuracy at the first epoch is typically quite low. Moreover, while

the K-means clustering method seems intuitive, its lack of di↵erentiability complicates

the optimization problem during backpropagation. To circumvent the challenges, we

compute the centroids µc by averaging the node representations associated with high

confidence in each class label c. At the first training epoch, we initialize centroids µc

as follows:

µc =
1

Nc

NcX

i=1

H(k)
i2c . (4.17)

In this approach, Nc denotes the number of nodes in cluster c. The condition i 2 cK

for node representation HK indicates that node i is assigned to class c due to having

the highest confidence in this class among all potential classes. The optimization of

µc will be discussed in Section 4.3.4.

4.3.4 Optimization of CauchyGCN

The objective function of CauchyGCN in the output layer is jointly optimizing

the performance of semi-supervised node classification and unsupervised clustering

analysis,

OCGCN = �

X

l2Ylabel

FX

f=1

Ylf lnH
L

lf

| {z }
semi-supervised node classification

+ KL(PkQ)| {z }
clustering analysis

(4.18)

where Ylabel is the set of ground truth labels of the labeled nodes and  2 [0, 1] is a

hyper-parameter that control the e↵ect of KL(PkQ). The gradient of OCGCN with

respect to h(k)
i

is computed as:

@OCGCN

@h(k)
i

= 2
X

c

(pic � qic)
h(k)
i
� µc

1 + kh(k)
i
� µck

2
. (4.19)

This is then passed down to the backpropagation to optimize the projection matrix

⇥, i.e., @OCGCN/@⇥. The gradient of OCGCN with respect to cluster centroid µc is

computed as:
@OCGCN

@µc

= �2
X

i

(pic � qic)
h(k)
i
� µc

1 + kh(k)
i
� µck

2
. (4.20)
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We manually update µc to the next training epoch as:

µ0
c
 µc � �

@OCGCN

@µc

, (4.21)

� 2 [0, 1] denotes the gradient step. This process is not involved in the backpropaga-

tion process that optimizes the projection matrix ⇥.

4.4 Empirical study

We evaluate the performance of CauchyGCN on several benchmark datasets for

semi-supervised node classification, comparing its performance to state-of-the-art

methods.

4.4.1 Datasets

We validate our CauchyGCN on semi-supervised node classification tasks using

the following real-world citation networks, Wikipedia-based article networks, and

co-authorship networks: 1) Cora, CiteSeer, and PubMed [58] are citation networks

widely used in node classification literature, where nodes are bag-of-words representa-

tions of documents and edges are citation links. 2) Wiki-CS [59] is a Wikipedia-based

article network in the field of Computer Science, where nodes are word embeddings

of the articles, edges are hyperlinks, and classes are assigned to 10 relative fields.

3) Coauthor-CS [60] is a co-authorship network based on the Microsoft Academic

Graph, where nodes are paper keywords for each author’s papers, edges depict co-

authorship, and classes are assigned to the 15 most active fields. We conduct 10 runs

on all datasets with the splitting method in [22] for training.

4.4.2 Settings and Baselines

To ensure fair comparisons, all methods are fixed under the following settings:

the same data splitting method; 16 hidden feature size; 0.1 learning rate; 5e-4 weight

decay rate; 0.5 dropout rate; 300 training epochs; and all performance is reported as
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the mean and standard variance of 10 runs in terms of semi-supervised node classi-

fication accuracy (%). The propagation depth, which refers to the number of graph

convolutional layers, varies depending on the methods used. PPNP [55] and GNN-

HF-closed [21] have a propagation depth of one. ChebNet [13], GCN [14], GAT [7],

APPNP [9], GNN-HF-iter [21], ElasticGNN [22], and CauchyGCN have a propaga-

tion depth of two. All compared methods were implemented using the hyperparam-

eters specified in the respective literature. In the case of CauchyGCN, the layer-wise

message-passing scheme has the balancing parameter � in the range of [0.2, 0.7], the

scale � in Cauchy distribution is set to 1, the scalar of KL divergence in the opti-

mization problem  is chosen to be less than 0.1, and gradient step of centroids µ is

selected from the range 0 < �  0.5.

4.4.3 Analysis of Node Classification Performance

The results of semi-supervised node classification are in Table 4.1, with Bold is

used to show the best results. Here are some notable observations: Importance of

recognizing the closely embedded neighbors : GAT demonstrates superior performance

over GCN and ChebNet in Cora, CiteSeer, and Wiki-CS, suggesting the crucial im-

portance of paying more attention to information aggregated and propagated from

closely embedded neighbors. PPNP, APPNP, GNN-HF-closed, and GNN-HF-iter

outperform GCN across most datasets, indicating that filtering out less frequently

related neighboring information can e↵ectively denoise the aggregated information at

the center node. These findings emphasize the significance of utilizing the underlying

graph structure to assess the importance of neighbors, a concept incorporated into

CauchyGCN through the modeling of the weight factor wij.

Importance of letting the data represent itself : In contrast, ElasticGNN, the clos-

est contender, also introduces an additional smoothing strategy to preserve local

smoothness. However, CauchyGCN consistently outperforms ElasticGNN, particu-

larly on Wiki-CS, a dataset characterized by high-frequency edges between nodes.

While ElasticGNN relies on the l1 norm and a soft-thresholding operator to preserve
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closely embedded neighbors, CauchyGCN distinguishes itself by allowing the data it-

self to determine the preservation of local smoothness through a Cauchy distribution.

It is worth noting that GNN-HF-closed outperforms CauchyGCN on Cora and

CiteSeer by 0.3% and 0.1%, respectively. As discussed earlier, GNN-HF improves

upon GCN from the spectral aspect by filtering information via a refined graph filter.

On the other hand, CauchyGCN improves GCN by introducing a novel smoothing

strategy from the spatial perspective. These two perspectives are independent and can

be examined for potential integration to further improve the performance of GCNs.

Table 4.1.: Comparison of semi-supervised node classification results for CauchyGCN

against baselines.

Datasets

Method Cora Citeseer Pubmed Wiki-CS Coauthor-CS

ChebNet [13] 79.6 ± 1.7 69.1 ± 2.3 76.9 ± 1.9 68.2 ± 4.6 91.3 ± 0.4

GCN [14] 80.3 ± 1.6 69.7 ± 1.5 77.3 ± 1.8 74.6 ± 2.6 90.9 ± 0.6

PPNP [9] 81.5 ± 1.1 70.6 ± 1.5 78.6 ± 1.8 75.2 ± 2.2 88.9 ± 1.4

APPNP [9] 80.4 ± 1.8 70.0 ± 1.5 77.7 ± 2.1 75.2 ± 2.7 91.6 ± 0.5

GNN-HF-closed [21] 82.0 ± 1.2 71.6 ± 1.2 79.3 ± 2.2 70.7 ± 3.2 91.0 ± 0.5

GNN-HF-iter [21] 80.4 ± 1.5 70.7 ± 1.8 77.7 ± 2.3 72.4 ± 3.1 91.9 ± 0.5

GAT [7] 80.7 ± 1.7 70.6 ± 1.5 - 74.7 ± 2.6 -

ElasticGNN [22] 81.3 ± 1.5 70.8 ± 1.5 78.4 ±2.1 43.9 ± 13.1 91.5 ± 0.4

CauchyGCN 82.2 ± 0.8 71.3 ± 1.5 79.2 ± 1.7 75.7 ± 2.7 92.0 ± 0.5

4.4.4 Ablation Study

This section analyzes the performance of CauchyGCN with di↵erent configura-

tions, this includes parameters: � (the balancing factor in Eq. (4.9)) and ✏ (in Eq.

(4.13)) in the message-passing scheme, as well as � (in Eq. (4.21)) and  (in Eq.

(4.18)) in clustering analysis. We use a heat map in Fig. 4.3 to illustrate the aver-

age classification accuracy of 10 runs across all possible configurations of �1 and �2.

Specifically, �1 and �2 are the balancing factors in the first and second graph convo-

lutional layers, respectively. All colored cubes denote performance equal to or higher
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Figure 4.3.: CauchyGCN ablation study on balancing parameters � in Eq. (4.9).
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than that of the fully Laplacian smoothing (GCN) method, where [�1,�2] = [1, 1],

with darker colors indicating superior performance. These results are conducted under

a fixed value of ✏, �, and , which are tuned for the best performance of CauchyGCN

shown in Table 4.1. Observing Fig. 4.3: 1) The value of (1 � �) represents the

proportion of Cauchy smoothing employed in CauchyGCN, whereas � denotes the

percentage of Laplacian smoothing. Generally, the presence of more colored cubes

compared to uncolored ones suggests that CauchyGCN is readily adjustable for supe-

rior performance over GCN. Notably, the best performance of CauchyGCN emerges

when [�1,�2] being [0.5, 0.4] on Cora, [0.3, 0.4] on CiteSeer, [0.3, 0.6] on PubMed,

[0.3, 0.7] on Wiki-CS, and [0.3, 0.7] on Coauthor-CS, illustrating a significant reliance

and need for Cauchy smoothing in preserving local smoothness. 2) All experiments

have a Cauchy-based clustering analysis since the tuned value of � and  are greater

than 0. GCN with clustering analysis, the special case wherein [�1,�2] = [1, 1], un-

derperformed CauchyGCN but outperformed or equal to GCN without clustering

analysis. This observation underscores the e↵ectiveness of both the Cauchy-based

message-passing scheme and the clustering analysis in CauchyGCN.

4.4.5 Robustness Analysis with Graph Structure Attacks

We assess the robustness of CauchyGCN under adversarial attacks [61] on graph

structure with varying perturbation ratios. The experimental results, as illustrated

in Figure 4.4, encompass di↵erent methods evaluated under perturbation rates of

0%/5%/10%/15%/20%. Note that the outcomes for the 0% perturbation rate are not

directly comparable to those in Table 4.1 due to di↵ering data splitting techniques.

For this study, node is randomly split as 10% for training, 10% for validation, and

80% for testing. The findings from Figure 4.4 indicate the superior performance of

CauchyGCN over GCN and ElasticGNN, attributed to the Cauchy smoothing. It

e�ciently identifies proximal neighbors and preserves local smoothness, even when

confronted with noisy and irregular neighboring information.



54

Figure 4.4.: Classification accuracy (%) under di↵erent perturbation rates of adversarial

graph attack.
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4.4.6 Analysis of the Propagation Depth

Figure 4.5.: Analysis of the propagation depth of baselines vs CauchyGCN.

GCN is considered a shallow method, utilizing two graph convolutional layers.

This means that GCN updates the central node by aggregating information from

its neighbors and neighbors’ neighbors, resulting in a two-hop propagation step.

When extending to consider more than two-hop neighbors, GCN encounters the

challenge of over-smoothing the features [8, 49]. To address this challenge, PPNP

introduced to predict before propagating, using weight sharing to tackle the issue.

Di↵erent from GCN-like method in Eq.(4.1), a PPNP-like method is expressed as

H = Propagation
D⇣

x(0)
i
⇥(0)

⌘
⇥(1), K,⇤

E
, where ⇤ is the set of hyperparameters for

the message-passing scheme, k denotes the propagation depth, and
⇣
x(0)
i
⇥(0)

⌘
⇥(1) sig-

nifies the predict representation, which is then passing to propagation step. However,
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PPNP-like methods with propagation stepK > 2, such as APPNP and GNN-LF/HF-

iter, did not demonstrate monotonic increasing performance with deeper propagation

in their paper. This suggests that considering more than two-hop neighbors does not

promise an improved performance.

We conducted experiments with the PPNP-like methods, including APPNP, GNN-

HF, and ElasticGNN, as well as a reconstructed PPNP-like GCN, varying the value

of K 2 [1, 2, 4, 6, 8, 10]. Figure 4.5) illustrates the average testing classification ac-

curacy over 10 runs with respect to the K-hop propagation. The upper limit of the

y-axis in panels (a), (c), and (d) represents the accuracy of the shallow CauchyGCN,

while in panel (b), it corresponds to the highest accuracy of GNN-HF at 10 hops.

APPNP and GNN-HF are out-of-memory after 2-hop propagation when testing with

PubMed and Cauother-CS, preventing us from reporting their corresponding results

for comparison. Now, we analyze their performances alongside the shallow (K = 2)

CauchyGCN’s performance that is shown in Table 4.1. Among the methods tested

on the Cora and CiteSeer datasets, all except for GNN-HF showed convergence in

performance after the two-hop propagation, while GNN-HF displayed continuously

improving performance as the K-hop propagation increased. Notably, GNN-HF also

outperformed CauchyGCN on the CiteSeer dataset at the two-hop propagation step,

as illustrated in Table 4.1. Moreover, methods tested on PubMed underperform the

CauchyGCN. Methods tested on Coauthor-CS also underperform the CauchyGCN,

with a special phenomenon of monotonically decreasing performance as K-hop in-

creases. Based on the above analysis, we design CauchyGCN as a GCN-like shallow

method.

4.5 Chapter Summary

Unlike the augmented graph structure approach presented in Chapter 3, this chap-

ter introduces CauchyGCN, which utilizes the default graph structure but prioritizes

nodes with similar embeddings as more informative. CauchyGCN develops a new

layer-wise message passing scheme that follows the properties of the Cauchy distribu-
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tion, preserving smoothness between closely embedded nodes while penalizing distant

1-hop neighbors less severely. Meanwhile, the Cauchy-based unsupervised clustering

analysis enhances intra-class smoothness in the output layer, thereby simultaneously

improving the classifier’s ability to learn both local and global smoothness. Extensive

experiments on node classification demonstrate the e↵ectiveness of CauchyGCN, em-

phasizing the importance of preserving local smoothness and capturing informative

information that extends beyond immediate neighbors.
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CHAPTER 5

TRANSFORMER WITH TOPOLOGICAL FEATURES: A

ROBUST APPROACH FOR LONG-RANGE

DEPENDENCY REASONING IN GNNS

Due to neighboring nodes not always sharing the same class, multi-layer GNNs for

learning multi-hop neighbors struggle to capture long-range dependencies and ex-

press complex relationships within graphs. Recently, incorporating Transformers into

GNNs, i.e., Graph Transformers (GT), has significantly addressed these challenges.

Specifically, the combination of a Transformer encoder layer with a graph convo-

lution layer allows nodes to attend to long-range dependencies without structural

inductive bias. However, the self-attention mechanism in GT primarily focuses on

node features and local substructures, often neglecting the crucial high-order connec-

tivity patterns of the graph, i.e., topological features. In this chapter, we introduce

Topology-Induced Graph Transformer (TOPGT) that addresses this gap. TOPGT

leverages both graph convolution and Transformer layers to learn the local topological

features of the graph, enhancing the expressiveness of GNNs concerning these features.

Experiments on graph classification tasks on various benchmark datasets show that

TOPGT achieves highly competitive results on all datasets and demonstrates the

significant advantages of leveraging the topological information of the graph data in

feature space and the powerful learning ability based on the transformer architecture.

5.1 Introduction

Recently, Transformer-based models [62–68] have shown promising results in NLP [69]

and CV [70] tasks, allowing long-range dependencies to be learned and achieving

permutation-invariant attention, motivate the exploration of their potential to address

analogous limitations in GNNs [71–76]. In particular, the self-attention mechanism

in Transformers o↵ers two key benefits. On the one hand, it overcomes the structural

inductive bias inherent to most GNNs, enabling capturing long-range dependencies
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and overcoming the over-smoothing [77]. This is due to the self-attention mechanism

allowing nodes to attend to other nodes over the graph during message-passing based

on specific attention scores, beyond the restriction to their immediate neighbors. On

the other hand, the self-attention mechanism o↵ers better expressiveness on the 1-WL

test in graph learning. It requires input features to be better identifiable at di↵erent

aspects of interest, including node features, edge features, and substructures [72]. The

attention scores are then calculated based on these features for better relation reason-

ing among nodes [78]. However, Transformers still struggle in graph learning, where

the limitation lies in their inability to extract and reason on the inherent high-order

topological features within the graph. As recently shown by [79–81], such topological

features, e.g., connected components and holes might be an important step in graph

knowledge discovery. For instance, persistent homology [82,83] has been used to study

the topological information encoded in the graph [84–86]. Yet, these ideas have never

been applied in graph representation learning via Transformer-based architecture.

5.2 Background

5.2.1 Topological Data Aanlysis

Persistent homology (PH) [87,88] is a suite of tools within Topological Data Anal-

ysis (TDA) that has shown great promise in a broad range of domains including

bioinformatics, material sciences, and social networks [89]. One of the key benefits

of PH is that it can capture subtle patterns in the data shape dynamics at multiple

resolution scales. PH has been successfully integrated as a fully trainable topolog-

ical layer into various machine learning and deep learning models [90], addressing

such tasks as node classification [91], link prediction [92], molecules and biomolecular

complexes representation learning [93], graph classification [94], and spatiotemporal

prediction [95]. For instance, [96] builds a neural network based on the DeepSet ar-

chitecture [97] which can achieve end-to-end learning for topological features. [93] in-

troduces multi-component persistent homology, multi-level persistent homology, and

electrostatic persistence for chemical and biological characterization, analysis, and
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modeling by using convolutional neural networks. [98] proposes a trainable topologi-

cal layer that incorporates global topological information of a graph using persistent

homology. However, to the best of our knowledge, PH has not yet been employed for

Transformer-based models.

Inherently, PH is a subfield in computational topology that allows us to retrieve

the evolution of the inherent shape patterns in the data along various user-selected

geometric dimensions [99, 100]. Broadly speaking, by “shape” here we mean the

properties of the observed object that are preserved under continuous transformations,

e.g., stretching, bending, and twisting. (The data can be a graph, a point cloud in

Euclidean space, or a sample of points from any metric space). Since one of the

most popular PH techniques is to convert the point cloud to a distance graph, for

generality we proceed with the further description of PH on graph-structured data.

By using a multi-scale approach to shape description, PH enables to address the

intrinsic limitations of classical homology and to extract the shape characteristics

that play an essential role in a given learning task. In brief, the key idea is to choose

some suitable scale parameters ↵ and then to study changes in homology that occur

to G which evolves with respect to ↵. That is, we no longer study G as a single

object but as a filtration G↵1 ✓ . . . ✓ G↵n = G, induced by monotonic changes of ↵.

To make the process of pattern counting more systematic and e�cient, we build an

abstract simplicial complex K (G↵j) on each G↵j , resulting in filtration of complexes

K (G↵1) ✓ . . . ✓ K (G↵n). For instance, we can select a scale parameter as a shortest

(weighted) path between any two nodes; then abstract simplicial complex K (G↵⇤)

is generated by subgraphs G
0
of bounded diameter ↵⇤ (that is, (k � 1)-simplex in

K (G↵⇤) is made up by subgraphs G
0
of k-nodes with diam(G

0
)  ↵⇤). If G is an

edge-weighted graph (V , E , w), with the edge-weight function w : E 7! R, then for

each ↵j we can consider only induced subgraphs of G with maximal degree of ↵j,

resulting in a degree sublevel set filtration.

Equipped with this construction, we trace data shape patterns such as indepen-

dent components, holes, and cavities which appear and merge as scale ↵ changes (i.e.,

for each topological feature ⇢ we record the indices b⇢ and d⇢ of K (Gb⇢) and K (Gd⇢),
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where ⇢ is first and last observed, respectively). We say that a pair (b⇢, d⇢) represents

the birth and death times of ⇢, and (d⇢ � b⇢) is its corresponding lifespan (or persis-

tence). In general, topological features with longer lifespans are considered valuable,

while features with shorter lifespans are often associated with topological noise. The

extracted topological information over the filtration {K↵j} can be then summarized

as a multi-set in R2 called persistence diagram (PD) D = {(b⇢, d⇢) 2 R2 : d⇢ > b⇢}[�

(here � = {(t, t)|t 2 R} is the diagonal set containing points counted with infinite

multiplicity; including � allows us to compare di↵erent PDs based on the cost of the

optimal matching between their points).

Finally, there are multiple options to select an abstract simplicial complex K [101].

Due to its computational benefits, one of the most widely adopted choices is a Vietoris-

Rips (VR) complex. However, the VR-complex uses the entire observed data to de-

scribe the underlying topological space and, hence, does not e�ciently scale to large

datasets and noisy datasets. In contrast, a witness complex captures the shape struc-

ture of the data based only on a significantly smaller subset Lv ✓ V , called a set of

landmark points. In turn, all other points in V are used as “witnesses” that govern

which simplices occur in the witness complex.

5.2.2 Graph Transformers

Studies on GT can be broadly categorized into two main approaches. Posi-

tional/Structural Encoding (PE/SE): This approach involves designing manual or

learnable PE/SE schemes to inject graph structure information into the Transform-

ers [71, 74, 102–108]. For instance, Graphormer [74] proposes three manual SEs:

centrality encoding to capture a node’s importance within a graph, spatial encod-

ing to represent a node’s relative position to others, and edge encoding to capture

information about the graph connectivity. Similarly, SAN [104] utilizes a man-

ual Laplacian eigenvectors PE to provide information about a node’s global posi-

tion. Extending to manual PE/SE, RWPE [102] leverages a trainable parameter to

learn a random-walk PE. GNN and Transformer Integration: This approach focuses
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on combining GNNs and Transformers to leverage the strengths of both architec-

tures [72, 73, 77, 78, 109, 110]. Examples include GraphTrans [73] stacks Transformer

layers on the top of GNN layers, GPS [72] utilizes a parallel architecture where GNN

and Transformer layers are trained independently before fusing their representations,

GraphiT [109] encodes graph kernel into the self-attention mechanism, SAT [78] en-

hances the graph kernel for better subgraph structure attention, and LGI-GT [77]

interleaves GNN and Transformer layers. Our proposed TOPGT falls into both cat-

egories and bridges them. TOPGT introduces a topology-induced SE module to

encode and capture the node connectivity on topological features. Additionally, it

leverages the graph kernel approach proposed by GraphiT to refine the self-attention

mechanism in Transformers. As a result, TOPGT not only to attend to the node fea-

tures and subgraph structures but also to higher-order topological features inherent

in the graphs.

5.3 Topology-Induced Graph Transformer

TOPGT’s core concept is to leverage global attention for topological information.

Section 5.3.1 outlines the process of extracting topological features for each node

and constructing a topological connectivity matrix for each graph. In Section 5.3.2,

we explain how to integrate this topological information into a structural encoding

scheme. Section 5.3.3 details how the extracted topological information is applied

to the global self-attention mechanism. Figure 5.1 provides a visual overview of the

TOPGT architecture.

5.3.1 Topological Information Extraction

Topological information extraction (TIE) involves a three-step process to identify

intrinsic high-order connectivity patterns (i.e., topological features) within the graph:

(1) define a q-hop subgraph for each node (where q � 1), (2) compute the persistence

diagrams of each subgraph via the PH, and (3) determine the topological connection

pattern for any pair of nodes based on the similarity between their corresponding
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Figure 5.1.: Overview of the architecture of Topology-Induced Graph Transformer.

persistence diagrams. Figure 5.2 shows the top-view of the topological information

extraction.

To explore the topological features of each node, we focus on its local connec-

tions, represented by subgraphs. This approach o↵ers two key advantages: First, we

capture the most relevant context for each node by concentrating on local topologi-

cal information. Second, we identify recurring patterns within similar substructures

across the entire graph, which is beneficial for self-attention mechanisms. Specifically,

we define a q-hop subgraph centered at each node v, denoted as Gq

v
= (Vq

v
, Eq

v
) ✓ G.

These subgraphs include the neighbors of the node v within a maximum distance of q-
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Figure 5.2.: Topology-induced connectivity learning (TICL) module.
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hops along the shortest paths. Once we identify the neighboring nodes Vq

v
connected

to the node v, we assign weights to the edges E
q

v
based on the features exhibited

by the neighboring nodes. The weighted edge matrix Ẽ
q

v
, is computed as follows:

kXui �Xujk/f0, 8ui, uj 2 V
q

v
. Finally, we denote the weighted q-hop subgraph of the

node v as G̃q

v
= (Vq

v
, Ẽq

v
).

The topology-induced connectivity learning (TICL) module is designed to learn

connectivity information from the topology-based perspective. For each node v, we

compute a persistence diagram, DgG̃q
v
= PH(G̃q

v
), from its weighted q-hop subgraph G̃

q

v
.

We consider various topological estimation techniques, including VR-complexes and

weak and strong witness complexes. For the witness complex, to choose landmarks,

we establish their selection criteria from the top-⌧ (in %) of the node degree ranking.

By analyzing DgG̃q
v
, we can understand the underlying topological features within the

subgraph G̃
q

v
centered around node v. To construct the topology-induced connectivity

of the entire graph G, we utilize the persistence diagrams DgG̃q
v
extracted from each

node’s weighted q-hop subgraph. These persistence diagrams capture the topological

features of G̃q

v
, and nodes with similar persistence diagrams are likely to share similar

underlying topological properties.

Let DgG̃q
v
and DgG̃q

u
be the persistence diagrams for subgraphs G̃

q

v
of the node v

and G̃
q

u
of the node u, respectively. The distance between these persistence diagrams,

denoted by Wp(DgG̃q
v
,DgG̃q

u
), is calculated as follow:

Wp(DgG̃q
v
,DgG̃q

u
) = inf

�2�

0

@
X

(x,y)⇠�

kx� ykp1

1

A
1/p

, (5.1)

where 1  p  1, and � refers to the set of all couplings in the two input persis-

tence diagrams. In addition, we also show that the vectorization function ' of the

persistence diagram is stable as follows.

Theorem of stability of topological summaries: We let X+ and X� be two shape

objects and let ' be a stable parameter vectorization with the stability equation.

d('(X+),'(X�)))  C' · Wp'(DgX+ ,DgX�), (5.2)
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where '(X±) denote the corresponding vectorizations for Dg
X± , C' denotes a con-

stant.

The proof of the theorem of stability of topological summaries: Let Dg
X+ =

{q+
j
}[�+ (where q+

j
= (b+

j
, d+

j
) 2 Dg

X+) and Dg
Xt�

= {qt
�
j
}[�� where �+ and ��

represent the diagonal with infinite multiplicity of Dg
X+ and Dg

X� respectively, and

q+
j
and q�

j
represent the birth and death times a hole �j in X+ and X� respectively.

Let ⌥ : Dg
X+ 7! Dg

X� represent a bijective matching. Then the p-th Wasserstein

distance can be defined as

Wp'(DgX+ ,DgX�) = min
⌥

(
X

j

||q+
j
�⌥(q+

j
)||p1)

1
p , p 2 Z+.

Then, a persistence vectorization '(Dg
X+) is stable if d('(Dg

X+),'(DgX�))  C' ·

Wp'(DgX+ ,DgX�), and the constant C� > 0 is independent of X+ and X�. Note

that C' > 0 is independent of X±. The above stability inequality interprets that as

the changes in the vectorizations are bounded by the changes in PDs.

Inherently, we consider nodes to be similar based on their topological features

if the Wasserstein distance Wp(·, ·) between their persistence diagrams falls below a

threshold value r (where r 2 [0, 1]). Based on these similarities, we then can con-

struct the topology-induced connectivity matrix E
topo
2 RN⇥N , which is formulated

as follows:

E
topo

vu
=

8
><

>:

1, if 0 Wp(DgG̃q
v
,DgG̃q

u
) < r ,

0, otherwise,
8 v, u 2 V . (5.3)

In summary, the set of topology-induced edges E
topo reveals the underlying connec-

tivity among nodes, reflecting their intrinsic high-order connectivity patterns within

a localized subgraph through the TICL.

5.3.2 Topology-Induced Structural Encoding

While existing graph transformers aim to overcome the 1-WL test from the struc-

tural inductive bias when learning long-range dependencies, PE/SE remains a cru-
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cial module to provide access to the canonical relative positions of nodes within the

graph [72,102]. Analogous to how word order and surrounding words o↵er context for

a word’s meaning in NLP, PE/SE helps graph transformers understand the distance

and structural similarity between nodes based on their relative positions/structure

within the graph. Note that existing PE/SE schemes mainly rely on the pre-defined

graph attributes, e.g., [102] accesses relative positions via random walks on adja-

cency matrices, and [74] accesses the relative structure through a learnable degree

centrality. However, such approaches mostly overlook the richer set of high-order re-

lationships and topological connection patterns, i.e., failing to capture node positions

and structures.

Here, topology-induced structural encoding (TOP-SE) is introduced to investi-

gate nodes’ substructures deeply and comprehensively. It enables unique encoding of

each node’s positions/structures that access the topological connectivity within s-hop

distance,

SEtopo

v
= [(W topo

R
)1
vv
, (W topo

R
)2
vv
, . . . , (W topo

R
)s
vv
] 2 R1⇥s. (5.4)

Instead of using one-hot encoding which can become computationally expensive at

O(N2), our TOP-SE draws inspiration from RWPE [102]. It defines a random walk

di↵usion process on the graph’s topological connectivity, i.e., ((W topo

R
)vv). This o↵ers

lower complexity at O(sN), where s represents the walk length and is much smaller

than the number of nodes, s ⌧ N and (W topo

R
)vv represents a random walk on E

topo

(here we find the optimal hyperparameter s via cross-validation). The random walk

strategy explores the node’s topological neighborhood, reaching nodes that are close

together in the topological space, before eventually returning to the starting node it-

self. Formally, the random walk transition matrix is defined asW topo

R
= E

topo(Dtopo)�1,

where D
topo
2 RN⇥N is a diagonal matrix represents node degree of the topological

information in E
topo. Moreover, the walk length s can be set to the average number of

nodes per graph in the dataset for simplicity. Alternatively, for optimal performance

on specific datasets, s can be tuned within the furthest topological reach of a node.

This involves a trade-o↵ between latency and context captured. A smaller s o↵ers

lower computational cost but may miss long-range dependencies; conversely, a larger
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s allows richer context but comes at the expense of increased parameters, processing

time, and potentially high sparsity in SEtopo.

To this end, the generalization of SEtopo is crucial because the underlying topo-

logical features captured in E
topo can be sparse and vary even among graphs from the

same distribution. Thus, we enable a learnable TOP-SE to learn a more generalized

representation of SEtopo and test on the later unseen graphs, which improves the

ability to handle the inherent variability of topological information,

SEtopo = SEtopo⇥>
pe
+ bpe, (5.5)

where ⇥pe 2 Rfm⇥s is a learnable embedding matrix, and bpe 2 Rfm is an optional

bias term with the output dimension fm. To fuse the SEtopo with node features, we

consider additive fusion and concatenation as the primary methods in our TOPGT

model.

5.3.3 Topology-Aware Self-Attention Mechanism

A typical transformer layer consists of a self-attention layer followed by a skip-

connection and a feed-forward network. GT leverage the power of Transformer layers,

particularly the self-attention layer, to overcome the limitation of GNNs in processing

information only among immediate neighbors. Because the self-attention layer where

allows nodes to attend to all other nodes in the graph, its capability has fueled

research into using self-attention for various features within the graph, including

node features [72, 73, 77,109], edge features [71, 77], and substructures [78].

The self-attention mechanism in TOPGT is designed to capture both the above-

mentioned features and the high-order topological features of the graph. To achieve

this, we propose the topology-aware self-attention mechanism, which is a kernel

smoother approach inspired by [78, 109]. Specifically, the key features we want the
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self-attention mechanism to attend to are encoded in X̃ 0
v
. These features are typically

obtained through a GNN layer,

X̃ 0
v
= GNN(X 0, Ẽ 0q

v
),

Ẽ 0q
v
= {1(v,u)2Eq

v
, 1(v,u)2Etopo},

X 0 = X⇥>
embed

+ PE + SEtopo,

(5.6)

where Ẽ 0q
v
represents both the local context-induced and topology-induced connec-

tivity, X 0 denotes a composed embedding, which incorporates the node feature (em-

bedded with matrix ⇥embed 2 Rfm⇥N), the positional encoding PE (we allow any

positional encoding to apply here), and the topological-induced structural encoding

SEtopo (defined in Eq. (5.5)). Then, the similarity between nodes based on these key

features is calculated as:

evu =
h⇥QX̃ 0

v,⇥KX̃ 0
u
ip

fQK

. (5.7)

Here, we define ⇥Q as the trainable projection matrix for the central node and ⇥K as

the trainable projection matrix of the other nodes. Both matrices have a dimension of

N ⇥fQK to facilitate the dot production (denoted by h· , ·i). The resulting similarity

score is then scaled by the square root of fQK . Finally, the self-attention mechanism

is defined as:

Att(v) =
X

u2Nq
v

exp(evu)P
j2Nq

v
exp(evj)

f(X 0
u
) . (5.8)

The final attention reflects on the X 0 with a trainable projection f(X 0) = X 0⇥V ,

where ⇥V 2 RN⇥fQK has the identical parameter size as ⇥Q and ⇥K .

5.4 Empirical study

We evaluate the performance of our proposed TOPGT for graph classification

tasks. We first compare its performance to the state-of-the-art baselines. Next,

we delve deeper into TOPGT by conducting ablation studies on the three design

components discussed in Section 5.3. Finally, we study the robustness of our TOPGT

model on graphs with structure noise (i.e., edge-noisy graphs).
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We evaluate the performance of TOPGT on a comprehensive set of 13 cross-

domain graph benchmarks, including (i) 9 small-scale benchmarks, each containing

hundreds of graphs, facilitating rapid testing and ensuring TOPGT does not overfit to

limited data. This includes chemical compounds BZR, BZR MD, COX2, COX2 MD,

and DHFR from [111], where nodes are atoms and edges represent di↵erent chemical

bond types, and molecular compound datasets PTC [112] study carcinogenicity on

rodents with four experimental groups, female rats (FR), male rats (MR), female

mice (FM), male mice (MM); (ii) 3 medium-scale benchmarks, each containing thou-

sands of graphs, including PROTEINS [113], which focuses on protein structure, with

nodes representing secondary structure elements and edges indicating connections be-

tween neighboring amino acids or three-nearest neighbors that are spatially closed.

NCI1 and NCI109 [114] study the activity of anti-cancer drugs on non-small cell

lung cancer (NCI1) and ovarian cancer (NCI109); (iii) one large-scale benchmarks

from the Open Graph Benchmark (OGB) to assess TOPGT’s scalability. OGBG-

CODE2 [115] focuses on code summarization, involving 452,741 graphs representing

Abstract Syntax Trees of Python code. To ensure fair evaluation, we employ dif-

ferent data split strategies. For small-scale benchmarks and PROTEINS, we use

10-fold cross-validation on a 90%/10% random training/testing split [17]. For NCI1

and NCI109, we conduct 10 independent runs using an 80%/10%/10% random train-

ing/validation/testing split [77]. For large-scale benchmarks, we conduct 10 runs with

di↵erent random seeds [77] and use the default training/testing split.

Our proposed method compares with 10 state-of-the-art GNNs and graph trans-

formers: (i) 3 pure GNNs: These methods rely on messaging-passing for information

propagation within the graph. We compare against the Graph Convolutional Net-

work (GCN) [14], which focuses on layer-wise distant neighbor penalization, Graph

Isomorphism Network (GIN) [17] that allows learnable weights for the central nodes

during message passing, and Long-Range Graph Neural Networks (LRGNN) [20], a

deep stacked GNNs with adaptive skip connection schemes for capturing long-range

dependencies; (ii) 3 GNNs with topological learning: These methods explicitly in-

corporate topological information. We evaluate against Topological Graph Neural
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Networks (TOGL) [98] that enhances learning with a topological layer for capturing

global topological information of graphs, Tensor-view Topological Graph Neural Net-

work (TTG-NN) [116] that captures Tensor-view Topological information and Tensor-

view Graph structure information, and Wit-TopoPool [117] that leverages topolog-

ical pooling and witness complex-based topological embeddings; (iii) 4 GNNs with

Transformers: We compare against GraphTrans [73] that stacks multi-layer GNNs

with multi-layer Transformers, structure-aware graph transformer (SAT) [78]that use

graph kernel transformer approach for structure attention, Local and global oper-

ators interleave GT (LGI-GT) [77] that interleaves GNN layers with Transformers,

and Graphormer-SPIS [118] that explores the structural power of graph Transformer

though global Weisfeiler-Lehman test.

All experiments are conducted on an NVIDIA Quadro RTX 8000 GPU with 48GB

of memory. We perform a limited hyperparameter search to ensure training e�ciency

and keep the model simple. TOPGT is trained end-to-end using the AdamW op-

timizer with a set-tuned learning rate {0.0001, 0.0005, 0.001, 0.005}. The training

process minimizes the cross-entropy loss function to find the optimal model param-

eters. We set the search depth of the q hop subgraph to be q = 3. We provide

more experimental results of parameter sensitive analysis in Appendix B3. For po-

sitional encoding based on the adjacency matrix, we utilize the Random Walk PE

(RWPE) [102]. The initial dimension of both RWPE and our TOP-SE is set equal to

the input feature dimension of the nodes.

5.4.1 Graph Classification Results

Table 5.1 and Table 5.2 show the performance of TOPGT against other SOTA

methods on small-scale and medium-scale benchmarks, respectively. All results were

generated using the same data configuration for consistency. For TOGL, TTG-NN,

Wit-TopoPool, GraphTrans (benchmarks NCI1 and NCI109), LGI-GT (benchmarks

NCI1 and NCI109), and Graphormer-SPIS the reported statistics are from their orig-

inal papers. The statistics for GCN and GIN are obtained from [117]. We implement
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and evaluate the remaining methods using the best hyperparameters in their respec-

tive GitHub repositories. Our results show that no single baseline consistently out-

performs all other baselines. The dashed results in Table 5.1 and Table 5.2 highlight

some baselines that outperform others on a specific dataset. For example, LRGNN,

a pure GNN with adaptive skip connections to preserve local structure, achieves the

best performance on COX2. Wit-TopoPool, a GNN-based model with a topological

pooling layer to capture local topology, achieved the best performance on PTC MM

and PROTEINS. Finally, SAT, a Transformer-based model that employs transformers

with global attention to local subgraphs, achieved the best results on eight bench-

marks. In particular, TOPGT surpasses all baselines in all 12 datasets. In particular,

TOPGT achieves significant SOTA performances of 86.60% on NCI1 and 84.84% on

NCI109, demonstrating its generalization e�ciency and scalability. Table 5.3 presents

our results on the large-scale benchmark OGBG-CODE2, in terms of the mean F1

score ± standard deviation of 10 runs. Given the computational complexity of topol-

ogy computation algorithms, we restrict TICL to the testing set. We observe that

TOPGT outperforms all baselines except K-Subtree SAT, and achieves competitive

performance compared to K-Subtree SAT.

Table 5.1.: Comparison of TOPGT with baselines on 9 small-scale benchmarks.

Datasets

Method COX2 COX2 MD PTC FR PTC MR PTC FM PTC MM BZR BZR MD DHFR

GCN [14] 76.53 ± 1.82 - 69.80 ± 4.40 62.26 ± 4.80 62.39 ± 0.85 67.80 ± 4.00 79.34 ± 2.43 - 74.56 ± 1.44

GIN [17] 80.30 ± 5.17 - 66.97 ± 6.17 64.60 ± 7.00 64.19 ± 2.43 67.18 ± 7.35 85.60 ± 2.00 - 82.20 ± 4.00

LRGNN [20] 88.54 ± 3.84 76.95 ± 4.87 74.21 ± 4.87 70.35 ± 3.55 - 76.76 ± 4.98 - - 87.24 ± 5.08

TTG-NN [116] 86.73 ± 3.41 - 73.23 ± 3.91 68.91 ± 4.02 69.33 ± 2.09 74.11 ± 4.57 87.40 ± 2.62 - 78.72 ± 5.33

Wit-TopoPool [117] 87.23 ± 3.15 - 75.00 ± 3.51 70.57 ± 4.43 71.71 ± 4.86 79.12 ± 4.45 87.80 ± 2.44 - -

GraphTrans [73] 84.80 ± 2.76 77.59 ± 4.65 73.80 ± 3.45 72.66 ± 4.68 71.62 ± 3.44 75.62 ± 3.02 88.86 ± 3.92 77.59 ± 4.65 77.12 ± 3.39

SAT [78] 88.23 ± 3.83 77.45 ± 4.98 76.37 ± 3.22 73.63 ± 3.95 72.36 ± 2.07 77.09 ± 4.87 90.23 ± 3.35 78.42 ± 7.39 87.31 ± 3.81

LGI-GT [77] 87.58 ± 2.96 73.95 ± 3.87 - - - - 89.39 ± 3.64 78.08 ± 5.51 -

Graphormer-SPIS [118] 83.22 ± 2.25 - - 69.28 ± 5.34 - - - - -

TOPGT (ours) 89.74 ± 3.25 78.61 ± 6.41 78.89 ± 4.16 74.13 ± 4.21 72.49 ± 2.16 79.23 ± 4.62 92.34 ± 2.50 79.88 ± 6.97 88.84 ± 3.54
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Table 5.2.: Comparison of TOPGT with baselines on 3 medium-scale benchamrks.

Datasets

Method PROTEINS NCI1 NCI109

GCN [14] 70.31 ± 1.93 80.72 ± 2.03 81.70 ± 1.85

GIN [17] 76.16 ± 2.76 - -

LRGNN [20] 78.93 ± 4.11 - -

TOGL [98] 76.00 ± 3.90 75.80 ± 1.80 -

TTG-NN [116] 77.62 ± 3.92 - -

Wit-TopoPool [117] 80.00 ± 3.22 - -

GraphTrans [73] 78.17 ± 4.33 82.60 ± 1.20 82.30 ± 2.60

SAT [78] 78.48 ± 3.30 83.66 ± 0.89 83.69 ± 0.72

LGI-GT [77] - 82.18 ± 1.90 83.36 ± 1.89

Graphormer-SPIS [118] 79.41 ± 1.46 - -

TOPGT (ours) 80.01 ± 3.30 86.60 ± 0.72 84.84 ± 0.92

Table 5.3.: Comparison of TOPGT with baselines on a OGBG benchmark.

Datasets

Methods OGBG-CODE2

GCN [14] 0.1507 ± 0.0018

GCN+virtual node [14] 0.1595 ± 0.0018

GIN [17] 0.1495 ± 0.0023

GIN+virtual node [17] 0.1581 ± 0.0026

Transformer [102] 0.1670 ± 0.0015

GraphTrans [73] 0.1830 ± 0.0024

K-Subtree SAT [78] 0.1937 ± 0.0028

GPS [72] 0.1894 ± 0.0024

TOPGT 0.1932 ± 0.0013
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5.4.2 Ablation Studies

To gain deeper insights into the contributions of key components of our TOPGT

for graph classification tasks, we conduct ablation studies on di↵erent simplicial com-

plexes and PE/SE strategies.

Table 5.4.: Ablation study of di↵erent simplicial complexes.

Datasets

Simplicial Complexes COX2 PTC MR BZR DHFR PROTEINS NCI1

vietoris–rips 89.74 ± 3.25 74.13 ± 4.21 91.72 ± 3.34 88.10 ± 3.81 80.01 ± 3.30 86.27 ± 0.84

weak witness 88.44 ± 3.66 73.85 ± 2.83 92.34 ± 2.50 87.84 ± 3.45 79.60 ± 3.13 86.60 ± 0.72

strong witness 88.56 ± 4.08 73.44 ± 3.45 90.36 ± 2.03 88.84 ± 3.54 79.74 ± 3.16 86.54 ± 0.91

We conduct an ablation study on three di↵erent simplicial complexes, i.e., VR-

complex, strong witness complex, and weak witness complex. Experiments are con-

ducted across 6 datasets. While pinpointing the single best type of simplicial complex

is beyond the scope of this work, the trade-o↵s are worth noting. Specifically, the VR-

complex can capture the overall shape of the noise-free graph, whereas the witness

complex is less sensitive to noise. However, performing Exploratory Data Analysis

(EDA) to distinguish noise from graph features becomes challenging due to the com-

plex structure of a graph. Note that, our primary objective here is to demonstrate

that incorporating topological information can enhance graph representation learn-

ing compared to baselines. As shown in Table 5.4, all PH-based models consistently

outperform all baselines presented in Table 5.1 and Table 5.2.

To evaluate the e↵ectiveness of TOP-SE in TOPGT, we conduct an ablation study

with four variants: (i) without PE/SE, (ii) RWPE, (iii) TOP-SE, and (iv) RWPE +

TOP-SE. Table 5.5 shows the best performance achieved after tuning various types

of simplicial complex and learning rates in the range {0.0001, 0.0005, 0.001}. We can

observe that, as ablating the PE/SE module (variant (i)), it leads to the lowest per-

formance which aligns with the findings of [72, 102]. While RWPE captures relative

node positions and TOP-SE captures the topological connection patterns of nodes,

they are not inherently subsets of each other and can capture complementary infor-
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mation. The combination of RWPE and TOP-SE (variant (iv)) leads to performance

improvements of up to 2% (on PTC MM).

Table 5.5.: Ablation studies of di↵erent learnable positional encoding methods.

Datasets

PE/SE COX2 PTC MM BZR DHFR

NONE 86.10 ± 2.24 76.06 ± 4.45 89.86 ± 2.86 87.51 ± 4.54

RWPE 88.35 ± 3.08 77.23 ± 3.53 90.36 ± 2.89 87.64 ± 3.94

TOP-SE 88.45 ± 3.73 77.14 ± 4.69 91.71 ± 3.62 87.58 ± 4.03

RWPE + TOP-SE 89.74 ± 3.25 79.23 ± 4.62 92.34 ± 2.50 88.84 ± 3.54

In addition, we ablate specific features from the self-attention mechanism to eval-

uate the e↵ect of topology-aware self-attention in TOPGT. Table 5.6 shows that

incorporating comprehensive information, i.e., node features, structural features, and

topological features, can consistently lead to the best performance. Additionally, at-

tending to both node and topology features consistently outperforms attending only

to node features over 4 datasets. Furthermore, we notice that structural features are

also necessary, i.e., including them alongside node features improves performance on

DHFR compared to using node and topology features.

Table 5.6.: Ablation studies of self-attention mechanism on di↵erent features.

Datasets

Feature COX2 BZR DHFR PROTEINS

Node 87.80 ± 2.98 90.09 ± 2.45 86.19 ± 2.67 79.65 ± 2.98

Node + Structure 87.91 ± 2.70 92.21 ± 2.42 88.04 ± 2.98 79.33 ± 2.64

Node + Topology 88.25 ± 2.76 92.22 ± 3.11 87.25 ± 2.81 79.87 ± 2.89

Node + Structure + Topology 89.74 ± 3.25 92.34 ± 2.50 88.84 ± 3.54 80.01 ± 3.30
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5.4.3 Robustness Analysis under Edge Attack

We evaluate the robustness of our TOPGT against random edge attacks that alter

the graph structure. This attack randomly removes existing edges and adds fake edges

with varying perturbation ratios (0%, 1%, 10%, 20%). It is important to note that

due to di↵erent data splitting techniques used in this study, the results for the 0%

perturbation rate cannot be directly compared to those shown in other tables and

figures. Here we split graphs randomly with 80% for training, 10% for validation, and

10% for testing. Figure 5.3 shows the average classification accuracy of graphs (bars)

with standard deviation (error bars) for 5 runs for varying perturbation rates under

random edge attacks on COX2, PTC MR, and PROTEINS. From the table, we see

that TOPGT consistently exhibits lower variance in prediction accuracy compared

to SAT across di↵erent perturbation ratios. In summary, incorporating topological

information appears to be a key factor in achieving robustness. That is, TOPGT

leverages (local) higher-order connection patterns within the graph, leading to less

sensitivity to graph perturbations.



77

(a) COX2.

(b) PTC MR.

(c) PROTEINS.

Figure 5.3.: Graph classification accuracy for robustness analysis under edge attack.
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5.5 Chapter Summary

Motivated by the findings in Chapter 3 and Chapter 4, this chapter defines the ad-

ditional useful graph structures as topological structures and leverages a self-attention

mechanism to assess the importance of closely embedded nodes. Specifically, we in-

troduce a novel framework for graph representation learning that takes advantage

of both the topological information among the graph substructures characterized via

persistent homology and self-attention mechanisms of Transformer-based architec-

ture. By leveraging the power of the topology-aware self-attention mechanism, our

Topology-Induced Graph Transformer (TOPGT) can better capture and model local

topological and graph structural information. It has demonstrated capabilities to

yield the most competitive graph classification performance. Additionally, TOPGT

improves over the state-of-the-art graph Transformer model by significant margins

under graph structural attacks, providing more insight into the reliability and ro-

bustness of our TOPGT for graph classification.



79

CHAPTER 6

CONCLUSIONS

In this thesis, I present three approaches to address the graph structure bias in Graph

Neural Networks (GNNs) by leveraging more informative node and graph structures.

Our first approach, two-view GNNs with adaptive view-wise structure learning,

conducts graph learning on both the default graph structure and an augmented graph

structure based on node representation similarity. This dual approach enables the

model to learn more informative, view-specific node knowledge while also capturing

inter-view relationships, ultimately resulting in more accurate graph classification.

The second approach, CauchyGCN, introduces a Cauchy-based smoothing strat-

egy combined with clustering analysis that targets the preservation of local smooth-

ness. This method relaxes the strict penalization of distant embedded 1-hop neigh-

bors while imposing a stronger penalization on closely and mutually embedded nodes

beyond the 1-hop neighbor. As a result, CauchyGCN achieves competitive node

classification performance compared to state-of-the-art methods in the field.

Lastly, the third approach integrates transformers into GNNs through graph topo-

logical data analysis. In this work, we connect emerging research directions in graph

representation learning for transformer-based models with topological information.

We introduce a novel framework that enables the learning of topological informa-

tion and graph structures at both local and global levels. Ultimately, this approach

demonstrates its e�cacy and robustness through comprehensive comparisons with

state-of-the-art baselines in graph classification tasks.

For future research, we aim to explore and leverage informative node knowledge

and graph structures beyond local neighborhoods and default configurations to de-

velop large pre-trained GNNs capable of addressing a variety of downstream tasks

across di↵erent domains.
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