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Abstract

Background: Research examining the relation between spatial skills and the science, technology, engineering and
mathematics (STEM) fields has focused on small-scale spatial skills, even though some STEM disciplines—particularly
the geography and geoscience (GEO) fields—involve large-scale spatial thinking at the core of their professional
training. In Study 1, we compared large-scale navigation skills of experienced geologists with those of experienced
psychologists, using a novel virtual navigation paradigm as an objective measure of navigation skills. In Study 2, we
conducted a longitudinal study with novice Geographic Information Systems (GIS) students to investigate baseline
navigational competence and improvement over the course of an academic semester.

Results: In Study 1, we found that geologists demonstrated higher navigational competence and were more likely
to be categorized as integrating separate routes, compared to their non-STEM counterparts. In Study 2, novice GIS

students showed superior baseline navigational competence compared to non-STEM students, as well as better
spatial working memory and small-scale mental rotation skills, indicating self-selection. In addition, GIS students’
spatial skills improved more over the course of a semester than those of non-STEM students.

Conclusions: Our findings highlight the importance of large-scale spatial thinking for enrollment and success in
the GEO fields but likely also across the broader range of thinking involving spatial distributions. We discuss the
potential of GIS tools to develop spatial skills at an early age.
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Significance

People with strong spatial skills are more likely to
pursue and succeed in science, technology, engineering
and mathematics (STEM) careers. Fortunately, spatial
skills are malleable, and improvements in them are both
durable and generalizable (Uttal et al.,, 2013). Improving
spatial skills during educational training may be an
effective way of increasing a gender-balanced STEM
workforce. However, there are two gaps in current
knowledge, which the current research addresses. First,
existing research focuses almost exclusively on small-scale
spatial skills, leaving a gap in our understanding of the re-
lation between large-scale navigation skills and STEM
learning, specifically related to the Geography and Geo-
science (GEO) fields. Using a large-scale virtual environ-
ment, we tested the navigation skills of expert geologists
and compared their performance with that of expert
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psychologists. Second, there is a need for a sustainable
spatial training plan that can be integrated into class-
rooms; one possibility is the integration of Geographic In-
formation Systems (GIS) tools in STEM teaching. The
current project tested the effectiveness of GIS training in
improving spatial skills in novice students.

Background

Humans need spatial skills to survive and function in a
spatial world: to navigate from point A to point B, to
manipulate objects and to invent tools. Strong spatial
skills also predict interest and success in science,
technology, engineering, and mathematics (STEM) disci-
plines (Kell, Lubinski, Benbow, & Steiger, 2013; Shea,
Lubinski, & Benbow, 2001; Wai, Lubinski, & Benbow,
2009). However, these studies involve paper-and-pencil
assessments of “small-scale” object-based manipulations
such as mental rotation. Decades of behavioral research,
and more recent findings from neuroscience, suggest that
spatial thinking is a multidimensional construct involving
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different cognitive mechanisms and distinct neural net-
works for dealing with the space of objects (small scale) or
environments (large scale; Aguirre & D’Esposito, 1999;
Morris & Parslow, 2004; Philbeck, Behrmann, Black, &
Ebert, 2000). Thus, an important dimension to consider
when investigating the relation between STEM learning
and spatial skills is scale. An important gap in our under-
standing of the reciprocal relation between spatial skills
and STEM success involves whether large-scale spatial
skills, like small-scale skills, predict enrollment in STEM
fields and contribute to STEM success. Do good naviga-
tors make good scientists? Do good scientists develop
navigationally relevant skills?

Traditional attempts to define and categorize spatial
ability into constituent spatial skills (Carroll, 1993; Eliot,
1987; Linn & Petersen, 1985) have not highlighted the
scale distinction, likely because psychometric tests did
not really tap into large-scale skills. Montello (1993) dis-
cusses the importance of scale in understanding psycho-
logical spaces and defines four classes of psychological
spaces based on the projective and not the absolute size
of space relative to the human body—figural, vista, en-
vironmental and geographical. Small-scale spatial skills
are needed at the figural (e.g., a small object) and vista
(e.g., a single room) scales, where an individual can visu-
ally observe all spatial characteristics with minimal
movement (i.e., from a single vantage point). However,
large-scale spatial thinking comes into play at the envir-
onmental (e.g., a city) scale, where an individual may ob-
tain information about the spatial properties of the
space through considerable locomotion and at the geo-
graphical scale (e.g., a country), where direct locomotion
must be replaced by symbolic learning from maps and
models in order to obtain spatial information about the
space. If large-scale navigation skills are indeed relevant
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for success in STEM fields, they should be most relevant
in fields that require spatial reasoning on a large scale.
The core of professional training in the GEO STEM dis-
ciplines (we use GEO to encompass the geography and
geoscience disciplines that focus on spatial patterns and
include geology, geography, geographic information sys-
tems, geophysics, oceanography and atmospheric sci-
ence, among others) is engagement in spatial encoding
and transformation on an environmental and geograph-
ical scale. Thus, GEO disciplines may rely on and hone
large-scale thinking, which may not be the case in STEM
fields like chemistry and physics or even engineering. So
far, the disproportionate focus on small-scale spatial
skills and their relation to general STEM learning ig-
nores the heterogeneity of both spatial skills as well as
that of STEM training.

A more nuanced approach motivated by findings from
neuroscience and psychology (Chatterjee, 2008) is to
categorize spatial skills based on the use of intrinsic/ex-
trinsic object information and static/dynamic movement
information, as illustrated in Fig. 1 (Newcombe, 2018;
Newcombe & Shipley, 2015; Uttal et al., 2013). Common
spatial measures used to test spatial skill in the la-
boratory exist in each of the four quadrants. For ex-
ample, the small-scale spatial skill of mental rotation
involves movement (dynamic) of a single object
(intrinsic), whereas the large-scale skill of navigation
frequently involves movement (dynamic) of oneself
with respect to a set of objects (extrinsic). Research
on skills in the extrinsic—dynamic cell at the bottom
right has been largely empty.

One of the main reasons for the gap in extrinsic—dy-
namic spatial research is the challenge associated with
conducting lengthy and standardized real-world naviga-
tion experiments (Choi, McKillop, Ward & L'Hirondelle,
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Fig. 1 Categorization of spatial skills by intrinsic/extrinsic object information and static/dynamic movement information
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2006; Heth, Cornell & Alberts, 1997; Holscher, Tenbrink
& Wiener, 2011; Ishikawa & Montello, 2006; Schinazi,
Nardi, Newcombe, Shipley, & Epstein, 2013). Virtual
environment navigation paradigms overcome this
challenge. One paradigm—Virtual Silcton—has been used
with hundreds of participants of varying ages (Blacker,
Weisberg, Newcombe, & Courtney, 2017; Galati, Weisberg,
Newcombe, & Avraamides, 2017; Nazareth, Weisberg,
Margulis & Newcombe, 2018; Weisberg & Newcombe,
2016; Weisberg, Schinazi, Newcombe, Shipley, & Epstein,
2014). In Virtual Silcton, participants explore a virtual en-
vironment modeled along the lines of a college campus
comprising two main routes and two connecting routes.
Participants use computer arrow keys to navigate through
the virtual world and to learn the names and locations of
target buildings along the two main routes. Using this
methodological tool, participants exhibit large and robust
individual differences in their navigation skills. Both adults
and children can be categorized into three distinct naviga-
tor types: integrators, non-integrators and imprecise naviga-
tors. Integrators can connect different routes to create a
cognitive map of the environment; non-integrators can rep-
resent independent routes but are unable to relate them to
each other; and imprecise navigators have trouble even
representing independent routes. With this new tool, we
can now ask the question of whether large-scale spatial
skills contribute to STEM success.

In this article, we aim to address the gap in the spatial
and STEM literature by conducting two studies of GEO
disciplines to evaluate the relation between navigation
skills and experience with these kinds of science. In two
studies, we investigate individuals who differ in their
mode of learning and levels of domain expertise but
have visualization and manipulation of environmental
and geographical spaces at the core of their training.
There were two approaches, involving two designs with
two different disciplines at two different levels of expertise.
In Study 1, we investigated large-scale navigation skills in
experienced solid earth geologists—individuals who have
acquired a master’s or Ph.D. degree in geology accompan-
ied by field experience—in contrast with psychologists
with equivalent years of experience in that field. In Study
2, we examined self-selection and learning in undergradu-
ates taking a GIS course in contrast to those selecting a
nonspatial course.

Study 1

Geology is the study of observable large-scale environ-
mental features to deduce natural events that may have
occurred over a period of millions of years. Geologists
study physical processes that span large-scale spatial
relations of tectonic plates to more microscopic
phenomenon like the spatial organization of mineral
grains (Hegarty, Crookes, Dara-Abrams, & Shipley,
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2010; Kastens, Agrawal, & Liben, 2008; Kastens et al.,
2009). Thus, one would expect that an experienced
geologist is comfortable making judgments pertaining to
spatial pattern detection and transformation associated
with geological events. However, do these domain-spe-
cific skills extend to spatial skills? Previous research has
established a connection between small-scale spatial
skills and geology training (Kali & Orion, 1996; Orion,
Ben-Chaim, & Kali, 1997; Piburn et al., 2005). In a re-
cent study, Hambrick et al. (2012) studied 67 geologists
with varying levels of experience who completed a realis-
tic bedrock-mapping task along with a battery of cogni-
tive ability tasks. The authors found that visuospatial
ability predicted performance on the bedrock-mapping
task for novice but not experienced geologists, suggest-
ing that high domain knowledge may sometimes allow
the circumvention of domain-general cognitive limita-
tions in domain-specific tasks.

In an initial study of large-scale spatial skills, Hegarty
et al. (2010) used an online questionnaire to collect
self-reports on spatial skills at different scales from 796
scientists and specialists in different disciplines. They
found that geoscientists (here, the term geoscientists re-
fers to specialists in geology, oceanography and meteor-
ology, but does not include geography or GIS) reported
the highest levels of navigational competence and confi-
dence as measured by the Santa Barbara Sense of Direc-
tion Scale (SBSOD). Geographers were a close second.
Other scientists reported lower skill levels. Although
self-reported navigation correlates with objective measures
of navigation behavior (e.g., Weisberg & Newcombe, 2016;
Weisberg et al., 2014), it is an indirect measure of ability
and it is important to determine whether geologists do in-
deed have better navigation skills.

In Study 1, we anticipated that our sample of experi-
enced geologists would point more accurately between
different points in the environment and be more likely
to be categorized as integrators, demonstrating higher
navigational competence as compared to experienced
psychologists. Thus, Study 1 addresses the gap in
spatial skills literature by directly linking large-scale
navigation skills to the GEO fields and taking the
claim beyond self-reporting.

Method

Participants

A total of 28 experienced geologists (12 female; mean (M)
age =40.7 years, standard deviation (SD)=9.7) were re-
cruited via email as well as in person at geology-centered
conferences with the goal of collecting as much data as
possible over a period of 1 year. The majority of geologists
(n=20) held a Ph.D. at the time of participation in this
study. Data were also collected from geologists who had
completed a terminal master’s program (z =5) and Ph.D.
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students nearing completion of their degree (n = 3). Geol-
ogists who had not completed a Ph.D. at the time of
this study performed as well as participants who had
completed a Ph.D., and, as such, their data were in-
cluded during analysis. All 28 geologists completed
the virtual environment navigation tasks. Eighteen ge-
ologists were also administered a psychometric meas-
ure, detailed in the following, and a questionnaire to
collect demographics, handedness, specific education
level, area of specialty and whether and how much
time they had in the field. Of the 18 geologists for
whom we have data, 17 identified as white and one
identified as mixed race.

For the expert comparison group, a total of 27
experienced psychologists (12 female; M age=37
years, SD =11.63) were recruited via email. The ma-
jority of psychologists (n=19) held a Ph.D. at the
time of participation in this study. Data were also col-
lected from psychologists who had completed a
terminal master’s program (n=4) and Ph.D. students
nearing completion of their degree (n=4). All 27 psy-
chologists completed the virtual environment naviga-
tion tasks and were also administered a psychometric
measure, detailed in the following, and a question-
naire on demographics, handedness, specific education
level and area of specialty; however, data for one
psychologist was not recorded due to a computer
crash. Of the 26 psychologists who reported on racial in-
formation, 16 psychologists identified as white, six as
Asian, one as African-American and three as mixed race.

Our larger comparison group comprised 294 under-
graduate students (168 female, two did not report gender)
between the ages of 18 and 40 years from a large urban re-
search university who participated in one of four studies
which assessed them on Virtual Silcton performance.
These data were reported previously in two manuscripts
(Weisberg & Newcombe, 2016; Weisberg et al., 2014). In
those studies, undergraduates who did not complete the
second session of any study were excluded, but all under-
graduates for whom we have Virtual Silcton data are in-
cluded here. Age was not collected. One undergraduate
identified as American Indian, 26 as Asian, two as Black/
Hispanic, 37 as Black, six as Hispanic, 10 as White, 133 as
White/non-Hispanic, six as other, four omitted this infor-
mation and data were not collected for 69. Finally, we in-
cluded the 77 geoscientists tested by Hegarty et al. (2010)
for a comparison of self-reported SBSOD scores.

The current research received the university’s Institu-
tional Review Board approval (Protocol number 13394:
‘Computer-Based Spatial Abilities’).

Materials
Geologists who were recruited via email (N =10) com-
pleted the study on their own personal computers. None
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of these participants reported any technological issues.
Geologists who were recruited at conferences (N =18)
and all other participants completed the study on a Win-
dows 10 64-bit computer. The computer had an Intel
Core i7-4720HQ CPU @ 2.60 GHz and Nvidia GeForce
GTX 960 M video card. The virtual environment (VE)
was displayed on a 34.54cm x 19.43 cm LCD monitor
with a refresh rate of 60 Hz and resolution of 1920 x
1080. The VE was modeled on a real-world college cam-
pus (Schinazi et al., 2013; Weisberg et al., 2014) using
Unity3D and Google Sketchup. The VE was designed to
replicate the saliency and spatial location of buildings
and nonbuilding objects like trees, trashcans and so
forth, without replicating the exact architecture of the
real-world structures (Schinazi et al., 2013).

Virtual environment navigation paradigm (Virtual Silcton)
Virtual Silcton is a desktop-based virtual environment
(VE) navigation paradigm. It comprises two main routes
in different areas of the same VE and two connecting
routes (see Fig. 2). Each main route consists of four
unique target buildings for a total of eight target build-
ings. In the learning phase, participants were first
instructed to learn the names and locations of each of
the eight target buildings by virtually walking along each
main route indicated by red arrows. They were told to
pay attention to the front door of each building, as that
was the specific spot they would be asked to point at
later in the experiment. Target buildings in the VE were
indicated by a blue gem hovering near the name of the
target building. The two main routes were counterba-
lanced between participants. Participants walked from
the start of each route to the end and then back to the
start; thus, each route was completed twice before mov-
ing on to the next route. They were told not to veer off
the path marked by red arrows, but that they could take
as much time as they liked on each route. Each of the
routes was surrounded by invisible walls, which kept the
participant along the arrowed routes. Participants used
the arrow keys on a computer keyboard to move along
the virtual paths and a computer mouse to look 360°
around the VE. The experimenter encouraged partici-
pants to practice using the controls and to ask clarifica-
tion questions before beginning the task. After learning
the four target buildings on each main route, partici-
pants learned how the eight target buildings were related
by walking down two connecting routes.

Before starting the two connecting routes, participants
were told that these paths would “connect” or “go in be-
tween” the first two paths they had just learned. The ex-
perimenter noted that these connecting routes would
not include any new buildings for participants to re-
member, and that instead their role was to help partici-
pants understand how the buildings related to one
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first or D first)

Fig. 2 Aerial view map of Virtual Silcton showing the two main routes (solid lines A and B), the two connecting routes (dashed lines C and D)
and the layout of buildings on each route. The letter-number combinations are used to indicate the start and end points along each of the main
and connecting routes (i.e,, participants walked from point 1 to point 2 and then back to point 1 for each of the main and connecting routes,
thus traversing each route twice). Participants had to learn the names and locations of four target buildings on each of the two main routes. The
presentation of the main routes were counterbalanced (A first or B first) and the presentation of the connecting routes were counterbalanced (C

another. Similar to the main routes, the connecting
routes were counterbalanced between participants (but
always occurred after the main routes were learned).
Participants were reminded to stay on the route marked
by red arrows and the invisible walls along the connecting
routes prevented participants from veering off-course.

In the testing phase, participants completed two
spatial tasks—a pointing task and a model-building
task—which tested the participant’s ability to create ac-
curate and integrated representations of the virtual en-
vironment. In addition to the two spatial tasks,
participants completed a cued building recognition task.

Pointing task

In the pointing task, participants were located next to
one of the eight target buildings and were prompted to
point in the direction of each of the other seven build-
ings using a virtual crosshair (see Fig. 3). Thus, three of
the seven buildings would be on the same route as that
of the participant in the VE and four buildings would be
on the second main route. Participants pointed a virtual
crosshair by rotating on the horizontal plane using the
mouse in the direction of the front door of the target
building and recorded their response by clicking. They
were instructed to point their crosshair, specifically, at
the front door of each building, and to be careful to only

click once to record their answer. This process was re-
peated for each of the eight buildings in the VE. A point-
ing error score for each participant was calculated based
on the absolute value of the participant’s answer minus
the correct answer. If that value exceeded 180, we cor-
rected it by subtracting the value from 360. Performance
on the pointing task was subdivided into a within-route
and a between-route pointing performance based on the
position of the target building in relation to the partici-
pant’s pointing location in the VE. A within-route error
score was calculated for trials in which the target build-
ing was on the same route as that of the participant. A
between-route error score was calculated for trials in
which the target building was on a different main route
to that of the participant. There were a total of 24
within-route trials and 32 between-route trials.

Model-building task

In the model-building task, participants were told that
they would construct a map of the virtual environ-
ment using a bird’s-eye view. Participants were shown
an aerial view of the eight buildings and their names
alongside a blank box on a computer screen. Partici-
pants had to drag and drop the miniature models of
the eight buildings into the blank box at spatial loca-
tions relative to each other in order to recreate a
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Fig. 3 Pointing task. Participants could rotate a virtual crosshair 360° along the horizontal plane to point in the direction of a target building

map-like representation of the virtual environment in
the blank box. A bidimensional regression analysis
(Friedman & Kohler, 2003; Tobler, 1994) was used to
calculate the R*® value for each participant. The R*
value corrects for rotational, translational and scale
differences between the participant map and the ac-
tual map, and indicates the remaining proportion of
variance in the participant’s map accounted for by the
actual map. It can be interpreted as configurational
accuracy.

Psychometric measures

The Santa Barbara Sense of Direction Scale (SBSOD;
Hegarty, Richardson, Montello, Lovelace, & Subbiah,
2002) is a self-report measure of one’s “sense of direc-
tion” or the ability to orient oneself within an environ-
ment. The measure consists of 15 items using a 7-point
Likert scale with statements such as “I very easily get
lost in a new city.”

Procedure

After consenting to participate, participants completed a
short demographic form to collect information such as
age, education level and area of expertise. Participants
then completed a computerized version of the SBSOD,
followed by the virtual environment navigation para-
digm. Participants were instructed to learn the names
and locations of the eight target buildings as they ex-
plored the two main routes and two connecting routes
in Virtual Silcton. Participants were then asked to
complete the pointing and model-building tasks. Finally,
participants were debriefed and thanked for their

participation. The entire study, from start to finish, took
approximately 45 min—1 h to complete.

Results

We first evaluated whether self-reported navigation skill
as measured by the SBSOD differed between psycholo-
gists and geologists in the current sample. We also
included the larger sample of 77 geoscientists (41 female;
M age =34.98 years, SD = 11.96) tested by Hegarty et al.
(2010) and undergraduate students tested by Weisberg
et al. (2014, 2016). As hypothesized, one-way ANOVA
revealed significant differences across the four groups,
F(3,417) =28.88, p < 0.001. A post-hoc test revealed
no significant differences in SBSOD scores between
the geologists in the current study (M =5.12, SD=1.06)
and geoscientists in the Hegarty et al. survey (M =5.50,
SD =0.86) (p =0.18, d = 0.40, Bayes factor (B) = 1.04), sug-
gesting that the current sample is not likely to be different
from the discipline at large.

There was a significant difference in scores between
the psychologists (M =4.65, SD =1.18) and the geosci-
entists (p <0.001, d=0.82), but not between the psy-
chologists and the geologists (p=0.08, d=0.42). The
psychologists did not differ in scores from the under-
graduates (M =4.35, SD=0.99, p=0.14, d=0.28), but
the undergraduates’ scores were significantly lower
than the geologists (p <0.001, d=0.74) and the geo-
scientists (p <0.001, d=124). Thus, we Ilargely
confirmed the self-reported findings of Hegarty et al.
(2010). However, do these differences in self-reports
of environmental spatial abilities extend to an object-
ive measure of navigation skill?
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Navigation performance in the virtual environment

There were significant group differences in the within-
route pointing task, F(2,345)=4.10, p=0.02, #*=0.02.
Geologists (M =16.9, SD=10.0) significantly outper-
formed undergraduate students (M =23.7, SD=11.9)
(p=0.004, d=0.62). Psychologists and undergraduate
students did not differ (p=0.82, d=0.05). However,
there were no significant differences between geologists
and psychologists (M =23.1, SD=14.5) (p=0.06, d =
0.50), although the d value is large.

There were also significant group differences in the
between-route pointing task, F(2,345) = 6.40, p = 0.002. Geol-
ogists (M =35.7, SD =19.3) significantly outperformed both
psychologists (M =46.88, SD=17.22) (p=0.005 d=0.61)
and undergraduate students (M =45.7, SD = 13.7) (p =0.001,
d =0.60). Psychologists and undergraduate students did not
differ (d = 0.07).

Finally, there were significant group differences on
the model-building task, F(2,344)=11.55, p<0.001.
Geologists (M =0.72, SD=0.22) significantly outper-
formed both psychologists (M = 0.50, SD = 0.29) (p = 0.002,
d =0.85) and undergraduate students (M = 0.47, SD = 0.26)
(p < 0.001, d =1.04). Psychologists and undergraduate stu-
dents did not differ (d =0.11).

Types of navigators

Previously we found that navigators clustered along two
dimensions—performance on within-route and between-
route pointing—into three groups (Weisberg & Newcombe,
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2016; Weisberg et al., 2014). One group performed well on
both tasks (integrators), and another performed poorly on
both (imprecise navigators). A third group performed well
on within-route pointing but poorly on between-route
pointing (non-integrators). The ratio of navigators falling
into each of these groups was approximately 1:2:1 (integra-
tors:non-integrators:imprecise navigators).

Figure 4 displays the scatter plot resulting from plot-
ting the performance on between-route trials on the x
axis and the within-route pointing performance on the y
axis. As is visually apparent, more geologists are in the
lower left of the graph, proportionally, than psycholo-
gists and undergraduate students, relative to the
lower-right and upper-right quadrants. To address this
analytically, due to the small sample size of geologists, we
used the cutoff values from the undergraduate data to de-
termine the number of participants in each navigator group
(integrator:non-integrator:imprecise navigator). This re-
sulted in a significant cluster difference between geologists
(16:10:2), psychologists (9:9:8) and undergraduate students
(84:131:79), X* (4, N = 348) = 11.88, p = 0.02, Cramer’s V=
0.13. A post-hoc test—using adjusted residuals and a
Bonferroni correction for multiple comparisons be-
tween nine cells (three groups x three types of naviga-
tors)—showed that the number of geologists
categorized as integrators (p = 0.0019) was significantly
higher than integrators among psychologists and un-
dergraduates, respectively. No other cells were signifi-
cantly different from each other.
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Fig. 4 Scatterplot of performance on between-route and within-route pointing trials grouped by geologists and non-STEM undergraduates.
Quadrants are based on cluster membership cutoff values—good between/good within (integrators), good between/bad within (non-integrators)
and bad between/bad within (imprecise navigators)—established in previous studies using Virtual Silcton (Weisberg & Newcombe, 2016;
Weisberg et al, 2014). STEM science, technology, engineering and mathematics
J
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Discussion

Study 1 broadens our understanding of the relation be-
tween spatial skills and STEM to an underinvestigated
kind of large-scale spatial reasoning, namely the extrin-
sic—dynamic spatial processes related to navigation. Our
results align with the findings of Hegarty et al. (2010) in
that geologists report significantly higher levels of navi-
gation skills as compared to psychologists who have
completed comparable years of study and experience in
the field and to non-STEM undergraduate students.
Using a virtual navigation paradigm, we found that geol-
ogists indeed exhibit higher navigational competence—
as measured by pointing and model-building tasks—as
compared to psychologists and non-STEM students.
Thus, geologists not only report higher levels of navigation
skills but also demonstrate superior navigation perform-
ance than their non-STEM counterparts, comparable in
years of professional training. The lack of significant dif-
ferences in navigation performance between psychologists
and non-STEM students further lends support to the hy-
pothesis that additional years of non-STEM education
alone do not suffice to improve large-scale spatial skills
substantially. Thus, our results provide evidence for the
link between large-scale navigation skills and training in
the GEO fields.

Such a link is not entirely surprising given the integral
nature of navigation in data collection for geology. Solid
earth data are often collected over a large field area
where one data collection location is not visible from an-
other. For a field-based project, most geology Ph.D. stu-
dents would collect data over an area greater than 100
km? for their theses. Thus, GEO experts must coordin-
ate multiple extrinsic relationships—between the loca-
tion of the self and the map to record where data were
collected, among data points on the map, between the
spatial relations in a rock sample and regional spatial
patterns, and among locations in the field area to decide
where next to collect data (Shipley & Tikoff, in press).
Geologists, who are good at efficiently covering a map-
ping area, spending more time in the areas that provided
the highest quality information for discerning among
possible interpretations, tend to be more accurate in in-
ferring the wunderlying geological structure (Baker,
Johnson, Callahan, & Petcovic, 2016). Finally, there is
the practical advantage of being a good navigator in a
field that often requires working away from established
paths—good navigators are more likely to return quickly
and successfully to their vehicles at the end of the day.

One of the limitations of Study 1, however, is that it is
impossible to hypothesize about the domain expert’s
spatial competence prior to their domain training. Do
GEO experts get better at large-scale and/or small-scale
spatial tasks because of their training? Or do high-spatial
individuals self-select to specific STEM disciplines? Or
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do both effects occur? To overcome this drawback as
well as to delineate the role of fieldwork in improving
spatial skills, we investigated novices in a related GEO
discipline requiring large-scale spatial reasoning and pat-
tern detection across space and time.

Study 2

In Study 2, we explored the links between self-selection
to a STEM field—Geographic Information Systems
(GIS)—and improvement in navigation skills after ex-
tended exposure to domain knowledge from that field.
GIS involves the use of an integrated toolbox of hard-
ware and software systems and processes designed to
allow an individual to store, retrieve, visualize and trans-
form spatial data. Over the last three decades, GIS appli-
cations have extended beyond the field of geography and
into various educational domains (Madsen & Rump,
2012) with the ultimate goal to enhance our ability to
address planning and management problems (National
Research Council, 2006). Not unlike the field of geology,
GIS entails large-scale spatial reasoning and transforma-
tions, albeit through a different medium of learning.
Where geology expertise often relies on fieldwork in the
real world, GIS training focuses on a technology-assisted
ability to store, visualize and manipulate digitized spatial
information. So, does a suite of spatial visualization and
analyses software at a figural scale demand high large-
scale spatial thinking and does domain-specific know-
ledge in this GEO field translate into better spatial skills,
specifically navigation skills?

Lee and Bednarz (2009) found that students enrolled
in a GIS course outperformed a control group on a
spatial test. In addition, GIS participants showed signifi-
cant improvement in spatial thinking during the semes-
ter. However, the questions on the spatial test created to
measure spatial thinking skill were closely related to the
GIS course work and as such may not have been reflect-
ive of domain-general large-scale and small-scale spatial
skills. Similarly, Hall-Wallace and McAuliffe (2002)
found a significant positive correlation between small-
scale spatial skills—measured by the surface develop-
ment and cubes comparison tasks—and GIS learning.
Although limited, there is a growing body of research
investigating the relation between spatial thinking skills
and GIS learning (e.g., Albert & Golledge, 1999; Baker &
Bednarz, 2003; Britz & Webb, 2016; Kim & Bednarz,
2013). However, research so far has been limited to
small-scale spatial thinking and to spatial tests closely
related to the GIS curriculum.

In Study 2, we compared large-scale and small-scale
spatial skills of novice GIS students with students en-
rolled in a nonspatial communications (COM) course at
the start (T1) and end (T2) of an academic semester. As
in Study 1, participants in Study 2 completed a virtual
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navigation paradigm in addition to mental rotation and
spatial working memory tasks. Spatial and nonspatial
skill at T1 was used as a baseline to examine improve-
ment over the course of a semester. We hypothesized
that: GIS students will have significantly better spatial
skills at T1 as compared to COM students; GIS students
will show greater improvement in spatial skills, specific-
ally in navigation skills, from T1 to T2 compared to
COM students; and mental rotation and spatial working
memory may mediate the relation between academic
course and spatial skills improvement.

Method

Participants

A total of 90 undergraduate students (55 female) agreed
to participate in the current study. Participants were re-
cruited from introductory GIS (n=47; 26 female) and
communication (7 =43; 29 female) courses at Temple
University. GIS introductory courses at the university
where data were collected have an average class size of
12 students, and the goal was to collect as much data as
possible over a period of 2years (two Fall and two
Spring semesters). Of the 90 participants who signed up
for the study, 70 participants completed both pre-test
(T1) and post-test (T2) components of the study. An
equal number of GIS and COM students dropped out at
T2. Age was not recorded but ranged between 18 and
25 years, which was an eligibility criterion for participa-
tion. Of those participants who chose to disclose their
racial and ethnic information, four participants identified
as American Indian, eight as Asian, seven as Black/Afri-
can American, two as more than one race, one as Native
Hawaiian, 31 as White and two as other race. The
current research received the university’s Institutional
Review Board approval (Protocol number 23379: ‘Ex-
ploring Links between STEM Success and Spatial Skills:
Undergraduate GIS Courses and a Spatial Turn of
Mind’). Participants received a $15 gift card on comple-
tion of T1 and an additional $20 gift card on completion
of T2.

Materials

The study was administered on a Windows 7 64-bit
computer. The computer had an Intel Core i5-6600
CPU @ 3.30 GHz and Nvidia GeForce GT 610 video
card. The virtual environment (VE) was displayed on a
40cm x 62 cm LCD monitor with a refresh rate of 60
Hz and resolution of 1680 x 1050.

Virtual environment navigation paradigm (Virtual Silcton)
The virtual environment navigation paradigm in Study 2
was identical to that of Study 1. After exploring the VE,
participants completed the pointing task followed by the
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model-building task. In addition to Virtual Silcton, par-
ticipants completed three psychometric and self-report
measures: a mental rotation test, a spatial working mem-
ory task and a verbal ability test.

Psychometric and self-report measures

The Mental Rotation Test (MRT; Vandenberg & Kuse,
1978, adapted by Peters et al., 1995) consists of 20 items
each made up of one target figure and four response
items. Two of the four response items are identical to
the target figure, but presented at varying orientations.
The remaining two items are mirror images of the target
figure in varying orientations. Participants were asked to
identify the two response items that were identical but
rotated images of the target figure. Before beginning the
task, participants were given three practice trials. If they
got any of the practice problems incorrect, they reviewed
their answers with the experimenter and found the right
one before moving on to the actual task. Participants re-
ceived 2 points for each correct response and lost 2
points for each incorrect response.

The Spatial Working Memory Complex Span (Sym-
metry span; Unsworth, Heitz, Schrock, & Engle, 2005)
was also used. For the spatial working memory
(SWM) task, participants had to remember the loca-
tion of one red square in a 4 x4 matrix of otherwise
white squares. They then had to judge whether a sep-
arate array of black and white squares were bilaterally
symmetrical or not. After a series of between three
and five items (e.g., red square, symmetry judgment,
red square, symmetry judgment, etc.), participants
must recall the red square locations in the correct
order. Participants’ scores are calculated by summing
all correctly recalled items.

The Wide Range Achievement Test, Word Reading
Subtest (WRAT-4; Wilkinson & Robertson, 2006) is a
measure of verbal IQ that correlates very highly with the
WAIS-III and WISC-IV (Strauss, Sherman, & Spreen,
2006). The WRAT-4 Word Reading Subtest requires
participants to pronounce 55 individual words. Each par-
ticipant’s score is the number of words pronounced cor-
rectly out of 55.

The Philadelphia Verbal Ability Scale (PVAS;
Hegarty et al,, 2010) is a self-report measure of how
good participants feel their verbal ability is. The
measure comprises 10 items using a 7-point Likert
scale (Cronbach’s a=0.78) with statements like “I
am very good at scrabble.”

The Philadelphia Spatial Ability Scale (PSAS; Hegarty
et al.,, 2010) is a self-report measure of how well partici-
pants feel they can perform on common small-scale
spatial tasks. The measure comprises 16 items using a
7-point Likert scale (Cronbach’s a=0.77) with state-
ments like “I enjoy putting together puzzles.”
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Procedure

All participants completed the pre test (T1) within the
first 3 weeks of the semester and completed the post test
(T2) during the last 3 weeks of the semester. We en-
sured that the number of weeks between the pre and
post tests stayed approximately constant across partici-
pants. During the pre test (T1), participants signed a
consent form informing them about the two-timepoint
study. Participants could opt out at any point during the
study. On consenting to participate, the investigator first
administered the WRAT. Participants then filled out a
short demographic form and completed the online ver-
sion of the mental rotation task. This was followed by
the virtual environment navigation paradigm. Partici-
pants were instructed to explore the two main routes
and two connecting routes in Virtual Silcton, and to
complete the pointing and model-building tasks. Finally,
participants completed an e-prime version of the SWM
measure. The entire study from start to finish took ap-
proximately 1 h per session and not more than 2.5 h for
both sessions.

Results

To evaluate our three hypotheses, we ran repeated-mea-
sures ANOVA followed by post-hoc tests to compare
baseline competency and improvement over time in the
navigation and mental rotation skills of GIS and COM
participants. We also ran mediation models to investi-
gate the role of mental rotation and spatial working
memory in improving navigation skills.

Prior to analysis, the data were evaluated for multivari-
ate outliers by examining leverage indices for each indi-
vidual (Jaccard & Wan, 1993). No outliers were
detected. Further, a Levene’s test for homogeneity of
variance demonstrated that the assumption of equal var-
iances was met (all p > 0.05). Our sample had missing
data (approximately 22% attrition; i.e., participants who
completed T1 but did not return for testing at T2). To
deal with the missing data, we ran a multiple imputation
analysis using SPSS v20 and followed the guidelines for
multiple imputation analysis specified in Jelici¢, Phelps,
and Lerner (2009) (see also Rezvan, Lee, & Simpson,
2015, for a review). The MI analysis was conducted
using 23 imputations so as to exceed the percentage of
attrition that was found to be approximately 22%
(White, Royston, & Wood, 2011). All of the following
analyses were conducted using the imputed dataset and
all figures/tables present in the imputed dataset.

Baseline and improvement in navigation skills

Table 1 presents descriptive statistics for the spatial tasks
and psychometric measures grouped by participant
course. In order to test for baseline competency and im-
provement in spatial performance over time moderated
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Table 1 Descriptive statistics by course for T1 and T2

GIS CoM

Mean (SD) Mean (SD)

T 12 T 12
Within-route 2027 (11.47) 1516 (886) 26.04 (13.73) 23.69 (10.34)
Between-route  43.61 (11.71) 35.16 (15.13) 47.58 (16.00) 46.13 (14.44)
Model-building 05277 (0.29) 0.6393 (0.28) 0.4503 (0.27) 0.4487 (0.29)
MRT 3413 (21.79) 4253 (22.09) 2276 (17.93) 23.46 (23.63)
SWM 2857 (7.31) 3090 (744) 2298 (932) 2657 (9.72)
WRAT 4798 (432) - 46.26 (648) -
PSAS 4.90 (0.75) - 4.64 (0.75) -
PVAS 4.68 (0.86) - 449 (1.05) -

COM Communication, GIS Geographic Information Systems, MRT Mental
Rotation Test, PSAS Philadelphia Spatial Ability Scale, PVAS Philadelphia Verbal
Ability Scale, SD standard deviation, SWM Spatial Working Memory, T7 pre test
(start of academic semester), 72 post test (end of academic semester), WRAT
Wide Range Achievement Test

by participant course, we ran repeated-measures ANO-
VAs followed by post-hoc ¢t tests. GIS and COM partici-
pants were comparable on nonspatial verbal ability as
measured by the WRAT, #(88) =149, p=0.14, d =0.32,
and the PVAS, #(88) = 0.94, p = 0.35, d = 0.20. There were
also no significant differences between the groups on the
PSAS, #(88) = 1.64, p =0.10, d = 0.35.

Within-route pointing error

There was a significant main effect of participant course,
F(1,88) = 11.53, p<0.001, partial #* = 0.12, and time,
F(1,88) =13.74, p<0.001, partial #*>=0.14. However,
there was no significant interaction between time and
course, F(1,88)=1.88, p=0.17, partial 172 =0.02 (see
Fig. 5a). Thus, overall, GIS participants outperformed
COM participants on the within-route pointing trials
and there was significant improvement from T1 to T2
for both groups. However, there was no significant dif-
ference in the rates of improvement from T1 to T2. A ¢
test revealed that at baseline GIS participants were signifi-
cantly better than COM participants on the within-route
pointing task, £(88) = 2.17, p = 0.03, d = 0.46. This task was
further divided into seen and unseen within-route trials
based on the intervisibility of target buildings along a
route. The pattern of results is consistent with the overall
within-route pointing error, with no significant differences
between trials when the target was visible or not.

Between-route pointing error

There was a significant main effect of course, F(1,88) =
8.00, p < 0.01, partial #*=0.08, and time, F(1,88) = 12.05,
p <0.001, partial #*=0.12. More importantly, there was
a significant interaction between time and course,
F(1,88) = 6.02, p = 0.02, partial #°=0.06 (see Fig. 5b).
The significant interaction between time and course is
indicative of the differences in slopes (i.e., differences in
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Fig. 5 Change in large-scale navigation and small-scale mental rotation tasks, grouped by participant course. a Within-route pointing error. b
Between-route pointing error. ¢ Model-building (R? value). d Mental rotation skill. Overall, GIS participants significantly outperformed COM
participants and there was significant improvement in both groups from T1 to T2. In addition, GIS participants improved at a faster rate than
COM participants on all measures except the within-route pointing task. Error bars reflect +1 standard error of the mean. COM Communication,
GIS Geographic Information Systems, T1 pre test (start of academic semester), T2 post test (end of academic semester). For within- and between-
pointing errors, a low value (error) indicates high accuracy

rates of improvement from T1 to T2 in favor of GIS par-
ticipants). At baseline, GIS participants were not signifi-
cantly better than COM participants on the between-route
pointing task, #(88) = 1.35, p = 0.18, d = 0.26.

Model-building (R? value)

There was a significant main effect of participant course,
F(1,88) =13.08, p<0.001, partial #>=0.13, and time,
F(1,88) =4.44, p=0.04, partial 112 =0.05 (see Fig. 5c).
More importantly, there was a significant interaction be-
tween time and course, F(1,88)=4.70, p =0.03, partial
7> =005 (see Fig. 5c). Similar to the between-route
pointing task, there were differences in rates of improve-
ment from T1 to T2 in favor of GIS participants. At
baseline, GIS participants were not significantly better
than COM participants on the model-building task,
t(88) =1.31, p=0.19, d = 0.28.

Mental rotation skill

There was a significant main effect of participant course,
F(1,88) = 15.47, p<0.001, partial 7>=0.15, and time,
F(1,88) = 10.34, p = 0.002, partial > = 0.12. There was a
significant interaction between time and course,

F(1,88) =7.42, p<0.01, partial *=0.08 (see Fig. 5d).
Similar to the between-route and model-building perfor-
mances, we found differences in rates of improvement
from T1 to T2 in favor of GIS participants. At baseline,
GIS participants were significantly better than COM
participants on the MRT, £(88) = 2.69, p = 0.01, d = 0.57.

Spatial working memory
There was a significant main effect of participant course,
F(1,88) =10.49, p=0.002, partial #>=0.12, and time,
F(1,88) = 30.88, p < 0.001, partial #* = 0.26, but no signifi-
cant interaction between time and course, F(1,88) = 1.40,
p = 0.24, partial #* = 0.02. Thus, overall, GIS participants
outperformed COM participants on SWM and there
was significant improvement from T1 to T2 for both
groups. However, there was no significant difference in
the rates of improvement from T1 to T2. At baseline,
GIS participants were significantly better than COM
participants on the SWM task, #(88) =3.18, p <0.001,
d=0.67.

These analyses were also run using listwise deletion in-
stead of multiple imputations. All results stayed the
same except in the case of model-building performance.



Nazareth et al. Cognitive Research: Principles and Implications

There was no significant main effect of time or time x
course interaction. However, listwise deletion is a less
optimal strategy for dealing with missing data in a longi-
tudinal design and can reduce statistical power with
small sample sizes (Acock, 2005). Hence, we used results
of the multiple imputations to interpret our findings.
The presented analyses were also run controlling for
verbal ability as measured by the WRAT. There were no
changes in our findings; we do not present these add-
itional analyses for the sake of brevity.

Types of navigators

Figure 6 is a quiver (velocity) plot of participant per-
formance along two dimensions: performance on within-
route and between-route pointing. The arrow length and
direction represent the scaled magnitude of change and
the direction of change in pointing performance from
T1 to T2 (down and to the left represent improvement).
As is visually apparent, on average GIS participants (blue
arrow) showed more improvement than COM partici-
pants (yellow arrow). To test this pattern statistically, we
ran a constrained cluster analysis (number of clusters =
3), similar to that conducted in Study 1 and in previous
studies (Weisberg & Newcombe, 2016; Weisberg et al.,
2014). At T1, there was no significant relation between
cluster-membership (integrators:non-integrators:impre-
cise navigators) between GIS (11:26:10) and COM
(10:15:18) participants, )f(2, N=90)=5.12, p=0.08,
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Cramer’s V'=0.24. At T2, a chi-square analysis found a
significant difference in cluster membership between
GIS (15:25:7) and COM (7:19:17) participants, y*(2, N =
90) =7.73, p=0.02, Cramer’s V' =0.29. GIS participants
were more likely to be integrators and COM participants
were more likely to be imprecise navigators. Overall, 60
participants (GIS =33, COM =27) recorded no change
in cluster membership from T1 to T2, 17 participants
(GIS=10, COM =7) demonstrated a positive change
(i.e., they moved into a better navigator category from
T1 to T2) and 13 participants (GIS =4, COM =9) re-
corded a negative change (i.e., they moved into a lower
navigator category from T1 to T2). However, there was
no significant difference in change in cluster member-
ship between the two groups, y*(2, N=90)=2.88, p=
0.24, Cramer’s V' =0.18.

Role of mental rotation and spatial working memory in
navigation skills

We found significant differences in mental rotation and
spatial working memory between GIS and COM partici-
pants, which were parallel to differences on the naviga-
tion tasks. Hence, mental rotation and spatial working
memory at T1 were assessed as potential mediators in-
fluencing the relation between course and navigation
performance at T2, controlling for baseline performance
at T1. However, neither MRT nor SWM were found to
mediate the relation between course and pointing
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Fig. 6 Quiver plot of performance on between-route and within-route pointing trials at T1 and T2 grouped by participant course. Arrows depict
the magnitude (scaled) and direction of change in performance from T1 to T2. AVG average, COM Communication, GIS Geographic Information
Systems, T1 pre test (start of academic semester), T2 post test (end of academic semester)




Nazareth et al. Cognitive Research: Principles and Implications

performance at T2, controlling for baseline pointing per-
formance. The strength of the direct effect of course on
within-route pointing was b =5.72, t(87) = 3.74, p < 0.001,
and the bootstrapped indirect effect of course on within--
route pointing was b=0.06 (standard error (SE)=
0.34, [-0.60, 0.84]) for MRT as a potential mediator
and b=0.20 (SE=048, [-0.71, 1.26]) for SWM as a
potential mediator. The strength of the direct effect of
course on between-route pointing was b =8.69, #(87) =
3.33, p=0.001, and the bootstrapped indirect effect of
course on between-route pointing was b =0.73 (SE = 0.82,
[- 0.50, 2.63]) for MRT as a potential mediator and
b=0.12 (SE=0.88, [-1.48, 2.05]) for SWM as a po-
tential mediator. Similarly, MRT and SWM did not
significantly mediate the relation between course and
model-building performance at T2, controlling for
baseline model-building performance. The strength
of the direct effect of course on model-building was
b=-0.16, t(87)=-3.62, p<0.001, and the boot-
strapped indirect effect of course on model-building
was b=-0.02 (SE=0.01, [-0.05, 0.001]) for MRT as
a potential mediator and b=-0.02 (SE=0.02, [-
0.06, 0.004]) for SWM as a potential mediator. Thus,
the differences in navigation performance are attrib-
utable to improvements on navigation-specific pro-
cesses, and not small-scale spatial skill or spatial
working memory.

Sex differences in spatial, nonspatial and psychometric
measures

Although the current study was not designed specifically
to examine sex differences, we ran repeated-measures
analyses to examine whether improvement in spatial,
nonspatial and psychometric measures were moderated
by sex. Table 2 presents descriptive statistics for spatial,
nonspatial and psychometric performance at T1 and T2,
grouped by participant sex. For within-route pointing
performance, there were no significant effects of

Table 2 Descriptive statistics by participant sex for T1 and T2
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participant sex, F(1,87) =2.78, p = 0.10, partial #* = 0.03,
time, F(1,87) =3.17, p =0.08, partial #*=0.04, or inter-
action between time and sex, F(1,87)=0.07, p = 0.81,
partial #* = 0.00. Similarly, for between-route pointing
performance, there were no significant effects of par-
ticipant sex, F(1,87)=3.83, p = 0.06, partial #*=0.04,
time, F(1,87) = 0.58, p = 0.46, partial #*>=0.01, or inter-
action between time and sex, F(1,87)=0.36, p=0.58,
partial #>=0.00. For model-building performance,
there were no significant effects of participant sex,
F(1,87) = 246, p = 0.16, partial 7>=0.03, time,
F(1,87) =1.18, p =0.39, partial #*=0.01, or interaction
between time and sex, F(1,87) =0.77, p = 0.51, partial
#* = 0.01. In addition, we checked for sex differences
in navigator type using a chi-square test of independ-
ence. There was no significant relation between
participant sex and cluster membership at T1, x*(4,
N=90)=8.07, p=0.09, or at T2, ,\/2(4, N=90)=7.15,
p=0.13. Thus, males and females were equally likely
to be represented in each of the navigator clusters at
T1 and T2.

However, for mental rotation skill, there was a signifi-
cant main effect of participant sex, F(1,87) = 4.55, p < 0.05,
partial #*=0.05, in favor of male participants. There was
no significant main effect of time, F(1,87) = 0.53, p = 0.63,
partial #* = 0.01, and no interaction between time and par-
ticipant sex, F(1,87)=137, p = 0.39, partial 7*=0.02.
Thus, male participants outperformed female participants
on the MRT irrespective of time. However, there were no
significant differences in rates of improvement in males
and females from T1 to T2. For SWM, there was no sig-
nificant effect of participant sex, F(1,87) =1.22, p = 0.30,
partial #*=0.01, time, F(1,87)=0.73, p=0.50, partial
#*=0.01, or the interaction between time and sex,
F(1,87) =0.77, p = 0.55, partial #* = 0.01.

Finally, we examined the interaction of all three
variables: time, course and participant sex. For the
within-route pointing task, there was a significant

Male Female

Mean (SD) Mean (SD)

T T2 T T2
Within-route 20.16 (11.83) 16.36 (9.91) 24.85 (13.25) 21.06 (1041)
Between-route 4225 (15.24) 36.17 (15.71) 47.58 (12.84) 43.09 (15.34)
Model-building 0.5582 (0.2780) 0.5855 (0.3195) 04478 (0.2774) 0.5246 (0.2911)
MRT 35.89 (2249) 3847 (26.40) 24.12 (18.30) 30.20 (23.77)
SWM 27.08 (7.93) 30.38 (8.84) 25.15(9.23) 27.84 (9.11)
WRAT 4829 (4.97) - 46.44 (5.73) -
PSAS 4.74 (0.76) - 4.80 (0.76) -
PVAS 4.66 (0.92) - 4.55 (0.98) -

MRT Mental Rotation Test, PSAS Philadelphia Spatial Ability Scale, PVAS Philadelphia Verbal Ability Scale, SD standard deviation, SWM Spatial Working Memory, T1
pre test (start of academic semester), T2 post test (end of academic semester), WRAT Wide Range Achievement Test
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interaction, F(1,85)=0.4.59, p=0.04, partial 7*=0.05.
There was no significant interaction for the
between-route pointing, model-building, MRT and
spatial working memory tasks.

Discussion

Study 2 addresses the bidirectional relation between
GEO training and spatial thinking skills. We had three
main hypotheses in Study 2. First, we hypothesized that
GIS students will have significantly better spatial skills at
baseline as compared to COM students. Our results in-
dicate that some (but not all) baseline spatial skills of
GIS students are better than those of COM participants.
Thus, high-spatial individuals may be self-selecting to
the high-spatial GIS discipline. However, differences in
spatial skills were limited to the large-scale within-route
pointing task and the small-scale mental rotation task.
At baseline, GIS participants are not significantly better
than COM participants at between-route pointing,
which involves integrating the different routes in the VE,
or at creating a map of the environment in the model-
building task. One explanation for this could be that our
sample size for the two groups was too small to detect
significant differences for small to medium effect sizes
for these variables (d < 0.3, Cramer’s V =0.24). However,
it is possible that students enrolling in the high-spatial
GIS course may have some relevant spatial skills but that
this advantage is non-existent or weak for exactly those
kinds of abilities supported by thinking about spatial dis-
tributions and integrating them.

Second, we hypothesized that GIS students will show
greater improvement in spatial skills, specifically in navi-
gation skills from T1 to T2 as compared to COM stu-
dents. As hypothesized, GIS students recorded a
significantly faster rate of improvement from T1 to T2
in the between-route pointing and model-building tasks
compared to COM students. In addition, GIS students
showed a significantly faster rate of improvement in
small-scale mental rotation skills as compared to COM
students. Interestingly, spatial working memory im-
proved for both GIS and COM students from T1 to T2
but there were no significant differences in the rates of
improvement. These gains may reflect retesting effects.
Taken together, our findings not only suggest the pre-
dictive role of spatial skills in self-selection to the
high-spatial GIS courses but support GIS as a potential
tool for improving spatial skills. It is important to note
here that results of the listwise deletion approach to
missing data suggest that model-building performance
should be interpreted with some caution.

Finally, we hypothesized that mental rotation and
spatial working memory might mediate the relation be-
tween academic course and improvement in spatial
skills. However, our data did not support those ideas;
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baseline small-scale mental rotation skills did not mediate
the relation between academic course and improvement
in large-scale navigational proficiency. This finding sup-
ports the dissociation between small-scale object-based
and large-scale environmental space transformations
(Hegarty, Montello, Richardson, Ishikawa, & Lovelace,
2006; Hegarty & Waller, 2004; Newcombe & Shipley,
2015). Perspective-taking skills seem to play a more im-
portant role than mental rotation skills in predicting navi-
gational performance in the VE (Nazareth, Weisberg,
Margulis, & Newcombe, in press; Schinazi et al, 2013)
and should be investigated in research on GIS in the fu-
ture. It is more surprising that baseline spatial working
memory was not found to mediate the relation between
academic course and improvement in large-scale naviga-
tional proficiency, because previous research has found
both verbal and spatial working memories to correlate
with navigation performance (Weisberg & Newcombe,
2016).

Why did GIS seem to improve mental rotation? Argu-
ably, GIS technology engages small-scale spatial manipu-
lations on a computer screen, which would explain
improvements in small-scale mental rotation skill over
the course of a semester. For example, an introductory
GIS course may require a student to solve a social or
management issue by creating a graphical representa-
tion, using computer software (e.g., create a map using
geographic information) and analyzing spatial patterns.
In contrast, the introductory communication course for
the control group may involve discussions on, but not
graphical visualizations of, social and strategic communi-
cation issues.

What about the GIS curriculum aids in the develop-
ment of large-scale navigation skills? One explanation is
that when GIS tools are used appropriately in the class-
room, the technology improves the quality of learning
by immersing a student in spatial analysis and making
all geographic assumptions explicit through graphical vi-
sualizations (Meyer, Butterick, Olkin, & Zack, 1999).
Interactive pattern learning coupled with the visual com-
ponent of GIS facilitates the understanding of the under-
lying geographic and spatial principles, and consequently
can help in the development of spatial reasoning skills
(Goodchild, 1993). In a way, GIS tools reduce the ambi-
guity associated with abstractions in scale, projections,
geometry and topology (Bednarz & Ludwig, 1997; Self,
Gopal, Golledge, & Fenstermaker, 1992). Even introduc-
tory GIS courses—like those in the current study—in-
clude large components of extrinsic—dynamic types of
spatial relations and application and require students to
develop GIS-based solutions to geographic (large-scale)
modeling tasks. A focus on mapping principles, map
overlays and cartography may further help develop
perspective-taking skills, which consequently improves
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large-scale navigation proficiency. Of course, variations
in the content and style of teaching GIS software at the
university level could greatly influence improvement in
large-scale navigation.

Conclusion

Spatial skills appear to be at the core of several scientific
disciplines. However, there may be differences in the
amount and type of spatial demands in the STEM fields.
For example, physicists and geographers study phenom-
ena that occur at different scales. There is growing evi-
dence for dissociations between small-scale object-based
spatial skills like mental rotation and large-scale
perspective-taking and navigation skills through behav-
ioral (Hegarty et al, 2010) and functional magnetic res-
onance imaging (Lambrey, Doeller, Berthoz, & Burgess,
2012) findings, allowing us to identify gaps in the litera-
ture linking spatial thinking to enrollment and success
in the different STEM fields. One such gap is the study
of large-scale navigation skills and its relation to training
and expertise in the GEO fields. Existing literature fo-
cuses almost exclusively on small-scale spatial skills and
therefore little is known about large-scale spatial skills
like navigation, which may be particularly important for
the GEO fields. The current study provides evidence for
the link between large-scale navigational competence
and geology training. In Study 1 we found that geologists
not only report higher self-ratings but also demonstrate
higher navigational competence in a VE than non-STEM
undergraduates.

Spatial skills are malleable, and gains through spatial
training are durable and transfer to other skills (Uttal et
al., 2013). Thus, early improvement in large-scale and
small-scale spatial skills may be one route toward in-
creasing the STEM workforce overall, and addressing a
potential factor responsible for the underrepresentation
of women in STEM. However, we lack a sustainable
spatial training model that can be integrated into class-
rooms with minimum disruption in existing school and
university curricula; achieving this goal requires the as-
sessment of spatial training tools and interventions that
impact the relation between STEM and spatial skills.
GIS software and courses present a viable spatial train-
ing tool that can be integrated into existing school and
university curricula. The effective use of GIS to promote
spatial thinking depends on our ability to understand
the technology, its benefits and shortcomings and its re-
lation to specific spatial skills. Although the relation be-
tween the field of geography and the development of a
“spatial turn of mind” has received some attention (e.g.,
Albert & Golledge, 1999; Goodchild & Janelle, 2010;
Oldakowski, 2001), particularly with regard to cartog-
raphy or map-reading, there is a lack of research exam-
ining how the use of GIS tools may enhance spatial
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thinking skills (Britz & Webb, 2016). From a cognitive
perspective, the lack of systematic empirical research
examining the effectiveness of GIS training in improving
spatial thinking makes it difficult to identify how spatial
skills are impacted by new spatial visualization software.
We are already beginning to see the benefits of geospa-
tial curriculum at the school level on small-scale spatial
thinking (Jant, Uttal, & Kolvoord, 2014). The current
article extends the literature on the benefits of GIS train-
ing to large-scale navigational skills at the university
level. In Study 2, we found that novice GIS students
show higher baseline mental rotation skills and, to some
extent, navigational skills. However, over the course of
an academic semester, GIS students improve at a faster
rate than non-STEM undergraduates in both large-scale
and small-scale spatial skills.

In conclusion, the current study broadens our under-
standing of the relation between spatial skills and STEM
fields to a hitherto underinvestigated type of spatial rea-
soning—navigation skills. Logically, large-scale spatial
skills involved in navigation should be related to STEM
fields like the GEO disciplines that involve encoding and
transformation of geographical and environmental space,
and the current study empirically supports the bidirec-
tional nature of this linkage.

Limitations

In Study 1, we were limited by the amount of testing
time available with expert geologists and psychologists.
As a result, we were unable to administer many
small-scale and large-scale assessments. Geologists may
not only be better on large-scale navigation skills but may
also have superior mental rotation and perspective-taking
skills, which mediate the relation between discipline and
navigation performance. In the absence of these data, we
were unable to test more complex statistical models of dif-
ference in spatial skills between the experimental and
comparison groups. Secondly, the convenience afforded
by a virtual navigation paradigm comes at the cost of im-
portant proprioceptive and vestibular cues and a limited
field of view (FOV), which are important for navigation
(Maguire, Burgess & O’Keefe, 1999; Richardson, Montello
and Hegarty, 1999). Arguably, GIS students may simply
have more experience using virtual interfaces, and in the
absence of this advantage may not demonstrate better
navigation skills as compared to communication students
in a real-world environment. Finally, we only used one
measure of spatial working memory (i.e., Symmetry span)
and hence findings pertaining to working memory should
be interpreted with caution.
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